cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 90 results. Next

A062786 Centered 10-gonal numbers.

Original entry on oeis.org

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Comments

Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023

Crossrefs

Programs

  • GAP
    List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
    
  • Magma
    [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
    
  • PARI
    for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
    
  • Python
    def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
  • Sage
    [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
    

Formula

a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)

Extensions

Better description from Terrel Trotter, Jr., Apr 06 2002

A069129 Centered 16-gonal numbers.

Original entry on oeis.org

1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, 7937, 8449, 8977, 9521, 10081, 10657, 11249, 11857, 12481, 13121, 13777, 14449, 15137, 15841
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Also, sequence found by reading the line from 1, in the direction 1, 17, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139098 in the same spiral. - Omar E. Pol, Apr 26 2008
The subsequence of primes begins: 17, 97, 241, 337, 449, 577, 881, 1249, 3041, 3361, 3697, 4049, 4801, 6961, 7937, 9521, 10657, 13121, 14449. See A184899: n such that the n-th centered 12-gonal number is prime. Indices of prime star numbers. - Jonathan Vos Post, Feb 27 2011
Binomial transform of [1, 16, 16, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 16, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
Centered hexadecagonal numbers or centered hexakaidecagonal numbers. - Omar E. Pol, Oct 03 2011
a(n) = m(n,n) for an array constructed by using the terms in A016813 as the antidiagonals; the first few antidiagonals are 1; 5,9; 13,17,21; 25,29,33,37. - J. M. Bergot, Jul 05 2013
[The first five rows begin: 1,9,21,37,57; 5,17,33,53,77; 13,29,49,73,101; 25,45,69,97,129; 41,65,93,125,161.]

Examples

			a(5) = 161 because 8*5^2 - 8*5 + 1 = 200 - 40 + 1 = 161.
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 - 8*n + 1.
a(n) = A035008(n-1) + 1. - Omar E. Pol, Apr 26 2008
a(n) = 16*n + a(n-1) - 16 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+14*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
E.g.f.: (8*x^2 + 1)*exp(x). - G. C. Greubel, Jul 18 2017
a(n) = A056220(2n-1). - Bruce J. Nicholson, Aug 31 2017
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(2))) / (4*sqrt(2)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 9*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 9/e - 1. (End)
Product_{n>=2} (a(n) - 1) / (a(n) + 1) = Pi/4. - Dimitris Valianatos, Jun 27 2020
a(n) = A016754(n-1) + 8*A000217(n-1). - Leo Tavares, Jul 19 2021

A028895 5 times triangular numbers: a(n) = 5*n*(n+1)/2.

Original entry on oeis.org

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ... and the same line from 0, in the direction 0, 15, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Axis perpendicular to A195142 in the same spiral. - Omar E. Pol, Sep 18 2011
Bisection of A195014. Sequence found by reading the line from 0, in the direction 0, 5, ..., and the same line from 0, in the direction 0, 15, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is the main diagonal of the spiral. - Omar E. Pol, Sep 25 2011
a(n) = the Wiener index of the graph obtained by applying Mycielski's construction to the complete graph K(n) (n>=2). - Emeric Deutsch, Aug 29 2013
Sum of the numbers from 2*n to 3*n for n=0,1,2,... - Wesley Ivan Hurt, Nov 27 2015
Numbers k such that the concatenation k625 is a square, where also 625 is a square. - Bruno Berselli, Nov 07 2018
From Paul Curtz, Nov 29 2019: (Start)
Main column of the pentagonal spiral for n (A001477):
50
49 30 31
48 29 15 16 32
47 28 14 5 6 17 33
46 27 13 4 0 1 7 18 34
45 26 12 3 2 8 19 35
44 25 11 10 9 20 36
43 24 23 22 21 37
42 41 40 39 38
(End)

References

  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A000566, A005475, A005476, A033583, A085787, A147875, A192136, A326725 (all in the spiral).

Programs

Formula

G.f.: 5*x/(1-x)^3.
a(n) = 5*n*(n+1)/2 = 5*A000217(n).
a(n+1) = 5*n+a(n). - Vincenzo Librandi, Aug 05 2010
a(n) = A005891(n) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A130520(5n+4). - Philippe Deléham, Mar 26 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 27 2015
a(n) = Sum_{i=0..n} A001068(4i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: 5*x*(2 + x)*exp(x)/2. - Ilya Gutkovskiy, May 06 2016
a(n) = A055998(3*n) - A055998(2*n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/5)*(2*log(2) - 1). (End)
Product_{n>=1} (1 - 1/a(n)) = -(5/(2*Pi))*cos(sqrt(13/5)*Pi/2). - Amiram Eldar, Feb 21 2023

A004068 Number of atoms in a decahedron with n shells.

Original entry on oeis.org

0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

Also as a(n)=(n/6)*(5*n^2+1), n>0: structured pentagonal diamond numbers (vertex structure 6) (cf. A081436 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of atoms in decahedron with n shells, number = 5/6*(n^3) + 1/6*(n) (T. P. Martin, Shells of atoms, eq.(3)). - Brigitte Stepanov, Jul 02 2011
a(n+1) is the number of triples (w,x,y) having all terms in {0,...,n} and x+y >= w. - Clark Kimberling, Jun 14 2012
a(n) = Sum_{k=1..n} A215630(n,k) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) - a(n-2) = A010001(n-1), for n>1. - K. G. Stier, Dec 21 2012
a(n) is also a figurate number representing a cube of side n with a vertex cut off by a tetrahedron of side n-1. As such, a(n) = A000578(n) - A000292(n-1), n > 0. - Jean M. Morales, Aug 11 2013
The sequence starting with 1 is the third partial sum of (1, 4, 5, 5, 5, ...) and the binomial transform of (1, 6, 10, 5, 0, 0, 0, ...). - Gary W. Adamson, Sep 27 2015

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

a(n) = 5*binomial(n + 1, 3) + binomial(n, 1).
a(n) = 5*n^3/6 + n/6.
a(n) = Sum_{i=0..n-1} A005891(i). - Xavier Acloque, Oct 08 2003
G.f.: x*(1+3*x+x^2) / (1-x)^4. - R. J. Mathar, Jun 05 2011
E.g.f.: (x/6)*(5x^2 + 15x + 6)*exp(x). - G. C. Greubel, Sep 27 2015
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i/sqrt(5)) + polygamma(0, 1+i/sqrt(5))) = 1.233988011257952852492845364799197179252... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

Extensions

Typo in definition corrected by Jean M. Morales, Aug 11 2013

A006542 a(n) = binomial(n,3)*binomial(n-1,3)/4.

Original entry on oeis.org

1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4

Views

Author

Keywords

Comments

Number of permutations of n+4 that avoid the pattern 132 and have exactly 3 descents. - Mike Zabrocki, Aug 26 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 20 2005
a(n) = number of Dyck n-paths with exactly 4 peaks. - David Callan, Jul 03 2006
Six-dimensional figurate numbers for a hyperpyramid with pentagonal base. This corresponds to the sum(sum(sum(sum(1+sum(5*n))))) interpretation, see the Munafo webpage. - Robert Munafo, Jun 18 2009

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Fourth column of the table of Narayana numbers A001263.
Apart from a scale factor, a column of A124428.

Programs

  • GAP
    List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
  • Magma
    [ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
    
  • Maple
    A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
    A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
  • Mathematica
    Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
  • PARI
    a(n)=n*((n-1)*(n-2))^2*(n-3)/144
    
  • Sage
    [n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
    

Formula

a(n) = C(n, 3)*C(n-1, 3)/4 = n*(n-1)^2*(n-2)^2*(n-3)/144.
a(n) = A000292(n-3)*A000292(n-2)/4.
E.g.f.: x^4*(6 + 6*x + x^2)*exp(x)/144. - Vladeta Jovovic, Jan 29 2003
a(n) = Sum(Sum(Sum(Sum(1 + Sum(5*n))))) = Sum (A006414). - Xavier Acloque, Oct 08 2003
a(n) = C(n, 6) + 3*C(n+1, 6) + C(n+2, 6). - Mike Zabrocki, Aug 26 2004
G.f.: x^4*(1 + 3*x + x^2)/(1-x)^7. - Emeric Deutsch, Jun 20 2005
a(n) = C(n-2, n-4)*C(n-1, n-3)*C(n, n-2)/18. - Zerinvary Lajos, Jul 29 2005
a(n) = C(n,4)*C(n,3)/n. - Mitch Harris, Jul 06 2006
a(n+2) = (1/4)*Sum_{1 <= x_1, x_2 <= n} x_1*x_2*(det V(x_1,x_2))^2 = (1/4)*Sum_{1 <= i,j <= n} i*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n-1,3)^2 - C(n-1,2)*C(n-1,4). - Gary Detlefs, Dec 05 2011
a(n) = A000292(A000217(n-1)) - A000217(A000292(n-1)). - Ivan N. Ianakiev, Jun 17 2014
a(n) = Product_{i=1..3} A002378(n-4+i)/A002378(i). - Bruno Berselli, Nov 12 2014 (Rewritten, Sep 01 2016.)
Sum_{n>=4} 1/a(n) = 238 - 24*Pi^2. - Jaume Oliver Lafont, Jul 10 2017
Sum_{n>=4} (-1)^n/a(n) = 134 - 192*log(2). - Amiram Eldar, Oct 19 2020
a(n) = A000332(n) + 5*A000579(n+1). - Yasser Arath Chavez Reyes, Aug 18 2024

Extensions

Zabroki and Lajos formulas offset corrected by Gary Detlefs, Dec 05 2011

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A167546 The ED1 array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED1 array (m > n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED1 array (m <= n) were found with the recurrence relation, see below. We use for the array rows the letter n (>= 1) and for the array columns the letter m (>= 1).
Our procedure for finding the coefficients in the lower left triangle can be compared with the procedure that De Smit and Lenstra used to fill in the hole in the middle of 'The Print Gallery' by M. C. Escher, see the links. In this lithograph Escher made use of the so-called Droste effect, hence we propose to call this square array of numbers the ED1 array.
For the ED2, ED3 and ED4 arrays see A167560, A167572 and A167584.

Examples

			The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
		

Crossrefs

A000012, A016777, 2*A005891, A167547, A167548 and A167549 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf. A068424 (the (m-1)!/(m-n-1)! factor), A007680 (the (2*n-1)*(n-1)! factor).
Cf. A167560 (ED2 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = (2*(m-1)!/(m-n-1)!)*Integral_{y>=0} sinh(y*(2*n-1))/cosh(y)^(2*m-1) for m > n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = (2*n-1)*(n-1)!
which in its turn leads to, see also A167557,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)! for m <= n.

A006414 Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.

Original entry on oeis.org

1, 9, 40, 125, 315, 686, 1344, 2430, 4125, 6655, 10296, 15379, 22295, 31500, 43520, 58956, 78489, 102885, 133000, 169785, 214291, 267674, 331200, 406250, 494325, 597051, 716184, 853615, 1011375, 1191640, 1396736, 1629144, 1891505, 2186625, 2517480, 2887221
Offset: 0

Views

Author

Keywords

Comments

The number of faces is 1.
a(n) = K(Oa(2,3,n)), Kekulé numbers of certain benzenoid structures (see the Cyvin - Gutman reference).
Sequence of partial sums of A006322. - L. Edson Jeffery, Dec 13 2011
The sequence b(n) = a(n-2) with a(-1) = 0, for n >= 1, is b(n) = n^3*(n^2 - 1)/4!. It is obtained by comparing the result for the powers n^5 from Worpitzky's identity (see a formula in A000584) with the result obtained from the counting of degrees of freedom for the decomposition of a rank 5 tensor in n dimensions via the standard Young tableaux version with 5 boxes corresponding to the seven partitions of 5. The difference of the two versions gives: 10*(binomial(n+3, 5) + 3*binomial(n+2, 5) + binomial(n+1, 5)) = 5*n*(binomial(n+2, 4) + binomial(n+1, 4)) = 10*b(n). See the formula for a(n) below. - Wolfdieter Lang, Jul 18 2019

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988, p. 105, eq. (ii), and p. 186.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Differences of A006542 (C(n, 3)*C(n-1, 3)/4).

Programs

Formula

a(n) = (n+1)*(n+2)^3*(n+3)/24. - N. J. A. Sloane, Apr 02 2004
a(n) = (n+2)^3*((n+2)^2 - 1)/24. - Paul Richards, Mar 04 2007
G.f.: (1 + 3*x + x^2)/(1-x)^6. - Colin Barker, Feb 21 2012
a(n) = (Sum_{k=0..n+1} k*(n+1)*((n+1)^2 - k^2))/6 for n > 0, which is the sum of all areas of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014
a(n) = A143945(n+2)/8. - J. M. Bergot, Jun 14 2014
Sum_{n>=0} 1/a(n) = 30 - 24*zeta(3). - Jaume Oliver Lafont, Jul 09 2017
a(n) = binomial(n+5, 5) + 3*binomial(n+4, 5) + binomial(n+3, 5) = ((n+2)/2)*(binomial(n+4, 4) + binomial(n+3, 4)), for n >= 0. See a comment above on the sequence b(n) = a(n-2) = n^3*(n^2 - 1)/4!. - Wolfdieter Lang, Jul 19 2019
E.g.f.: (24 + 192*x + 276*x^2 + 124*x^3 + 20*x^4 + x^5)*exp(x)/4!. - G. C. Greubel, Sep 02 2019
Sum_{n>=0} (-1)^n/a(n) = 18*zeta(3) + 48*log(2) - 54. - Amiram Eldar, Jan 09 2022

Extensions

More terms from Robert Newstedt (Patternfinder(AT)webtv.net)
Name clarified by Andrew Howroyd, Apr 05 2021
Previous Showing 31-40 of 90 results. Next