cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 433 results. Next

A005385 Safe primes p: (p-1)/2 is also prime.

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879, 2903, 2963
Offset: 1

Views

Author

Keywords

Comments

Then (p-1)/2 is called a Sophie Germain prime: see A005384.
Or, primes of the form 2p+1 where p is prime.
Primes p such that denominator(Bernoulli(p-1) + 1/p) = 6. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 10 2004
Primes p such that p-1 is a semiprime. - Zak Seidov, Jul 01 2005
A156659(a(n)) = 1; A156875 gives numbers of safe primes <= n. - Reinhard Zumkeller, Feb 18 2009
From Daniel Forgues, Jul 31 2009: (Start)
A safe prime p is 7 or of the form 6k-1, k >= 1, i.e., p == 5 (mod 6).
A prime p of the form 6k+1, k >= 2, i.e., p = 1 (mod 6), cannot be a safe prime since (p-1)/2 is composite and divisible by 3. (End)
If k is the product of the n-th safe prime p and its corresponding Sophie Germain prime (p-1)/2, then a(n) = 2(k-phi(k))/3 + 1, where phi is Euler's totient function. - Wesley Ivan Hurt, Oct 03 2013
From Bob Selcoe, Apr 14 2014: (Start)
When the n-th prime is divided by all primes up to the (n-1)-th prime, safe primes (p) have remainders of 1 when divided by 2 and (p-1)/2 and no other primes. That is, p(mod j)=1 iff j={2,(p-1)/2}; p>j, {p,j}=>prime. Explanation: Generally, x(mod y)=1 iff x=y'+1, where y' is the set of divisors of y, y'>1. Since safe primes (p) are of the form p(mod j)=1 iff p and j are prime, then j={j'}. That is, since j is prime, there are no divisors of j (greater than 1) other than j. Therefore, no primes other than j exist which satisfy the equation p(mod j)=1.
Except primes of the form 2^n+1 (n>=0), all non-safe primes (p') will have at least one prime (p") greater than 2 and less than (p-1)/2 such that p'(mod p")=1. Explanation: Non-safe primes (p') are of the form p'(mod k)=1 where k is composite. This means prime divisors of k exist, and p" is the set of prime divisors of k (example p'=89: k=44; p"={2,11}). The exception applies because p"={2} iff p'=2^n+1.
Refer to the rows in triangle A207409 for illustration and further explanation. (End)
Conjecture: there is a strengthening of the Bertrand postulate for n >= 24: the interval (n, 2*n) contains a safe prime. It has been tested by Peter J. C. Moses up to n = 10^7. - Vladimir Shevelev, Jul 06 2015
The six known safe primes p such that (p-1)/2 is a Fibonacci prime are in A263880. - Jonathan Sondow, Nov 04 2015
The only term in common with A005383 is 5. - Zak Seidov, Dec 31 2015
From the fourth entry onward, do these correspond to Smarandache's problem 34 (see A007931 link), specifically values which cannot be used (do not meet conditions) to confirm the conjecture? - Bill McEachen, Sep 29 2016
Primes p with the property that there is a prime q such that p+q^2 is a square. - Zak Seidov, Feb 16 2017
It is conjectured that there are infinitely many safe primes, and their estimated asymptotic density ~ 2C/(log n)^2 (where C = 0.66... is the twin prime constant A005597) converges to the actual value as far as we know. - M. F. Hasler, Jun 14 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Except for the initial term, this is identical to A079148.
Subsequence of A088707.
Primes in A072055.

Programs

  • Haskell
    a005385 n = a005385_list !! (n-1)
    a005385_list = filter ((== 1) . a010051 . (`div` 2)) a000040_list
    -- Reinhard Zumkeller, Sep 18 2011
    
  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime((p-1) div 2)]; // Vincenzo Librandi, Jul 06 2015
    
  • Maple
    with(numtheory); [ seq(safeprime(i),i=1..3000) ]: convert(%,set); convert(%,list); sort(%);
    A005385_list := n->select(i->isprime(iquo(i,2)),select(i->isprime(i),[$1..n])): # Peter Luschny, Nov 08 2010
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[(#-1)/2]&] (* Zak Seidov, Jan 26 2011 *)
  • PARI
    g(n) = forprime(x=2,n,y=x+x+1;if(isprime(y),print1(y","))) \\ Cino Hilliard, Sep 12 2004
    
  • PARI
    [x|x<-primes(10^3), bigomega(x-1)==2] \\ Altug Alkan, Nov 04 2015
    
  • Python
    from sympy import isprime, primerange
    def aupto(limit):
      alst = []
      for p in primerange(1, limit+1):
        if isprime((p-1)//2): alst.append(p)
      return alst
    print(aupto(2963)) # Michael S. Branicky, May 07 2021

Formula

a(n) = 2 * A005384(n) + 1.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 15 2001

A005097 (Odd primes - 1)/2.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
Offset: 1

Views

Author

Keywords

Comments

Or, numbers k such that 2k+1 is prime.
Also numbers not of the form 2xy + x + y. - Jose Brox (tautocrona(AT)terra.es), Dec 29 2005
This sequence arises if you factor the product of a large number of the first odd numbers into the form 3^n(3)5^n(5)7^n(7)11^n(11)... Then n(3)/n(5) = 2, n(3)/n(7) = 3, n(3)/n(11) = 5, ... . - Andrzej Staruszkiewicz (astar(AT)th.if.uj.edu.pl), May 31 2007
Kohen shows: A king invites n couples to sit around a round table with 2n+1 seats. For each couple, the king decides a prescribed distance d between 1 and n which the two spouses have to be seated from each other (distance d means that they are separated by exactly d-1 chairs). We will show that there is a solution for every choice of the distances if and only if 2n+1 is a prime number [i.e., iff n is in A005097], using a theorem known as Combinatorial Nullstellensatz. - Jonathan Vos Post, Jun 14 2010
Starting from 6, positions at which new primes are seen for Goldbach partitions. E.g., 31 is first seen at 34 from 31+3, so position = 1 + (34-6)/2 = 15. - Bill McEachen, Jul 05 2010
Perfect error-correcting Lee codes of word length n over Z: it is conjectured that these always exist when 2n+1 is a prime, as mentioned in Horak. - Jonathan Vos Post, Sep 19 2011
Also solutions to: A000010(2*n+1) = n * A000005(2*n+1). - Enrique Pérez Herrero, Jun 07 2012
A193773(a(n)) = 1. - Reinhard Zumkeller, Jan 02 2013
I conjecture that the set of pairwise sums of terms of this sequence (A005097) is the set of integers greater than 1, i.e.: 1+1=2, 1+2=3, ..., 5+5=10, ... (This is equivalent to Goldbach's conjecture: every even integer greater than or equal to 6 can be expressed as the sum of two odd primes.) - Lear Young, May 20 2014
See conjecture and comments from Richard R. Forberg, in Links section below, on the relationship of this sequence to rules on values of c that allow both p^q+c and p^q-c to be prime, for an infinite number of primes p. - Richard R. Forberg, Jul 13 2016
The sequence represents the minimum number Ng of gears which are needed to draw a complete graph of order p using a Spirograph(R), where p is an odd prime. The resulting graph consists of Ng hypotrochoids whose respective nodes coincide. If the teethed ring has a circumference p then Ng = (p-1)/2. Examples: A complete graph of order three can be drawn with a Spirograph(R) using a ring with 3n teeth and one gear with n teeth. n is an arbitrary number, only related to the geometry of the gears. A complete graph of order 5 can be drawn using a ring with diameter 5 and 2 gears with diameters 1 and 2 respectively. A complete graph of order 7 can be drawn using a ring with diameter 7 and 3 gears with diameters 1, 2 and 3 respectively. - Bob Andriesse, Mar 31 2017

Crossrefs

Complement of A047845. Cf. A000040, A006005, A006093.
A130290 is an essentially identical sequence.
Cf. A005384 (subsequence of primes), A266400 (their indices in this sequence).
Numbers n such that 2n+k is prime: this seq(k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
Cf. also A266409, A294507.

Programs

Formula

a(n) = A006093(n)/2 = A000010(A000040(n+1))/2.
a(n) = (prime(n+1)^2-1)/(2*sigma(prime(n+1))) = (A000040(n+1)^2-1)/(2*A000203(A000040(n+1))). - Gary Detlefs, May 02 2012
a(n) = (A065091(n) - 1) / 2. - Reinhard Zumkeller, Jan 02 2013
a(n) ~ n*log(n)/2. - Ilya Gutkovskiy, Jul 11 2016
a(n) = A294507(n) (mod prime(n+1)). - Jonathan Sondow, Nov 04 2017
a(n) = A130290(n+1). - Chai Wah Wu, Jun 04 2022

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A005382 Primes p such that 2p-1 is also prime.

Original entry on oeis.org

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 661, 691, 727, 811, 829, 877, 937, 967, 997, 1009, 1069, 1171, 1237, 1279, 1297, 1399, 1429, 1459, 1531, 1609, 1627, 1657, 1759, 1867, 2011
Offset: 1

Views

Author

Keywords

Comments

Sequence gives values of p such Sum_{i=1..p} gcd(p,i) = A018804(p) is prime. - Benoit Cloitre, Jan 25 2002
Let q = 2n-1. For these n (and q), the sum of two cyclotomic polynomials can be written as a product of cyclotomic polynomials and as a cyclotomic polynomial in x^2: Phi(q,x) + Phi(2q,x) = 2 Phi(n,x) Phi(2n,x) = 2 Phi(n,x^2). - T. D. Noe, Nov 04 2003
Primes in A006254. - Zak Seidov, Mar 26 2013
If a(n) is in A168421 then A005383(n) is a twin prime with a Ramanujan prime, A005383(n) - 2. If this sequence has an infinite number of terms in A168421, then the twin prime conjecture can be proved. - John W. Nicholson, Dec 05 2013
Records subsequence of A023509 (n >= 2). - David James Sycamore, May 05 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010051, A000040, A053685 (subsequence), A006254.
Cf. A023509.

Programs

  • Haskell
    a005382 n = a005382_list !! (n-1)
    a005382_list = filter
       ((== 1) . a010051 . (subtract 1) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    f := proc(Q) local t1,i,j; t1 := []; for i from 1 to 500 do j := ithprime(i); if isprime(2*j-Q) then t1 := [op(t1),j]; fi; od: t1; end; f(1);
    # second Maple program:
    q:= p-> andmap(isprime, [p, 2*p-1]):
    select(q, [$2..2500])[];  # Alois P. Heinz, Dec 16 2024
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[2#-1]&]
  • PARI
    select(p->isprime(2*p-1),primes(500)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • PARI
    forprime(n=2, 10^3, if(ispseudoprime(2*n-1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014

Formula

a(n) = A129521(n) / A005383(n). - Reinhard Zumkeller, Apr 19 2007
a(n) = (A005383(n) + 1)/2. - Zak Seidov, Nov 04 2010

A005277 Nontotients: even numbers k such that phi(m) = k has no solution.

Original entry on oeis.org

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302, 304, 308, 314, 318
Offset: 1

Views

Author

Keywords

Comments

If p is prime then the following two statements are true. I. 2p is in the sequence iff 2p+1 is composite (p is not a Sophie Germain prime). II. 4p is in the sequence iff 2p+1 and 4p+1 are composite. - Farideh Firoozbakht, Dec 30 2005
Another subset of nontotients consists of the numbers j^2 + 1 such that j^2 + 2 is composite. These numbers j are given in A106571. Similarly, let b be 3 or a number such that b == 1 (mod 4). For any j > 0 such that b^j + 2 is composite, b^j + 1 is a nontotient. - T. D. Noe, Sep 13 2007
The Firoozbakht comment can be generalized: Observe that if k is a nontotient and 2k+1 is composite, then 2k is also a nontotient. See A057192 and A076336 for a connection to Sierpiński numbers. This shows that 271129*2^j is a nontotient for all j > 0. - T. D. Noe, Sep 13 2007

Examples

			There are no values of m such that phi(m)=14, so 14 is a term of the sequence.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 44 at p. 91.
  • R. K. Guy, Unsolved Problems in Number Theory, B36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 91.

Crossrefs

See A007617 for all numbers k (odd or even) such that phi(m) = k has no solution.
All even numbers not in A002202. Cf. A000010.

Programs

  • Haskell
    a005277 n = a005277_list !! (n-1)
    a005277_list = filter even a007617_list
    -- Reinhard Zumkeller, Nov 22 2015
    
  • Magma
    [n: n in [2..400 by 2] | #EulerPhiInverse(n) eq 0]; // Marius A. Burtea, Sep 08 2019
  • Maple
    A005277 := n -> if type(n,even) and invphi(n)=[] then n fi: seq(A005277(i),i=1..318); # Peter Luschny, Jun 26 2011
  • Mathematica
    searchMax = 320; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; Select[Range[searchMax], EvenQ[ # ] && (phiAnsYldList[[ # ]] == 0) &] (* Alonso del Arte, Sep 07 2004 *)
    totientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) Select[2 Range@160, ! totientQ@# &] (* Robert G. Wilson v, Mar 20 2023 *)
  • PARI
    is(n)=n%2==0 && !istotient(n) \\ Charles R Greathouse IV, Mar 04 2017
    

Formula

a(n) = 2*A079695(n). - R. J. Mathar, Sep 29 2021
{k: k even and A014197(k) = 0}. - R. J. Mathar, Sep 29 2021

Extensions

More terms from Jud McCranie, Oct 13 2000

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A007700 Numbers n such that n, 2n+1, and 4n+3 all prime.

Original entry on oeis.org

2, 5, 11, 41, 89, 179, 359, 509, 719, 1019, 1031, 1229, 1409, 1451, 1481, 1511, 1811, 1889, 1901, 1931, 2459, 2699, 2819, 3449, 3491, 3539, 3821, 3911, 5081, 5399, 5441, 5849, 6101, 6131, 6449, 7079, 7151, 7349, 7901, 8969, 9221, 10589, 10691, 10709, 11171
Offset: 1

Views

Author

Keywords

Comments

The corresponding primes 2n+1 and 4n+3 respectively have n-1 and 2n primitive roots. - Lekraj Beedassy, Jan 07 2005
At n > 2, a(n) == {11,29} (mod 30). - Zak Seidov, Jan 31 2013

References

  • T. Moreau, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A005384 and A023213.

Programs

  • Maple
    A007700 := proc(n) local p1,p2; p1 := 2*n+1; p2 := 2*p1+1; if isprime(n) = true and isprime(p1)=true and isprime(p2)=true then RETURN(n); fi; end;
  • Mathematica
    Select[Range[10^3*3], PrimeQ[ # ]&&PrimeQ[2*#+1]&&PrimeQ[4*#+3] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Prime[Range[1500]],AllTrue[{2#+1,4#+3},PrimeQ]&] (* Harvey P. Dale, Apr 12 2022 *)
  • PARI
    is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3) \\ Charles R Greathouse IV, Mar 21 2013

A002515 Lucasian primes: p == 3 (mod 4) with 2*p+1 prime.

Original entry on oeis.org

3, 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, 1019, 1031, 1103, 1223, 1439, 1451, 1499, 1511, 1559, 1583, 1811, 1931, 2003, 2039, 2063, 2339, 2351, 2399, 2459, 2543, 2699, 2819, 2903, 2939, 2963, 3023, 3299
Offset: 1

Views

Author

Keywords

Comments

2*p+1 divides A000225(p), the p-th Mersenne number. - Lekraj Beedassy, Jun 23 2003
Also primes p such that 2^(2*p+1) - 1 divides 2^(2^p-1) - 1. - Arkadiusz Wesolowski, May 26 2011
Intersection of A005384 (Sophie Germain primes) and A002145. - Jeppe Stig Nielsen, Aug 03 2020

References

  • A. J. C. Cunningham, On Mersenne's numbers, Reports of the British Association for the Advancement of Science, 1894, pp. 563-564.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 27.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 76.
  • Daniel Shanks, "Solved and Unsolved Problems in Number Theory," Fourth Edition, Chelsea Publishing Co., NY, 1993, page 28.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A002145 and A005384.

Programs

  • MATLAB
    p=primes(1500); m=1;
    for u=1:length(p)
       if and(isprime(2*p(u)+1)==1, mod(p(u),4)==3) ; sol(m)=p(u); m=m+1;  end;
    end
    sol % Marius A. Burtea, Mar 26 2019
  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(2*p+1) and p mod 4 in [3]]; // Vincenzo Librandi, Sep 03 2016
    
  • Mathematica
    Select[Range[10^4], Mod[ #, 4] == 3 && PrimeQ[ # ] && PrimeQ[2# + 1] & ]
    Select[Prime[Range[500]],Mod[#,4]==3&&PrimeQ[2#+1]&] (* Harvey P. Dale, Mar 15 2016 *)
  • PARI
    is(n)=n%4>2 && isprime(n) && isprime(2*n+1) \\ Charles R Greathouse IV, Apr 01 2013
    
  • PARI
    list(lim)=my(v=List()); forprimestep(p=3,lim\1,4, if(isprime(2*p+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jul 25 2024
    

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Jul 25 2024

Extensions

More terms from Robert G. Wilson v, Mar 07 2002

A005602 Smallest prime beginning a complete Cunningham chain of length n (of the first kind).

Original entry on oeis.org

13, 3, 41, 509, 2, 89, 1122659, 19099919, 85864769, 26089808579, 665043081119, 554688278429, 4090932431513069, 95405042230542329, 90616211958465842219, 810433818265726529159
Offset: 1

Views

Author

Keywords

Comments

The word "complete" indicates each chain is exactly n primes long (i.e., the chain cannot be a subchain of another one). Except for a(1), each term, by definition, is a Sophie Germain prime (A005384) as is each element except the last in each chain; each element after the first in each chain is a safe prime (A005385), so interior elements are both.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(13) found by Jack Brennen; a(14) found by Paul Jobling (Paul.Jobling(AT)WhiteCross.com) [Oct 23 2000]
Better description from Rick L. Shepherd, Jul 07 2004
a(15) found by Jonathan Webster and Jonathan Sorenson, added Jun 26 2018
a(16) found by Phil Carmody and Paul Jobling, Feb 2002, and added by Mauro Fiorentini, Feb 21 2025

A053176 Primes p such that 2p+1 is composite.

Original entry on oeis.org

7, 13, 17, 19, 31, 37, 43, 47, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 127, 137, 139, 149, 151, 157, 163, 167, 181, 193, 197, 199, 211, 223, 227, 229, 241, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 347, 349, 353, 367, 373, 379, 383
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Primes not in A005384 = non-Sophie Germain primes.
Also, numbers n such that odd part of A005277(n) is prime. Proof by John Renze, Sep 30 2004
Sequence gives primes p such that B(2p) has denominator 6, where B(2n) are the Bernoulli numbers. - Benoit Cloitre, Feb 06 2002
Sequence gives all n such that the equation phi(x)=2n has no solution. - Benoit Cloitre, Apr 07 2002
A010051(a(n))*(1-A156660(a(n))) = 1; subsequence of A138887. - Reinhard Zumkeller, Feb 18 2009
Mersenne prime exponents > 3 must be in the union of this sequence and (A002144). - Roderick MacPhee, Jan 12 2017

Examples

			17 is a term because 2*17 + 1 = 35 is composite.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(12200) | not IsPrime(2*p+1)]; // Vincenzo Librandi, Jun 18 2015
  • Mathematica
    Select[Prime[Range[1000]], ! PrimeQ[2 # + 1] &] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    list(lim)=select(p->!isprime(2*p+1),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Feb 20 2012
Previous Showing 21-30 of 433 results. Next