cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 478 results. Next

A164372 Greater of twin primes (A006512) which are not Labos primes (A080359).

Original entry on oeis.org

5, 7, 151, 229, 571, 643, 1051, 1153, 1669, 1723, 1951, 2029, 2131, 2239, 2311, 2593, 2659, 3001, 3121, 3169, 3253, 3583, 3769, 4003, 4219, 4231, 4483, 4549, 4723, 4789, 5641, 6451, 6553, 6661, 6763, 6949, 6961, 7129, 7351, 8011, 9043, 9463, 9631, 10009
Offset: 1

Views

Author

Vladimir Shevelev, Aug 14 2009

Keywords

Comments

The terms greater than 7 are in A164294.

Crossrefs

Programs

  • PARI
    lista(nn)= {my(vlp = readvec("/gp/bfiles/b080359.txt")); forprime (p=3, nn, if (isprime(p-2) && !vecsearch(vlp, p), print1(p, ", ")););} \\ Michel Marcus, Jan 15 2014

Extensions

More terms from Michel Marcus, Jan 15 2014

A174042 Places n for which A046132(n) and A006512(n) is a twin prime pair.

Original entry on oeis.org

1, 9, 10, 24, 28, 67, 195, 361, 362, 382, 459, 462, 470, 759, 765, 766, 794, 864, 869, 909, 1189, 1300, 1303, 1374, 1378, 1642, 1657, 1659, 3727, 3755, 4187, 4368, 4413, 4677, 4684, 4721, 4927, 4945, 5221, 5270, 5313, 5409, 5627, 5945, 7587, 7588, 7789
Offset: 1

Views

Author

Vladimir Shevelev, Mar 06 2010

Keywords

Examples

			1 is in the sequence because A046132(1)=7 and A006512(1)=5 are twin primes.
		

Crossrefs

Programs

  • Maple
    A023200 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+4) do p := nextprime(p) ; end do: p ; end if; end proc:
    A046132 := proc(n) 4+A023200(n) ; end proc:
    A001359 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+2) do p := nextprime(p) ; end do: p ; end if; end proc:
    A006512 := proc(n) 2+A001359(n) ; end proc:
    for n from 1 do if A046132(n)+2 = A006512(n) or A046132(n) = A006512(n)+2 then printf("%d,\n",n); end if; end do: # R. J. Mathar, Nov 03 2011

Extensions

Extended beyond 28 by R. J. Mathar, Nov 03 2011
More terms from Michel Marcus, Dec 19 2018

A299197 Number of partitions of n into distinct parts that are greater of twin primes (A006512).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 2, 2, 0, 0, 1, 1, 3, 1, 1, 0, 0, 2, 3, 2, 0, 0, 1, 2, 3, 2, 1, 0, 0, 2, 3, 3, 0, 0, 0, 1, 4, 3, 1, 0, 0, 2, 3, 3, 2, 0, 0, 1, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Examples

			a(31) = 2 because we have [31] and [19, 7, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + Boole[PrimeQ[k] && PrimeQ[k - 2]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A006512(k)).

A123211 Terms in A006512 containing the digit "6" at least once, such that changing every "6" to a "9" and vice versa yields a larger term in A006512.

Original entry on oeis.org

1063, 3361, 7561, 10861, 14563, 16141, 16693, 26881, 32611, 36343, 55633, 61153, 62971, 62983, 64153, 68713, 70621, 76963, 100363, 106453, 115603, 116101, 131641, 136993, 146521, 152641, 155863, 160711, 161341, 161971, 166741, 167341, 167863
Offset: 1

Views

Author

Pierre CAMI, Oct 05 2006

Keywords

Comments

1063 is in A006512 and so is 1093, obviously 1093 > 1063, therefore 1063 is in the sequence.
If the definition of the permitted terms included any term in A006512, instead of a larger term, the sequence would also contain 19963, 79693, 92671, 92683, and 139663. - James C. McMahon, Nov 17 2024

Crossrefs

Cf. A006512.

Programs

  • Mathematica
    gtp=Select[Prime[Range[PrimePi[400000]]],PrimeQ[#-2]&];Select[gtp,MemberQ[IntegerDigits[#],6]&&MemberQ[gtp,r=FromDigits[IntegerDigits[#]/.{6->9,9->6}]]&&r>#&] (* James C. McMahon, Nov 17 2024 *)

Extensions

Edited, corrected and extended by Pierre CAMI and Stefan Steinerberger, Aug 14 2007

A001359 Lesser of twin primes.

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607
Offset: 1

Views

Author

Keywords

Comments

Also, solutions to phi(n + 2) = sigma(n). - Conjectured by Jud McCranie, Jan 03 2001; proved by Reinhard Zumkeller, Dec 05 2002
The set of primes for which the weight as defined in A117078 is 3 gives this sequence except for the initial 3. - Rémi Eismann, Feb 15 2007
The set of lesser of twin primes larger than three is a proper subset of the set of primes of the form 3n - 1 (A003627). - Paul Muljadi, Jun 05 2008
It is conjectured that A113910(n+4) = a(n+2) for all n. - Creighton Dement, Jan 15 2009
I would like to conjecture that if f(x) is a series whose terms are x^n, where n represents the terms of sequence A001359, and if we inspect {f(x)}^5, the conjecture is that every term of the expansion, say a_n * x^n, where n is odd and at least equal to 15, has a_n >= 1. This is not true for {f(x)}^k, k = 1, 2, 3 or 4, but appears to be true for k >= 5. - Paul Bruckman (pbruckman(AT)hotmail.com), Feb 03 2009
A164292(a(n)) = 1; A010051(a(n) - 2) = 0 for n > 1. - Reinhard Zumkeller, Mar 29 2010
From Jonathan Sondow, May 22 2010: (Start)
About 15% of primes < 19000 are the lesser of twin primes. About 26% of Ramanujan primes A104272 < 19000 are the lesser of twin primes.
About 46% of primes < 19000 are Ramanujan primes. About 78% of the lesser of twin primes < 19000 are Ramanujan primes.
A reason for the jumps is in Section 7 of "Ramanujan primes and Bertrand's postulate" and in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps". (End)
Primes generated by sequence A040976. - Odimar Fabeny, Jul 12 2010
Primes of the form 2*n - 3 with 2*n - 1 prime n > 2. Primes of the form (n^2 - (n-2)^2)/2 - 1 with (n^2 - (n-2)^2)/2 + 1 prime so sum of two consecutive odd numbers/2 - 1. - Pierre CAMI, Jan 02 2012
Conjecture: For any integers n >= m > 0, there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) (i.e., (a(m), ..., a(n)) in base b) is prime; moreover, when m = 1 there is such an integer b < (n+6)^2. - Zhi-Wei Sun, Mar 26 2013
Except for the initial 3, all terms are congruent to 5 mod 6. One consequence of this is that no term of this sequence appears in A030459. - Alonso del Arte, May 11 2013
Aside from the first term, all terms have digital root 2, 5, or 8. - J. W. Helkenberg, Jul 24 2013
The sequence provides all solutions to the generalized Winkler conjecture (A051451) aside from all multiples of 6. Specifically, these solutions start from n = 3 as a(n) - 3. This gives 8, 14, 26, 38, 56, ... An example from the conjecture is solution 38 from twin prime pairs (3, 5), (41, 43). - Bill McEachen, May 16 2014
Conjecture: a(n)^(1/n) is a strictly decreasing function of n. Namely a(n+1)^(1/(n+1)) < a(n)^(1/n) for all n. This conjecture is true for all a(n) <= 1121784847637957. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 21 2014
a(n) are the only primes, p(j), such that (p(j+m) - p(j)) divides (p(j+m) + p(j)) for some m > 0, where p(j) = A000040(j). For all such cases m=1. It is easy to prove, for j > 1, the only common factor of (p(j+m) - p(j)) and (p(j+m) + p(j)) is 2, and there are no common factors if j = 1. Thus, p(j) and p(j+m) are twin primes. Also see A067829 which includes the prime 3. - Richard R. Forberg, Mar 25 2015
Primes prime(k) such that prime(k)! == 1 (mod prime(k+1)) with the exception of prime(991) = 7841 and other unknown primes prime(k) for which (prime(k)+1)*(prime(k)+2)*...*(prime(k+1)-2) == 1 (mod prime(k+1)) where prime(k+1) - prime(k) > 2. - Thomas Ordowski and Robert Israel, Jul 16 2016
For the twin prime criterion of Clement see the link. In Ribenboim, pp. 259-260 a more detailed proof is given. - Wolfdieter Lang, Oct 11 2017
Conjecture: Half of the twin prime pairs can be expressed as 8n + M where M > 8n and each value of M is a distinct composite integer with no more than two prime factors. For example, when n=1, M=21 as 8 + 21 = 29, the lesser of a twin prime pair. - Martin Michael Musatov, Dec 14 2017
For a discussion of bias in the distribution of twin primes, see my article on the Vixra web site. - Waldemar Puszkarz, May 08 2018
Since 2^p == 2 (mod p) (Fermat's little theorem), these are primes p such that 2^p == q (mod p), where q is the next prime after p. - Thomas Ordowski, Oct 29 2019, edited by M. F. Hasler, Nov 14 2019
The yet unproved "Twin Prime Conjecture" states that this sequence is infinite. - M. F. Hasler, Nov 14 2019
Lesser of the twin primes are the set of elements that occur in both A162566, A275697. Proof: A prime p will only have integer solutions to both (p+1)/g(p) and (p-1)/g(p) when p is the lesser of a twin prime, where g(p) is the gap between p and the next prime, because gcd(p+1,p-1) = 2. - Ryan Bresler, Feb 14 2021
From Lorenzo Sauras Altuzarra, Dec 21 2021: (Start)
J. A. Hervás Contreras observed the subsequence 11, 311, 18311, 1518311, 421518311... (see the links), which led me to conjecture the following statements.
I. If i is an integer greater than 2, then there exist positive integers j and k such that a(j) equals the concatenation of 3k and a(i).
II. If k is a positive integer, then there exist positive integers i and j such that a(j) equals the concatenation of 3k and a(i).
III. If i, j, and r are positive integers such that i > 2 and a(j) equals the concatenation of r and a(i), then 3 divides r. (End)

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 81.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 192-197.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 111-112.

Crossrefs

Subsequence of A003627.
Cf. A104272 (Ramanujan primes), A178127 (lesser of twin Ramanujan primes), A178128 (lesser of twin primes if it is a Ramanujan prime).

Programs

  • Haskell
    a001359 n = a001359_list !! (n-1)
    a001359_list = filter ((== 1) . a010051' . (+ 2)) a000040_list
    -- Reinhard Zumkeller, Feb 10 2015
    
  • Magma
    [n: n in PrimesUpTo(1610) | IsPrime(n+2)];  // Bruno Berselli, Feb 28 2011
    
  • Maple
    select(k->isprime(k+2),select(isprime,[$1..1616])); # Peter Luschny, Jul 21 2009
    A001359 := proc(n)
       option remember;
       if n = 1
          then 3;
       else
          p := nextprime(procname(n-1)) ;
          while not isprime(p+2) do
             p := nextprime(p) ;
          end do:
          p ;
       end if;
    end proc: # R. J. Mathar, Sep 03 2011
  • Mathematica
    Select[Prime[Range[253]], PrimeQ[# + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
    a[n_] := a[n] = (p = NextPrime[a[n - 1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[1] = 3; Table[a[n], {n, 51}]  (* Jean-François Alcover, Dec 13 2011, after R. J. Mathar *)
    nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[NextPrime@ q - q > 2, q = NextPrime@ q]; q]; NestList[nextLesserTwinPrime@# &, 3, 50] (* Robert G. Wilson v, May 20 2014 *)
    Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 04 2021 *)
    q = Drop[Prepend[p = Prime[Range[100]], 2], -1];
    Flatten[q[[#]] & /@ Position[p - q, 2]] (* Horst H. Manninger, Mar 28 2021 *)
  • PARI
    A001359(n,p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0,); p-2}
    /* The following gives a reasonably good estimate for any value of n from 1 to infinity; compare to A146214. */
    A001359est(n) = solve( x=1,5*n^2/log(n+1), 1.320323631693739*intnum(t=2.02,x+1/x,1/log(t)^2)-log(x) +.5 - n)
    /* The constant is A114907; the expression in front of +.5 is an estimate for A071538(x) */ \\  M. F. Hasler, Dec 10 2008
    
  • Python
    from sympy import primerange, isprime
    print([n for n in primerange(1, 2001) if isprime(n + 2)]) # Indranil Ghosh, Jul 20 2017

Formula

a(n) = A077800(2n-1).
A001359 = { n | A071538(n-1) = A071538(n)-1 }; A071538(A001359(n)) = n. - M. F. Hasler, Dec 10 2008
A001359 = { prime(n) : A069830(n) = A087454(n) }. - Juri-Stepan Gerasimov, Aug 23 2011
a(n) = prime(A029707(n)). - R. J. Mathar, Feb 19 2017

A014574 Average of twin prime pairs.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488, 1608
Offset: 1

Views

Author

Keywords

Comments

With an initial 1 added, this is the complement of the closure of {2} under a*b+1 and a*b-1. - Franklin T. Adams-Watters, Jan 11 2006
Also the square root of the product of twin prime pairs + 1. Two consecutive odd numbers can be written as 2k+1,2k+3. Then (2k+1)(2k+3)+1 = 4(k^2+2k+1) = 4(k+1)^2, a perfect square. Since twin prime pairs are two consecutive odd numbers, the statement is true for all twin prime pairs. - Cino Hilliard, May 03 2006
Or, single (or isolated) composites. Nonprimes k such that neither k-1 nor k+1 is nonprime. - Juri-Stepan Gerasimov, Aug 11 2009
Numbers n such that sigma(n-1) = phi(n+1). - Farideh Firoozbakht, Jul 04 2010
Aside from the first term in the sequence, all remaining terms have digital root 3, 6, or 9. - J. W. Helkenberg, Jul 24 2013
Numbers n such that n^2-1 is a semiprime. - Thomas Ordowski, Sep 24 2015
Every term but the first is a multiple of 6. - Harvey P. Dale, Mar 31 2023

References

  • Archimedeans Problems Drive, Eureka, 30 (1967).

Crossrefs

A068507 is the intersection of A002182 and this sequence.

Programs

  • GAP
    a:=1+Filtered([1..2000],p->IsPrime(p) and IsPrime(p+2)); # Muniru A Asiru, May 20 2018
  • Haskell
    a014574 n = a014574_list !! (n-1)
    a014574_list = [x | x <- [2,4..], a010051 (x-1) == 1, a010051 (x+1) == 1]
    -- Reinhard Zumkeller, Apr 11 2012
    
  • Maple
    P := select(isprime,[$1..1609]): map(p->p+1,select(p->member(p+2,P),P)); # Peter Luschny, Mar 03 2011
    A014574 := proc(n) option remember; local p ; if n = 1 then 4 ; else p := nextprime( procname(n-1) ) ; while not isprime(p+2) do p := nextprime(p) ; od ; return p+1 ; end if ; end proc: # R. J. Mathar, Jun 11 2011
  • Mathematica
    Select[Table[Prime[n] + 1, {n, 260}], PrimeQ[ # + 1] &] (* Ray Chandler, Oct 12 2005 *)
    Mean/@Select[Partition[Prime[Range[300]],2,1],Last[#]-First[#]==2&] (* Harvey P. Dale, Jan 16 2014 *)
  • Maxima
    A014574(n) := block(
        if n = 1 then
            return(4),
        p : A014574(n-1) ,
        for k : 2 step 2 do (
            if primep(p+k-1) and primep(p+k+1) then
                return(p+k)
        )
    )$ /* R. J. Mathar, Mar 15 2012 */
    
  • PARI
    p=2;forprime(q=3,1e4,if(q-p==2,print1(p+1", "));p=q) \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

a(n) = (A001359(n) + A006512(n))/2 = 2*A040040(n) = A054735(n)/2 = A111046(n)/4.
a(n) = A129297(n+4). - Reinhard Zumkeller, Apr 09 2007
A010051(a(n) - 1) * A010051(a(n) + 1) = 1. Reinhard Zumkeller, Apr 11 2012
a(n) = 6*A002822(n-1), n>=2. - Ivan N. Ianakiev, Aug 19 2013
a(n)^4 - 4*a(n)^2 = A062354(a(n)^2 - 1). - Raphie Frank, Oct 17 2013

Extensions

Offset changed to 1 by R. J. Mathar, Jun 11 2011

A002476 Primes of the form 6m + 1.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
A039701(A049084(a(n))) = A134323(A049084(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2007
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024

Examples

			Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

For values of m see A024899. Primes of form 3n - 1 give A003627.
These are the primes arising in A024892, A024899, A034936.
A091178 gives prime index.
Subsequence of A016921 and of A050931.
Cf. A004611 (multiplicative closure).

Programs

  • GAP
    Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
  • Haskell
    a002476 n = a002476_list !! (n-1)
    a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • J
    (#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
    
  • Magma
    [n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A001097 Twin primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Union of A001359 and A006512.
The only twin primes that are Fibonacci numbers are 3, 5 and 13 [MacKinnon]. - Emeric Deutsch, Apr 24 2005
(p, p+2) are twin primes if and only if p + 2 can be represented as the sum of two primes. Brun (1919): Even if there are infinitely many twin primes, the series of all twin prime reciprocals does converges to [Brun's constant] (A065421). Clement (1949): For every n > 1, (n, n+2) are twin primes if and only if 4((n-1)! + 1) == -n (mod n(n+2)). - Stefan Steinerberger, Dec 04 2005
A164292(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2010
The 100355-digit numbers 65516468355 * 2^333333 +- 1 are currently the largest known twin prime pair. They were discovered by Twin Prime Search and Primegrid in August 2009. - Paul Muljadi, Mar 07 2011
For every n > 2, the pair (n, n+2) is a twin prime if and only if ((n-1)!!)^4 == 1 (mod n*(n+2)). - Thomas Ordowski, Aug 15 2016
The term "twin primes" ("primzahlzwillinge", in German) was coined by the German mathematician Paul Gustav Samuel Stäckel (1862-1919) in 1916. Brun (1919) used the same term in French ("nombres premiers jumeaux"). Glaisher (1878) and Hardy and Littlewood (1923) used the term "prime-pairs". The term "twin primes" in English was used by Dantzig (1930). - Amiram Eldar, May 20 2023

References

  • Tobias Dantzig, Number: The Language of Science, Macmillan, 1930.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, pp. 259-265.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 132.

Crossrefs

Cf. A070076, A001359, A006512, A164292. See A077800 for another version.

Programs

  • Haskell
    a001097 n = a001097_list !! (n-1)
    a001097_list = filter ((== 1) . a164292) [1..]
    -- Reinhard Zumkeller, Feb 03 2014, Nov 27 2011
    
  • Maple
    A001097 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            for a from procname(n-1)+1 do
                if isprime(a) and ( isprime(a-2) or isprime(a+2) ) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Feb 19 2015
  • Mathematica
    Select[ Prime[ Range[120]], PrimeQ[ # - 2] || PrimeQ[ # + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
    Union[Flatten[Select[Partition[Prime[Range[200]],2,1],#[[2]]-#[[1]] == 2&]]] (* Harvey P. Dale, Aug 19 2015 *)
  • PARI
    isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    a(n)=if(n==1,return(3));my(p);forprime(q=3,default(primelimit), if(q-p==2 && (n-=2)<0, return(if(n==-1,q,p)));p=q) \\ Charles R Greathouse IV, Aug 22 2012
    
  • PARI
    list(lim)=my(v=List([3]),p=5); forprime(q=7,lim, if(q-p==2, listput(v,p); listput(v,q)); p=q); if(p+2>lim && isprime(p+2), listput(v,p)); Vec(v) \\ Charles R Greathouse IV, Mar 17 2017
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        yield 3
        p, q = 5, 7
        while True:
            if q - p == 2: yield from [p, q]
            p, q = q, nextprime(q)
    print(list(islice(agen(), 58))) # Michael S. Branicky, Apr 30 2022

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A077800 List of twin primes {p, p+2}.

Original entry on oeis.org

3, 5, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2002

Keywords

Comments

Union (with repetition) of A001359 and A006512.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Cf. A065421, A070076, A095958. See A001097 for another version.

Programs

  • Haskell
    a077800 n = a077800_list !! (n-1)
    a077800_list = concat $ zipWith (\p q -> if p == q+2 then [q,p] else [])
                                    (tail a000040_list) a000040_list
    -- Reinhard Zumkeller, Nov 27 2011
    
  • Mathematica
    Sort[ Join[ Select[ Prime[ Range[ 115]], PrimeQ[ # - 2] &], Select[ Prime[ Range[ 115]], PrimeQ[ # + 2] &]]] (* Robert G. Wilson v, Jun 09 2005 *)
    Select[ Partition[ Prime@ Range@ 115, 2, 1], #[[1]] + 2 == #[[2]] &] // Flatten
    Flatten[Select[{#, # + 2} & /@Prime[Range[1000]], PrimeQ[Last[#]]&]] (* Vincenzo Librandi, Nov 01 2012 *)
    Splice[{#,#+2}]& /@ Select[Prime[Range[PrimePi[619]]], PrimeQ[#+2]&] (* Oliver Seipel, Sep 04 2024 *)
  • PARI
    p=2;forprime(q=3,1e3,if(q-p==2,print1(p", "q", "));p=q) \\ Charles R Greathouse IV, Mar 22 2013

Formula

Sum_{n>=1} 1/a(n) is in the interval (1.840503, 2.288490) (Platt and Trudgian, 2020). The conjectured value based on assumptions about the distribution of twin primes is A065421. - Amiram Eldar, Oct 15 2020
Previous Showing 11-20 of 478 results. Next