cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 80 results. Next

A007407 a(n) = denominator of Sum_{k=1..n} 1/k^2.

Original entry on oeis.org

1, 4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 10838475198270720, 221193371393280
Offset: 1

Views

Author

Keywords

Comments

Denominators of the Eulerian numbers T(-2,k) for k = 0,1..., if T(n,k) is extended to negative n by the recurrence T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) (indexed as in A173018). - Michael J. Collins, Oct 10 2024

Examples

			1/1^2 + 1/2^2 + 1/3^2 = 1/1 + 1/4 + 1/9 = 49/36, so a(3) = 36. - _Jon E. Schoenfield_, Dec 26 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007406 (numerators), A000290, A035166.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a007407 n = a007407_list !! (n-1)
    a007407_list = map denominator $
                       scanl1 (+) $ map (1 %) $ tail a000290_list
    -- Reinhard Zumkeller, Jul 06 2012
    
  • Maple
    ZL:=n->sum(1/i^2, i=2..n): a:=n->floor(denom(ZL(n))): seq(a(n), n=1..21); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    s=0;lst={};Do[s+=n^2/n^4;AppendTo[lst,Denominator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
    Table[Denominator[Pi^2/6 - Zeta[2, x]], {x, 1, 22}] (* Artur Jasinski, Mar 03 2010 *)
    Denominator[Accumulate[1/Range[30]^2]] (* Harvey P. Dale, Nov 08 2012 *)
  • PARI
    a(n)=denominator(sum(k=1,n,1/k^2)) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from fractions import Fraction
    def A007407(n): return sum(Fraction(1,k**2) for k in range(1,n+1)).denominator # Chai Wah Wu, Apr 03 2021

Formula

a(n) = denominator of (Pi^2)/6 - zeta(2, x). - Artur Jasinski, Mar 03 2010
a(n) = A001044(n) / gcd(A001819(n), A001044(n)). - Daniel Suteu, Dec 25 2016

A007408 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.

Original entry on oeis.org

1, 9, 251, 2035, 256103, 28567, 9822481, 78708473, 19148110939, 19164113947, 25523438671457, 25535765062457, 56123375845866029, 56140429821090029, 56154295334575853, 449325761325072949, 2207911834254200646437, 245358578943756786493
Offset: 1

Views

Author

Keywords

Comments

By Theorem 131 in Hardy and Wright, p^2 divides a(p - 1) for prime p > 5. - T. D. Noe, Sep 05 2002
p^3 divides a(p - 1) for prime p = 37. Primes p such that p divides a((p + 1)/2) are listed in A124787(n) = {3, 11, 17, 89}. - Alexander Adamchuk, Nov 07 2006
a(n)/A007409(n) is the partial sum towards zeta(3), where zeta(s) is the Riemann zeta function. - Alonso del Arte, Dec 30 2012
See the Wolfdieter Lang link under A103345 on Zeta(k, n) with the rationals for k=1..10, g.f.s and polygamma formulas. - Wolfdieter Lang, Dec 03 2013
Denominator of the harmonic mean of the first n cubes. - Colin Barker, Nov 13 2014

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 104.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007408:=n->numer(sum(1/k^3,k=1..n)); map(%,[$1..20]); # M. F. Hasler, Nov 10 2006
  • Mathematica
    Table[Numerator[Sum[1/k^3, {k, n}]], {n, 10}] (* Alonso del Arte, Dec 30 2012 *)
    Table[Denominator[HarmonicMean[Range[n]^3]],{n,20}] (* Harvey P. Dale, Aug 20 2017 *)
    Accumulate[1/Range[20]^3]//Numerator (* Harvey P. Dale, Aug 28 2023 *)
  • PARI
    a(n)=numerator(sum(k=1,n,1/k^3)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from fractions import Fraction
    from itertools import accumulate, count, islice
    def A007408gen(): yield from map(lambda x: x.numerator, accumulate(Fraction(1, k**3) for k in count(1)))
    print(list(islice(A007408gen(), 20))) # Michael S. Branicky, Jun 26 2022

Formula

Sum_{k = 1 .. n} 1/k^3 = sqrt(sum_{j = 1 .. n} sum_{i = 1 .. n} 1/(i * j)^3). - Alexander Adamchuk, Oct 26 2004

A007410 Numerator of Sum_{k=1..4} k^(-4).

Original entry on oeis.org

1, 17, 1393, 22369, 14001361, 14011361, 33654237761, 538589354801, 43631884298881, 43635917056897, 638913789210188977, 638942263173398977, 18249420414596570742097, 18249859383918836502097, 18250192489014819937873
Offset: 1

Views

Author

Keywords

Comments

p divides a(p-1) for prime p > 5. p divides a((p-1)/2) for prime p > 5. p^2 divides a((p-1)/2) for prime p = 31, 37. - Alexander Adamchuk, Jul 07 2006
p^2 divides a(p-1) for prime p = 37. - Alexander Adamchuk, Nov 07 2006
Denominators are A007480. See the W. Lang link under A103345 for the rationals and more.
The limit of the rationals Zeta(n) := Sum_{k=1..n} 1/k^4 as n -> infinity is (Pi^4)/90, which is approximately 1.082323234. See A013662.

References

  • D. Y. Savio, E. A. Lamagna, and S.-M. Liu, Summation of harmonic numbers, pp. 12-20, in: E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Numerators of the coefficients in the expansion of PolyLog(4, x)/(1 - x). - Ilya Gutkovskiy, Apr 10 2017

A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).

Original entry on oeis.org

16843, 2124679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

McIntosh and Roettger showed that the next term, if it exists, must be larger than 10^9. - Felix Fröhlich, Aug 23 2014
When cb(m)=binomial(2m,m) denotes m-th central binomial coefficient then, obviously, cb(a(n))=2 mod a(n)^4. I have verified that among all naturals 1A246134). One might therefore wonder whether this is true in general. - Stanislav Sykora, Aug 26 2014
Romeo Mestrovic, Congruences for Wolstenholme Primes, Lemma 2.3, shows that the criterion for p to be a Wolstenholme prime is equivalent to p dividing A027641(p-3). In 1847 Cauchy proved that this was a necessary condition for the failure of the first case of Fermat's Last Theorem for the exponent p (see Ribenboim, 13 Lectures, p. 29). - John Blythe Dobson, May 01 2015
Primes p such that p^3 divides A001008(p-1) (Zhao, 2007, p. 18). Also: Primes p such that (p, p-3) is an irregular pair (cf. Buhler, Crandall, Ernvall, Metsänkylä, 1993, p. 152). Keith Conrad observes that for the two known (as of 2015) terms ord_p(H_p-1) = 3 is satisfied, where ord_p(H_p-1) gives the p-adic valuation of H_p-1 (cf. Conrad, p. 5). Romeo Mestrovic conjectures that p is a Wolstenholme prime if and only if S_(p-2)(p) == 0 (mod p^3), where S_k(i) denotes the sum of the k-th powers of the positive integers up to and including (i-1) (cf. Mestrovic, 2012, conjecture 2.10). - Felix Fröhlich, May 20 2015
Primes p that divide the Wolstenholme quotient W_p (A034602). Also, primes p such that p^2 divides the Babbage quotient b_p (A263882). - Jonathan Sondow, Nov 24 2015
The only known composite numbers n such that binomial(2n-1, n-1) is congruent to 1 mod n^2 are the numbers n = p^2 where p is a Wolstenholme prime: see A267824. - Jonathan Sondow, Jan 27 2016
The converse of Wolstenholme's theorem implies that if an integer n satisfies the congruence binomial(2*n-1, n-1) == 1 (mod n^4), then n is a term of this sequence, i.e., then n is necessarily prime, or, equivalently, A298946(i) > 1 for all i > 0. Whether this is true for all such n is an open problem. - Felix Fröhlich, Feb 21 2018
Primes p such that binomial(2*p-1, p-1) == 1-2*p*Sum_{k=1..p-1} 1/k - 2*p^2*Sum_{k=1..p-1} 1/k^2 (mod p^7) (cf. Mestrovic, 2011, Corollary 4). - Felix Fröhlich, Feb 21 2018
These are primes p such that p^2 divides A007406(p-1) (Mestrovic, 2015, p. 241, Lemma 2.3). - Amiram Eldar and Thomas Ordowski, Jul 29 2019
If a third Wolstenholme prime exists it is larger than 6*10^10 (cf. Hathi, Mossinghoff, Trudgian, 2021). - Felix Fröhlich, Apr 27 2021
Named after the English mathematician Joseph Wolstenholme (1829-1891). - Amiram Eldar, Jun 10 2021
Primes p such that tanh(Sum_{k=1..p-1} artanh(k/p)) == 0 (mod p^4). - Thomas Ordowski, Apr 17 2025

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
    

Formula

A000984(a(n)) = 2 mod a(n)^4. - Stanislav Sykora, Aug 26 2014
A099908(a(n)) == 1 mod a(n)^4. - Jonathan Sondow, Nov 24 2015
A034602(PrimePi(a(n))) == 0 mod a(n) and A263882(PrimePi(a(n))) == 0 mod a(n)^2. - Jonathan Sondow, Dec 03 2015

A089026 a(n) = n if n is a prime, otherwise a(n) = 1.

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Nov 12 2003

Keywords

Comments

This sequence was the subject of the 1st problem of the 9th Irish Mathematical Olympiad 1996 with gcd((n + 1)!, n! + 1) = a(n+1) for n >= 0 (see formula Jan 23 2009 and link). - Bernard Schott, Jul 22 2020
For sequence A with terms a(1), a(2), a(3),... , let R(0) = 1 and for k >= 1 let R(k) = rad(a(1)*a(2)*...*a(k)). Define the Rad-transform of A to be R(n)/R(n-1); n >= 1, where rad is A007947. Then this sequence is the Rad transform of the positive integers, A = A000027. - David James Sycamore, Apr 19 2024

Examples

			From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010: (Start)
a(9) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(10) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(11) = (8*9*10*11*12)/(2^((6+3+1)-(3+1+0))*3^((4+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 11 [prime]. (End)
		

References

  • Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
  • L. Tesler, "Factorials and Primes", Math. Bulletin of the Bronx H.S. of Science (1961), 5-10. [From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010]

Crossrefs

Differs from A080305 at n=30.

Programs

  • MATLAB
    a = [1:96]; a(isprime(a) == false) = 1; % Thomas Scheuerle, Oct 06 2022
    
  • Magma
    [IsPrime(n) select n else 1: n in [1..96]]; // Marius A. Burtea, Aug 02 2019
    
  • Mathematica
    digits=200; a=Table[If[PrimePi[n]-PrimePi[n-1]>0, n, 1], {n, 1, digits}]; Table[Numerator[(n/2)/(n-1)! ] + Floor[2/n] - 2*Floor[1/n], {n,1,200}] (* Alexander Adamchuk, May 20 2006 *)
    Range@ 120 /. k_ /; CompositeQ@ k -> 1 (* or *)
    Table[n Boole@ PrimeQ@ n, {n, 120}] /. 0 -> 1 (* or *)
    Table[If[PrimeQ@ n, n, 1], {n, 120}] (* Michael De Vlieger, Jul 02 2016 *)
  • PARI
    a(n) = n^isprime(n) \\ David A. Corneth, Oct 06 2022
  • Python
    from sympy import isprime
    def a(n): return n if isprime(n) else 1
    print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Oct 06 2022
    
  • Sage
    def A089026(n):
        if n == 4: return 1
        f = factorial(n-1)
        return (f + 1) - n*(f//n)
    [A089026(n) for n in (1..96)]   # Peter Luschny, Oct 16 2013
    

Formula

From Peter Luschny, Nov 29 2003: (Start)
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n+1, m+1)/(m+1)).
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n, m)/(m+1)). (End)
From Alexander Adamchuk, May 20 2006: (Start)
a(n) = numerator((n/2)/(n-1)!) + floor(2/n) - 2*floor(1/n).
a(n) = A090585(n-1) = A000217(n-1)/A069268(n-1) for n>2. (End)
a(n) = gcd(n,(n-1)!+1). - Jaume Oliver Lafont, Jul 17 2008, Jan 23 2009
a(1) = 1, a(2) = 2, then a(n) = 1 or a(n) = n = prime(m) = (Product q+k, k = 1 .. 2*floor(n/2+1)-q) / (Product prime(i)^(Sum (floor((n+1)/(prime(i)^w)) - floor(q/(prime(i)^w)) ), w = 1 .. floor(log[base prime(i)] n+1) ), i = 2 .. m-1) where q = prime(m-1). - Larry Tesler (tesler(AT)pobox.com), Nov 08 2010
a(n) = (n!*HarmonicNumber(n) mod n)+1, n != 4. - Gary Detlefs, Dec 03 2011
a(n) = denominator of (n!)/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = A034386(n+1)/A034386(n). - Eric Desbiaux, May 10 2013
a(n) = n^c(n), where c = A010051. - Wesley Ivan Hurt, Jun 16 2013
a(n) = A014963(n)^(-A008683(n)). - Mats Granvik, Jul 02 2016
Conjecture: for n > 3, a(n) = gcd(n, A007406(n-1)). - Thomas Ordowski, Aug 02 2019
a(n) = 1 + c(n)*(n-1), where c = A010051. - Wesley Ivan Hurt, Jun 21 2025

A103345 Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).

Original entry on oeis.org

1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

For the rationals Zeta(k,n) for k = 1..10 and n = 1..20, see the W. Lang link.
a(n) gives the partial sum, Zeta(6,n), of Euler's (later Riemann's) Zeta(6). Zeta(k,n), k >= 2, is sometimes also called H(k,n) because for k = 1 these would be the harmonic numbers A001008/A002805. However, H(1,n) does not give partial sums of a convergent series.

Examples

			The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
		

Crossrefs

Cf. A013664, A291456. For the denominators, see A103346.

Programs

Formula

a(n) = numerator(Sum_{k=1..n} 1/k^6) = numerator(A291456(n)/(n!)^6).
G.f. for rationals Zeta(6, n): polylogarithm(6, x)/(1-x).
Zeta(6, n) = (1/945)*Pi^6 - psi(5, n+1)/5!, see eq. 6.4.3 with m = 5, p. 260, of the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 03 2013

A075135 Numerator of the generalized harmonic number H(n,3,1) described below.

Original entry on oeis.org

1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1

Views

Author

T. D. Noe, Sep 04 2002

Keywords

Comments

For integers a and b, H(n,a,b) is the sum of the fractions 1/(a i + b), i = 0,1,..,n-1. This database already contains six instances of generalized harmonic numbers. Partial sums of the harmonic series 1+1/2+1/3+1/4+... are given by the sequence of harmonic numbers H(n,1,1) = A001008(n) / A002805(n).
The Jeep problem gives rise to the series H(n,2,1) = A025550(n) / A025547(n). Recent additions to the database are 3 * H(n,3,1) = A074596(n) / A051536(n), 3 * H(n,3,2) = A074597(n) / A051540(n), 4 * H(n,4,1) = A074598(n) / A051539(n) and 4 * H(n,4,3) = A074637(n) / A074638(n) . The numerator of H(n,4,1) is A075136. The fractions H(n,5,1), H(n,5,2), H(n,5,3) and H(n,5,4) are in A075137-A075144.
The sequence H(n,a,b) is of interest only when a and b are relatively prime. The sequence can also be computed as H(n,a,b) = (PolyGamma[n+1+b/a] - PolyGamma[1+b/a])/a. The sequence H(n,a,b) diverges for all a and b.
According to Hardy and Wright, if p is an odd prime, then p divides the numerator of the harmonic number H(p-1,1,1). This result can be extended to generalized harmonic numbers: for odd integer n, let q = (n-2)a + 2b. If q is prime, then q divides the numerator of H(n-1,a,b). For this sequence (a=3, b=1) we conclude that 11 divides a(4), 17 divides a(6), 29 divides a(10) and 47 divides a(16).
Graham, Knuth and Patashnik define another type of generalized harmonic number as the sum of fractions 1/i^k, i=1,...,n. For k=2, the sequence of fractions is A007406(n) / A007407(n).

Examples

			a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.

Crossrefs

Programs

  • Mathematica
    a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
    Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)

A119682 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^2.

Original entry on oeis.org

1, 3, 31, 115, 3019, 973, 48877, 191833, 5257891, 5194387, 634871227, 629535127, 107159834863, 106497287263, 107074439839, 426268707331, 123711093737059, 41082589491553, 14880853934789833, 2967138724292741, 2975331071381381
Offset: 1

Views

Author

Alexander Adamchuk, Jun 08 2006, Jun 25 2006

Keywords

Comments

p divides a(p-1) for prime p > 2 -- similar to Wolstenholme's theorem for A007406(n) (numerator of Sum_{k=1..n} 1/k^2).

Examples

			The first few fractions are 1, 3/4, 31/36, 115/144, 3019/3600, 973/1200, 48877/58800, 191833/235200, 5257891/6350400, ... = A119682/A334580. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A003418, A007406, A334580 (denominators).

Programs

  • GAP
    List(List([1..25],n->Sum([1..n],k->(-1)^(k+1)*(1/k^2))),NumeratorRat); # Muniru A Asiru, Apr 07 2018
  • Maple
    seq(numer(simplify(LerchPhi(-1,2,n)*(-1)^n+Pi^2/12-(-1)^n/n^2)),n=1..30); # Robert Israel, May 30 2018
  • Mathematica
    Numerator[Table[Sum[(-1)^(i+1)*1/i^2,{i,1, n}],{n,1,40}]]
    Sqrt[Numerator[Table[Sum[Sum[(-1)^(i+j)*1/(i*j)^2, {i, 1, n}], {j, 1, n}],{n,1,20}]]] (* Alexander Adamchuk, Jun 26 2006 *)
    a[n_] := 1/12 (Pi^2 - 3 (-1)^n Zeta[2, (1 + n)/2, IncludeSingularTerm -> False] + 3 (-1)^n Zeta[2, 1 + n/2, IncludeSingularTerm -> False]) // Simplify // Numerator
    Table[a[n], {n, 1, 22}]  (* Gerry Martens, Jun 01 2018 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^2)); \\ Altug Alkan, Apr 06 2018
    
  • PARI
    first(n) = {my(res = vector(n), s = 1); res[1] = 1; for(k = 2, n, s = -s; res[k] = res[k - 1] + s/k^2; res[k - 1] = numerator(res[k - 1])); res} \\ David A. Corneth, Apr 07 2018
    

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/k^2).
a(n) = abs(numerator(Sum_{j=1..n} Sum_{i=1..n} (-1)^(i+j)*j/i^2)). - Alexander Adamchuk, Jun 26 2006
a(n) = sqrt(numerator(Sum_{j=1..n} Sum_{i=1..n} (-1)^(i+j)/(i*j)^2)). - Alexander Adamchuk, Jun 26 2006
a(n) = numerator((1/12)*(Pi^2-3*(-1)^n*(zeta(2,(1+n)/2)-zeta(2,(2+n)/2)))). - Gerry Martens, Apr 07 2018

A099828 Numerator of the generalized harmonic number H(n,5) = Sum_{k=1..n} 1/k^5.

Original entry on oeis.org

1, 33, 8051, 257875, 806108207, 268736069, 4516906311683, 144545256245731, 105375212839937899, 105376229094957931, 16971048697474072945481, 16971114472329088045481, 6301272372663207205033976933
Offset: 1

Views

Author

Alexander Adamchuk, Oct 27 2004

Keywords

Comments

From Alexander Adamchuk, Nov 07 2006: (Start)
a(n) is prime for n = {23, 25, 85, 147, 167, ...}.
There is a Wolstenholme-like theorem: p divides a(p-1) for prime p and p^2 divides a(p-1) for prime p > 7.
Also, p^3 divides a(p-1) for prime p = 5; p divides a((p-1)/2) for prime p = 37; p divides a((p-1)/3) for prime p = 37; p divides a((p-1)/4) for prime p = 37; p divides a((p-1)/5) for prime p = 11; p^2 divides a((p-1)/6) for prime p = 37; p divides a((p+1)/4) for prime p = 83; p divides a((p+1)/5) for prime p = 29; and p divides a((p+1)/6) for prime p = 11. (End)
See the Wolfdieter Lang link for information about Zeta(k, n) = H(n, k) with the rationals for k = 1..10, g.f.s, and polygamma formulas. - Wolfdieter Lang, Dec 03 2013

Examples

			H(n,5) = {1, 33/32, 8051/7776, 257875/248832, ... } = A099828/A069052.
For example, a(2) = numerator(1 + 1/2^5) = numerator(33/32) = 33 and a(3) = numerator(1 + 1/2^5 + 1/3^5) = numerator(8051/7776) = 8051. [Edited by _Petros Hadjicostas_, May 10 2020]
		

Crossrefs

Denominators are A069052.
A099827 = H(n,5) multiplied by (n!)^5.

Programs

  • Mathematica
    Numerator[Table[Sum[1/k^5, {k, 1, n}], {n, 1, 20}]]
    Numerator[Table[HarmonicNumber[n, 5], {n, 1, 20}]]
    Table[Numerator[Sum[1/k^5,{k,1,n}]],{n,1,100}] (* Alexander Adamchuk, Nov 07 2006 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/k^5)); \\ Michel Marcus, May 10 2020

Formula

a(n) = numerator(Sum_{k=1..n} 1/k^5) = numerator(HarmonicNumber[n, 5]).

A001819 Central factorial numbers: second right-hand column of triangle A008955.

Original entry on oeis.org

0, 1, 5, 49, 820, 21076, 773136, 38402064, 2483133696, 202759531776, 20407635072000, 2482492033152000, 359072203696128000, 60912644957448192000, 11977654199703478272000, 2702572249389834608640000
Offset: 0

Views

Author

Keywords

Comments

Coefficient of x^2 in Product_{k=0..n}(x + k^2). - Ralf Stephan, Aug 22 2004
p divides a(p-1) for prime p > 3. p divides a((p-1)/2) for prime p > 3. For prime p, p^2 divides a(n) for n > 2*p+1. - Alexander Adamchuk, Jul 11 2006; last comment corrected by Michel Marcus, May 20 2020
The ratio a(n)/A001044(n) is the partial sum of the reciprocals of squares. E.g., a(4)/A001044(4) = 820/576 = 1/1 + 1/4 + 1/9 + 1/16. - Pierre CAMI, Oct 30 2006
a(n) is the (n-1)-st elementary symmetric function of the squares of the first n numbers. - Anton Zakharov, Nov 06 2016
Primes p such that p^2 | a(p-1) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Aug 08 2019

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second right-hand column of triangle A008955.
Equals row sums of A162990(n)/(n+1)^2 for n >= 1.

Programs

Formula

a_n = (n!)^2 * Sum_{k=1..n} 1/k^2. - Joe Keane (jgk(AT)jgk.org)
a(n) ~ (1/3)*Pi^3*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
Sum_{n>=0} a(n)*x^n/n!^2 = polylog(2, x)/(1-x). - Vladeta Jovovic, Jan 23 2003
a(n) = Sum_{i=1..n} 1/i^2 / Product_{i=1..n} 1/i^2. - Alexander Adamchuk, Jul 11 2006
a(0) = 0, a(n) = a(n-1)*n^2 + A001044(n-1). E.g., a(1) = 0*1 + 1 = 1 since A001044(0) = 1; a(2) = 1*2^2 + 1 = 5 since A001044(1) = 1; a(3) = 5*3^2 + 4 = 49 since A001044(2) = 4; and so on. - Pierre CAMI, Oct 30 2006
Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 1)*a(n) - n^4*a(n-1). The sequence b(n) = n!^2 satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1 - 1^4/(5 - 2^4/(13 - 3^4/(25 - ... -(n-1)^4/((2*n^2 - 2*n + 1)))))), leading to the infinite continued fraction expansion zeta(2) = 1/(1-1^4/(5 - 2^4/(13 - 3^4/(25 - ... - n^4/((2*n^2 + 2*n + 1) - ...))))). Compare with A142995. Compare also with A024167 and A066989. - Peter Bala, Jul 18 2008
a(n)/(n!)^2 -> zeta(2) = A013661 as n -> infinity, rewriting the Keane formula. - Najam Haq (njmalhq(AT)yahoo.com), Jan 13 2010
a(n) = s(n+1,2)^2 - 2*s(n+1,1)*s(n+1,3), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012

Extensions

Minor edits by Vaclav Kotesovec, Jan 28 2015
Previous Showing 11-20 of 80 results. Next