cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 107 results. Next

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A197739 Decimal expansion of least x>0 having sin(2x)=3*sin(6x).

Original entry on oeis.org

4, 7, 7, 6, 5, 8, 3, 0, 9, 0, 6, 2, 2, 5, 4, 6, 3, 9, 0, 8, 1, 9, 2, 8, 5, 5, 1, 2, 5, 7, 8, 7, 8, 8, 7, 7, 1, 2, 1, 7, 0, 7, 3, 4, 7, 5, 0, 5, 0, 0, 2, 7, 4, 5, 4, 7, 9, 8, 4, 9, 0, 6, 4, 6, 6, 0, 9, 5, 6, 0, 2, 2, 9, 5, 1, 9, 8, 8, 2, 2, 7, 6, 9, 3, 6, 9, 5, 8, 0, 1, 2, 9, 2, 8, 1, 4, 0, 3, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 18 2011

Keywords

Comments

This constant is the least x>0 for which the function f(x)=(sin(x))^2+(cos(3x))^2 has its maximal value. Least positive solutions of the equations f(x)=m/2, f(x)=m/3, f(x)=1, and f(x)=1/2 are given by sequences shown in the guide below.
In general, suppose that b and c are distinct positive real numbers. Let f(x)=(sin(bx))^2+cos((cx))^2. The extrema of f are the solutions of b*sin(2bx)=c*sin(2cx).
In the following guide, constants x given by the sequences (or explicit number) listed for each b,c are, in this order:
(1) least x>0 such that f(x)=(its maximum, m)
(2) m, the maximum of f
(3) least x>0 having f(x)=m/2
(4) least x>0 having f(x)=m/3
(5) least x>0 having f(x)=1
(6) least x>0 having f(x)=1/2
...
(b,c)=(1,2): A195700, x=25/16, A197589, A197591,
(b,c)=(1,3): A197739, A197588, A197590, A197755,
(b,c)=(1,4): A197758, A197759, A197760, A197761,
A019692 (x=pi/5), A003881
(b,c)=(1,pi): A197821, A197822, A197823, A197824,
(b,c)=(1,2*pi): A197827, A197828, A197829, A197830,
(b,c)=(1,3*pi): A197833, A197834, A197835, A197836,

Examples

			0.47765830906225463908192855125787887712170734750500...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 3;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .47, .48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197739 *)
    m = s[r]
    RealDigits[m]  (* A197588 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197590 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.8, 0.9}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197755 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A003881 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .9, .93}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197488 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    RealDigits[ ArcTan[ Sqrt[ 2-Sqrt[3] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)

A222068 Decimal expansion of (1/16)*Pi^2.

Original entry on oeis.org

6, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2013

Keywords

Comments

Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice).
From Hugo Pfoertner, Aug 29 2018: (Start)
Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n).
Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...".
A summation of the first 2*10^9 terms performed by Hans Havermann yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275...
(End)
From Robert Israel, Aug 31 2018: (Start)
Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16.
Sum_{k>=0} (-1)^k d(2k+1)/(2k+1)
= Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1)
(letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2))
= Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1))
= (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End)
Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - Patrick D McLean, Dec 03 2020

Examples

			0.6168502750680849136771556874922594459571...
		

References

  • S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
  • S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.
  • G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.

Crossrefs

Programs

Formula

Equals A003881^2. - Bruno Berselli, Feb 11 2013
Equals A123092+1/2. - R. J. Mathar, Feb 15 2013
Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - Jean-François Alcover, Apr 29 2013
Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - Jean-François Alcover, Jun 05 2016
Equals Sum_{k>=1} zeta(2*k)*k/4^k. - Amiram Eldar, May 29 2021

A153071 Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4.

Original entry on oeis.org

9, 6, 8, 9, 4, 6, 1, 4, 6, 2, 5, 9, 3, 6, 9, 3, 8, 0, 4, 8, 3, 6, 3, 4, 8, 4, 5, 8, 4, 6, 9, 1, 8, 6, 0, 0, 0, 6, 9, 5, 4, 0, 2, 6, 7, 6, 8, 3, 9, 0, 9, 6, 1, 5, 4, 4, 2, 0, 1, 6, 8, 1, 5, 7, 4, 3, 9, 4, 9, 8, 4, 1, 1, 7, 0, 8, 0, 3, 3, 1, 3, 6, 7, 3, 9, 5, 9, 4, 0, 7
Offset: 0

Views

Author

Stuart Clary, Dec 17 2008

Keywords

Examples

			L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii).
  • Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ]
  • PARI
    Pi^3/32 \\ Michel Marcus, Aug 15 2018

Formula

chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...
Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293]
Closed form: L(3, chi4) = Pi^3/32 = 1/A331095.
Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - Jean-François Alcover, Mar 29 2013
Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - Amiram Eldar, Apr 03 2022
Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - Amiram Eldar, Jun 23 2023
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(3), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A019675 Decimal expansion of Pi/8.

Original entry on oeis.org

3, 9, 2, 6, 9, 9, 0, 8, 1, 6, 9, 8, 7, 2, 4, 1, 5, 4, 8, 0, 7, 8, 3, 0, 4, 2, 2, 9, 0, 9, 9, 3, 7, 8, 6, 0, 5, 2, 4, 6, 4, 6, 1, 7, 4, 9, 2, 1, 8, 8, 8, 2, 2, 7, 6, 2, 1, 8, 6, 8, 0, 7, 4, 0, 3, 8, 4, 7, 7, 0, 5, 0, 7, 8, 5, 7, 7, 6, 1, 2, 4, 8, 2, 8, 5, 0, 4, 3, 5, 3, 1, 6, 7, 7, 6, 4, 6, 3, 3
Offset: 0

Views

Author

Keywords

Comments

Equals Integral_{x>=0} sin(4*x)/(4*x) dx. - Jean-François Alcover, Feb 28 2013
Consider 4 circles inscribed in a square. Inscribe a square in each circle. And finally, inscribe 4 circles inside each four small squares. Totally we get 16 small circles. Pi/8 is the ratio of the area of the 16 small circles to the area of initial square. See the link. - Kirill Ustyantsev, Apr 30 2020

Examples

			Pi/8 = 0.392699081698724154807830422909937860524646174921888227621868... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)/8))); // Vincenzo Librandi, Oct 07 2015
  • Mathematica
    RealDigits[N[Pi/8,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 1002);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+2)))), "3..-2"))  \\ Gheorghe Coserea, Oct 06 2015
    

Formula

From Peter Bala, Nov 15 2016: (Start)
Pi/8 = Sum_{k >= 1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)).
More generally, for n >= 0 we have 1/(2*n)! * Pi/4 = Sum_{k >= 1} (-1)^(k+n-1) * 1/Product_{j = -n..n} (2*k + 2*j - 1): when n = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For N divisible by 4, we have the asymptotic expansion Pi/8 - Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) ~ -1/2*(1/N^3 - 2/N^5 + 31/N^7 - 692/N^9 + ...), where the sequence of unsigned coefficients [1, 2, 31, 692, ...] equals A024235. (End)
Equals Integral_{x = 0..1} x*sqrt(1 - x^4) dx. - Peter Bala, Oct 27 2019
Equals Integral_{x = 0..oo} sin(x)^6/x^4 dx = Sum_{n >= 1} sin(n)^6/n^4, by the Abel-Plana formula. - Peter Bala, Nov 04 2019
From Amiram Eldar, Jul 12 2020: (Start)
Equals arctan(sqrt(2) - 1).
Equals Sum_{k>=0} (-1)^k/(4*k+2).
Equals Sum_{k>=0} 1/((4*k+1)*(4*k+3)) = Sum_{k>=0} 1/A001539(k).
Equals Integral_{x=0..oo} dx/(x^2 + 16).
Equals Integral_{x=0..oo} dx/(x^4 + 4) = Integral_{x=0..oo} x/(x^4 + 4) dx.
Equals Integral_{x=0..oo} x/(x^4 + 1)^2 dx = Integral_{x=0..1} x/(x^4 + 1) dx.
Equals Integral_{x=0..1} x * arcsin(x) dx. (End)
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals Integral_{x=0..oo} (x*log(x + 1))/((x^2 + 1)^2) dx.
Equals Integral_{x=0..oo} (x^3 - 3*x + 3*arctan(x))/(3*x^5) dx. (End)

A091476 Decimal expansion of Pi^2/4.

Original entry on oeis.org

2, 4, 6, 7, 4, 0, 1, 1, 0, 0, 2, 7, 2, 3, 3, 9, 6, 5, 4, 7, 0, 8, 6, 2, 2, 7, 4, 9, 9, 6, 9, 0, 3, 7, 7, 8, 3, 8, 2, 8, 4, 2, 4, 8, 5, 1, 8, 1, 0, 1, 9, 7, 6, 5, 6, 6, 0, 3, 3, 3, 7, 3, 4, 4, 0, 5, 5, 0, 1, 1, 2, 0, 5, 6, 0, 4, 8, 0, 1, 3, 1, 0, 7, 5, 0, 4, 4, 3, 3, 5, 0, 9, 2, 9, 6, 3, 8, 0, 5, 7, 9, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jan 13 2004

Keywords

Examples

			2.46740110027233965470862274996903778...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..Pi} x*sin(x)/(1+cos(x)^2) dx.
Equals Integral_{x=0..1} log((1+x)/(1-x))/x dx. - Jean-François Alcover, May 13 2013
Equals Integral_{x=0..oo} K_0(x)^2 dx, where K_0 is a modified Bessel function (see Gradstein-Ryshik 6.576.4). - R. J. Mathar, Oct 09 2015
Equals A003881 * A000796. - R. J. Mathar, Oct 09 2015
Equals ... + (-5)^-2 + (-3)^-2 + (-1)^-2 + 1^-2 + 3^-2 + 5^-2 + .... - Charles R Greathouse IV, Mar 02 2018
From A.H.M. Smeets, Sep 18 2018: (Start)
Equals A102753/2.
Equals 2*Sum_{k > 0} 1/(2*k - 1)^2. (End)
Pi^2/4 = Integral_{x = 0..oo} x/sinh(x) dx. More generally, Pi^2/4 = 2*(1 + 1/3^2 + ... + 1/(2*n-1)^2) + Integral_{x = 0..oo} exp(-2*n*x)*x/sinh(x). - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} log(x)/(x^2 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{n >= 0} 2^(n+1)/((n+1)^2*binomial(2*n+1,n)). See my entry in A002544 dated Apr 18 2017. Cf. A253191. - Peter Bala, Jan 30 2023
From Peter Bala, Nov 16 2023: (Start)
Pi^2/4 = 16*Sum_{k >= 1} k^2/(4*k^2 - 1)^2 = (2*16^2)*Sum_{k >= 1} k^2/((4*k^2 - 1)*(4*k^2 - 9))^2.
The general result, which can be proved using the WZ method (see Wilf for examples of this method), is that for n >= 0 there holds
Pi^2/4 = 16^(n+1)*(2*n + 1)*(2*n)!^4/(4*n)! * Sum_{k >= 1} k^2/( (4*k^2 - 1)*(4*k^2 - 9)*...*(4*k^2 - (2*n+1)^2) )^2. (End)
Equals Re(Polylog(2, 2)). - Mohammed Yaseen, Jul 03 2024
From A.H.M. Smeets, Apr 10 2025: (Start)
Let X(p,q) be the p-th smallest zero of the Laguerre polynomial of order q.
Equals lim_{k -> oo} X(k,k^2).
Equals lim_{q -> oo} X(1,q)*q.
Equals lim_{k -> oo} X(k,k^4)*sqrt(k).
Equals lim_{k -> oo} X(k^3,k^4)/sqrt(k).
More general, let P = log_q(p^2/q), then, for any p, 0 < p <= q, equals lim_{q -> oo} X(p,q)/q^P. (End)
Equals Integral_{x=-1..1} -log(abs(x))/(1 - x^2) dx. - Kritsada Moomuang, May 28 2025

A019704 Decimal expansion of sqrt(Pi)/2.

Original entry on oeis.org

8, 8, 6, 2, 2, 6, 9, 2, 5, 4, 5, 2, 7, 5, 8, 0, 1, 3, 6, 4, 9, 0, 8, 3, 7, 4, 1, 6, 7, 0, 5, 7, 2, 5, 9, 1, 3, 9, 8, 7, 7, 4, 7, 2, 8, 0, 6, 1, 1, 9, 3, 5, 6, 4, 1, 0, 6, 9, 0, 3, 8, 9, 4, 9, 2, 6, 4, 5, 5, 6, 4, 2, 2, 9, 5, 5, 1, 6, 0, 9, 0, 6, 8, 7, 4, 7, 5, 3, 2, 8, 3, 6, 9, 2, 7, 2, 3, 3, 2
Offset: 0

Views

Author

Keywords

Comments

Also half integral of f(x)=sqrt(x) with 0<=x<=1 and half derivative of the same f(x). See Fractional Calculus link. - Andrea Pinos, Jul 15 2023

Examples

			sqrt(Pi)/2 = 0.886226925452758013649...
		

References

  • C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 210.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.3, p. 22.

Crossrefs

Cf. A003881.

Programs

Formula

Equals (1/2)! = Gamma(3/2). - Benoit Cloitre, Apr 24 2003
Equals Integral_{x=0..oo} exp(-x^2) dx = Integral_{x=0..oo} exp(-(x - 1/x)^2) dx = Integral_{x=0..1} sqrt(log(1/x)) dx. - Jean-François Alcover, Mar 28 2013
Equals sqrt(A003881). - Michel Marcus, Aug 31 2014
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(2x)/sqrt(x) dx [Gradshteyn and Ryzhik].
Equals Integral_{x >= 0} cos(2x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End)
Equals Integral_{x=0..oo} sin(x^2)^2/x^2 dx. - Amiram Eldar, Aug 21 2020

A001650 k appears k times (k odd).

Original entry on oeis.org

1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1

Views

Author

Keywords

Comments

For n >= 0, a(n+1) is the number of integers x with |x| <= sqrt(n), or equivalently the number of points in the Z^1 lattice of norm <= n+1. - David W. Wilson, Oct 22 2006
The burning number of a connected graph of order n is at most a(n). See Bessy et al. - Michel Marcus, Jun 18 2018

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.

Crossrefs

Partial sums of A000122.

Programs

  • Haskell
    a001650 n k = a001650_tabf !! (n-1) !! (k-1)
    a001650_row n = a001650_tabf !! (n-1)
    a001650_tabf = iterate (\xs@(x:_) -> map (+ 2) (x:x:xs)) [1]
    a001650_list = concat a001650_tabf
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Mathematica
    a[1]=1,a[2]=3,a[3]=3,a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 07 2010 *)
    Flatten[Table[Table[n,{n}],{n,1,17,2}]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    a(n)=if(n<1,0,1+2*sqrtint(n-1))
    
  • Python
    from math import isqrt
    def A001650(n): return 1+(isqrt(n-1)<<1) # Chai Wah Wu, Nov 23 2024

Formula

a(n) = 1 + 2*floor(sqrt(n-1)), n > 0. - Antonio Esposito, Jan 21 2002
From Michael Somos, Apr 29 2003: (Start)
G.f.: theta_3(x)*x/(1-x).
a(n+1) = a(n) + A000122(n). (End)
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = a(n-a(n-2))+2. - Branko Curgus, May 07 2010
a(n) = 2*ceiling(sqrt(n)) - 1. - Branko Curgus, May 07 2010
Seen as a triangle read by rows: T(n,k) = 2*(n-1), k=1..n. - Reinhard Zumkeller, Nov 14 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022

Extensions

More terms from Michael Somos, Apr 29 2003

A033889 a(n) = Fibonacci(4*n + 1).

Original entry on oeis.org

1, 5, 34, 233, 1597, 10946, 75025, 514229, 3524578, 24157817, 165580141, 1134903170, 7778742049, 53316291173, 365435296162, 2504730781961, 17167680177565, 117669030460994, 806515533049393, 5527939700884757, 37889062373143906, 259695496911122585, 1779979416004714189
Offset: 0

Views

Author

Keywords

Comments

For positive n, a(n) equals (-1)^n times the permanent of the (4n) X (4n) tridiagonal matrix with sqrt(i)'s along the three central diagonals, where i is the imaginary unit. - John M. Campbell, Jul 12 2011
a(n) = 5^n*a(n; 3/5) = (16/5)^n*a(2*n; 3/4), and F(4*n) = 5^n*b(n; 3/5) = (16/5)^n*b(2*n; 3/4), where a(n; d) and b(n; d), n=0, 1, ..., d in C, denote the delta-Fibonacci numbers defined in comments to A014445. Two of these identities from the following relations follows: F(k+1)^n*a(n; F(k)/F(k+1)) = F(k*n+1) and F(k+1)^n*b(n; F(k)/F(k+1)) = F(k*n) (see also Witula's et al. papers). - Roman Witula, Jul 24 2012

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - a(n-2) for n >= 2. - Floor van Lamoen, Dec 10 2001
From R. J. Mathar, Jan 17 2008: (Start)
O.g.f.: (1 - 2*x)/(1 - 7*x + x^2).
a(n) = A004187(n+1) - 2*A004187(n). (End); corrected by Klaus Purath, Jul 29 2020
a(n) = A167816(4*n+1). - Reinhard Zumkeller, Nov 13 2009
a(n) = sqrt(1 + 2 * Fibonacci(2*n) * Fibonacci(2*n + 1) + 5 * (Fibonacci(2*n) * Fibonacci(2*n + 1))^2). - Artur Jasinski, Feb 06 2010
a(n) = Sum_{k=0..n} A122070(n,k)*2^k. - Philippe Deléham, Mar 13 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n)*Fibonacci(2*n+2) + 1. - Gary Detlefs, Apr 18 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n+1)^2. - Bruno Berselli, Apr 19 2012
a(n) = Sum_{k = 0..n} A238731(n,k)*4^k. - Philippe Deléham, Mar 05 2014
a(n) = A000045(A016813(n)). - Michel Marcus, Mar 05 2014
2*a(n) = Fibonacci(4*n) + Lucas(4*n). - Bruno Berselli, Oct 13 2017
a(n) = A094567(n-1) + A094567(n), assuming A094567(-1) = 0. - Klaus Purath, Jul 29 2020
Sum_{n>=0} (-1)^n * arctan(3/a(n)) = Pi/4 (A003881) (Wan, 2022). - Amiram Eldar, Mar 01 2024
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A057356 a(n) = floor(2*n/7).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
  • N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.

Crossrefs

Programs

Formula

G.f.: x^4*(1+x)*(x^2-x+1)/( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - Numerator corrected by R. J. Mathar, Feb 20 2011
Sum_{n>=4} (-1)^n/a(n) = Pi/4 (A003881). - Amiram Eldar, Sep 30 2022
Previous Showing 11-20 of 107 results. Next