cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 579 results. Next

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0

Views

Author

Keywords

Comments

a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - Wolfdieter Lang
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - Thomas Wieder, May 20 2004
Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - Thomas Baruchel, Nov 07 2005
Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - Gary W. Adamson, Jun 16 2009
Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - Gary W. Adamson, Mar 21 2011
More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - Omar E. Pol, Feb 14 2012
Row sums of triangle A221530. - Omar E. Pol, Jan 21 2013
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also as follows:
Convolution of A000005 and A000041.
Convolution of A006218 and A002865.
Convolution of A341062 and A000070.
Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - Gus Wiseman, Apr 19 2021

Examples

			For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
		

References

  • S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A210485.
Column k=1 of A256193.
The version for normal multisets is A001787.
The unordered version is A001792.
The strict case is A015723.
The version for factorizations is A066637.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.

Programs

  • GAP
    List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
  • Haskell
    a006128 = length . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
    a:= n-> coeff(series(g,x,62),x,n):
    seq(a(n), n=0..61);
    # second Maple program:
    a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
    seq(a(n), n=0..61);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
    CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
    a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
    Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
  • PARI
    f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
    
  • PARI
    a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
    
  • Python
    from sympy import divisor_count, npartitions
    def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    

Formula

G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
a(n) = Sum_{k=1..n} k*A008284(n, k).
a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - Omar E. Pol, Jan 21 2013
Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
a(n) = A066897(n) + A066898(n), n>0. - Reinhard Zumkeller, Mar 09 2012
a(n) = A066186(n) - A196087(n), n >= 1. - Omar E. Pol, Apr 22 2012
a(n) = A194452(n) + A024786(n+1). - Omar E. Pol, May 19 2012
a(n) = A000203(n) + A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - Omar E. Pol, May 12 2013
a(n) = A198381(n) + A026905(n), n >= 1. - Omar E. Pol, Aug 10 2013
a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - Peter Bala, Dec 23 2013
a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - Omar E. Pol, Jul 14 2014
From Vaclav Kotesovec, Jun 23 2015: (Start)
Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
(End)
a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - Omar E. Pol, Feb 05 2021 2014

A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0

Views

Author

Keywords

Comments

Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
From Vladimir Shevelev, Apr 23 2011: (Start)
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
From _Gus Wiseman_, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
  ()  (1)  (2)   (3)    (4)    (5)    (6)    (7)    (8)
           (11)  (21)   (22)   (32)   (33)   (43)   (44)
                 (111)  (31)   (41)   (42)   (52)   (53)
                        (211)  (221)  (51)   (61)   (62)
                               (311)  (222)  (322)  (71)
                                      (321)  (331)  (332)
                                      (411)  (421)  (422)
                                             (511)  (431)
                                                    (521)
                                                    (611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
  (3)  (31)  (32)   (33)    (322)    (332)     (333)      (3322)
             (311)  (321)   (331)    (3221)    (3222)     (3331)
                    (3111)  (3211)   (3311)    (3321)     (32221)
                            (31111)  (32111)   (32211)    (33211)
                                     (311111)  (33111)    (322111)
                                               (321111)   (331111)
                                               (3111111)  (3211111)
                                                          (31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
  {}  {12}  {12,12}  {12,12,12}  {12,12,12,12}  {12,12,12,12,12}
            {13,23}  {12,13,23}  {12,13,23,23}  {12,13,13,23,23}
                     {13,23,23}  {13,13,23,23}  {12,13,23,23,23}
                                 {13,23,23,23}  {13,13,23,23,23}
                                                {13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
  (321)  (421)  (431)  (432)  (532)  (542)  (543)  (643)   (653)
                (521)  (531)  (541)  (632)  (642)  (652)   (743)
                       (621)  (631)  (641)  (651)  (742)   (752)
                              (721)  (731)  (732)  (751)   (761)
                                     (821)  (741)  (832)   (842)
                                            (831)  (841)   (851)
                                            (921)  (931)   (932)
                                                   (A21)   (941)
                                                           (A31)
                                                           (B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)
                (311)  (321)  (331)  (422)  (432)  (442)  (533)
                       (411)  (421)  (431)  (441)  (532)  (542)
                              (511)  (521)  (522)  (541)  (551)
                                     (611)  (531)  (622)  (632)
                                            (621)  (631)  (641)
                                            (711)  (721)  (722)
                                                   (811)  (731)
                                                          (821)
                                                          (911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
  ()  (1)  (2)   (3)    (22)    (32)     (33)      (322)      (332)
           (11)  (21)   (31)    (221)    (222)     (331)      (2222)
                 (111)  (211)   (311)    (321)     (2221)     (3221)
                        (1111)  (2111)   (2211)    (3211)     (3311)
                                (11111)  (3111)    (22111)    (22211)
                                         (21111)   (31111)    (32111)
                                         (111111)  (211111)   (221111)
                                                   (1111111)  (311111)
                                                              (2111111)
                                                              (11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
  (5,3,1)  (7,3,1)  (7,5,1)  (7,5,3)   (9,5,3)   (9,7,3)   (9,7,5)
                    (9,3,1)  (9,5,1)   (9,7,1)   (11,5,3)  (11,7,3)
                             (11,3,1)  (11,5,1)  (11,7,1)  (11,9,1)
                                       (13,3,1)  (13,5,1)  (13,5,3)
                                                 (15,3,1)  (13,7,1)
                                                           (15,5,1)
                                                           (17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
  (210)  (310)  (320)  (420)  (430)  (530)  (540)  (640)  (650)
                (410)  (510)  (520)  (620)  (630)  (730)  (740)
                       (321)  (610)  (710)  (720)  (820)  (830)
                              (421)  (431)  (810)  (910)  (920)
                                     (521)  (432)  (532)  (A10)
                                            (531)  (541)  (542)
                                            (621)  (631)  (632)
                                                   (721)  (641)
                                                          (731)
                                                          (821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
  (321)  (3211)  (3221)   (3321)    (32221)    (33221)     (33321)
                 (32111)  (32211)   (33211)    (322211)    (322221)
                          (321111)  (322111)   (332111)    (332211)
                                    (3211111)  (3221111)   (3222111)
                                               (32111111)  (3321111)
                                                           (32211111)
                                                           (321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
  • J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001399 = p [1,2,3] where
       p _      0 = 1
       p []     _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Magma
    I:=[1,1,2,3,4,5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
    
  • Magma
    [#RestrictedPartitions(n,{1,2,3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
    
  • Magma
    [Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
    
  • Maple
    A001399 := proc(n)
        round( (n+3)^2/12) ;
    end proc:
    seq(A001399(n),n=0..40) ;
    with(combstruct):ZL4:=[S,{S=Set(Cycle(Z,card<4))}, unlabeled]:seq(count(ZL4,size=n),n=0..61); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=3)},unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
    Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
    k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,4,5},70] (* Harvey P. Dale, Jun 21 2012 *)
    a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
    k=3 (* Number of red beads in bracelet problem *);CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Apr 15 2019 *)
  • PARI
    {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    [round((n+3)**2 / 12) for n in range(0,62)] # Ya-Ping Lu, Jan 24 2024

Formula

G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
A117220(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = A005044(2*n + 3) = A005044(2*n + 6). - Michael Somos, Feb 25 2012
a(n) = A000212(n+3) - A002620(n+3). - Richard R. Forberg, Dec 08 2013
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
a(6n) = 1+6*A000217(n); Sum_{i=1..n} a(6*i) = A000578(n+1). - David García Herrero, May 05 2024

Extensions

Name edited by Gus Wiseman, Apr 15 2019

A008289 Triangle read by rows: Q(n,m) = number of partitions of n into m distinct parts, n>=1, m>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 4, 3, 1, 4, 4, 1, 1, 5, 5, 1, 1, 5, 7, 2, 1, 6, 8, 3, 1, 6, 10, 5, 1, 7, 12, 6, 1, 1, 7, 14, 9, 1, 1, 8, 16, 11, 2, 1, 8, 19, 15, 3, 1, 9, 21, 18, 5, 1, 9, 24, 23, 7, 1, 10, 27, 27, 10, 1, 1, 10, 30, 34, 13, 1, 1, 11, 33, 39, 18, 2, 1, 11, 37
Offset: 1

Views

Author

Keywords

Comments

Row n contains A003056(n) = floor((sqrt(8*n+1)-1)/2) terms (number of terms increases by one at each triangular number). - Michael Somos, Dec 04 2002
Row sums give A000009.
Q(n,m) is the number of partitions of n whose greatest part is m and every number in {1,2,...,m} occurs as a part at least once. - Geoffrey Critzer, Nov 17 2011

Examples

			Q(8,3) = 2 since 8 can be written in 2 ways as sum of 3 distinct positive integers: 5+2+1 and 4+3+1.
Triangle starts:
  1;
  1;
  1,  1;
  1,  1;
  1,  2;
  1,  2,  1;
  1,  3,  1;
  1,  3,  2;
  1,  4,  3;
  1,  4,  4,  1;
  1,  5,  5,  1;
  1,  5,  7,  2;
  1,  6,  8,  3;
  1,  6, 10,  5;
  1,  7, 12,  6,  1;
  1,  7, 14,  9,  1;
  1,  8, 16, 11,  2;
  1,  8, 19, 15,  3;
  1,  9, 21, 18,  5;
  1,  9, 24, 23,  7;
  1, 10, 27, 27, 10,  1;
  1, 10, 30, 34, 13,  1;
  1, 11, 33, 39, 18,  2;
  1, 11, 37, 47, 23,  3;
  1, 12, 40, 54, 30,  5;
  1, 12, 44, 64, 37,  7;
  1, 13, 48, 72, 47, 11;
  1, 13, 52, 84, 57, 14, 1;
  1, 14, 56, 94, 70, 20, 1; ...
Q(8,3) = 2 because there are 2 partitions of 8 in which  1, 2 and 3 occur as a part at least once: (3,2,2,1), (3,2,1,1,1). - _Geoffrey Critzer_, Nov 17 2011
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115.

Crossrefs

Sum of n-th row is A000009(n). Sum(Q(n,k)*k, k>=1) = A015723(n).
A060016 is another version.
Cf. A032020.

Programs

  • Maple
    g:=product(1+t*x^j,j=1..40): gser:=simplify(series(g,x=0,32)): P[0]:=1: for n from 1 to 30 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 25 do seq(coeff(P[n],t,j),j=1..floor((sqrt(8*n+1)-1)/2)) od; # yields sequence in triangular form; Emeric Deutsch, Feb 21 2006
    # second Maple program:
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    T:= n-> subsop(1=NULL, b(n, n))[]:
    seq(T(n), n=1..40);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]]; Take[ Flatten[ Table[q[n, k], {n, 1, 24}, {k, 1, Floor[(Sqrt[8n+1] - 1)/2]}]], 91] (* Jean-François Alcover, Aug 01 2011, after PARI prog. *)
    (* As a triangular table: *)
    Table[Coefficient[Series[Product[1+t    x^i,{i,n}],{x,0,n}],x^n t^m],{n,24},{m,n}] (* Wouter Meeussen, Feb 22 2014 *)
    Table[Count[PowersRepresentations[n, k, 1], ?(Nor[MemberQ[#, 0], MemberQ[Differences@ #, 0]] &)], {n, 23}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* _Michael De Vlieger, Jul 12 2017 *)
    nrows = 24; d=Table[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &],{n, nrows}] ;
    Flatten@Table[Table[Count[d[[n]], x_ /; Length[x] == m], {m, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, nrows}] (* Robert Price, Aug 17 2020 *)
  • PARI
    {Q(n, k) = if( k<0 || k>n,0, polcoeff( polcoeff( prod(i=1, n, 1 + y*x^i, 1 + x * O(x^n)), n), k))}; /* Michael Somos, Dec 04 2002 */
    
  • PARI
    Q(n,k)=if(nPaul D. Hanna
    
  • PARI
    {Q(n, k) = my(u); if( n<1 || k<1 || k>(sqrtint(8*n+1)-1)\2, 0, u = n - k *(k+1)/2; polcoeff( 1 / prod(i=1, k, 1 - x^i, 1 + x*O(x^u)), u))}; /* Michael Somos, Jul 11 2017 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A008289_T(n,k):
        if k<1 or nA008289_T(n-k,k)+A008289_T(n-k,k-1) # Chai Wah Wu, Sep 22 2023

Formula

G.f.: Product_{n>0} (1 + y*x^n) = 1 + Sum_{n>0, k>0} Q(n, k) * x^n * y^k. - Michael Somos, Dec 04 2002
Q(n, k) = Q(n-k, k) + Q(n-k, k-1) for n>k>=1, with Q(1, 1)=1, Q(n, 0)=0 (n>=1). - Paul D. Hanna, Mar 04 2005
G.f.: Sum_{n>0, k>0} x^n * y^(k*(k+1)/2) / Product_{i=1..k} (1 - y^i). - Michael Somos, Jul 11 2017
Sum_{k>=0} k! * Q(n,k) = A032020(n). - Alois P. Heinz, Feb 25 2020
Q(n, m) = A008284(n - m*(m-1)/2, m) = A026820(n - m*(m+1)/2, m), using for the latter, the extension A026820(n, k) = A026820(n, n) = A000041(n), for every k >= n >= 0. - Álvar Ibeas, Jul 23 2020

Extensions

Additional comments from Michael Somos, Dec 04 2002
Entry revised by N. J. A. Sloane, Nov 20 2006

A097805 Number of compositions of n with k parts, T(n, k) = binomial(n-1, k-1) for n, k >= 1 and T(n, 0) = 0^n, triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Previous name was: Riordan array (1, 1/(1-x)) read by rows.
Note this Riordan array would be denoted (1, x/(1-x)) by some authors.
Columns have g.f. (x/(1-x))^k. Reverse of A071919. Row sums are A011782. Antidiagonal sums are Fibonacci(n-1). Inverse as Riordan array is (1, 1/(1+x)). A097805=B*A059260*B^(-1), where B is the binomial matrix.
(0,1)-Pascal triangle. - Philippe Deléham, Nov 21 2006
(n+1) * each term of row n generates triangle A127952: (1; 0, 2; 0, 3, 3; 0, 4, 8, 4; ...). - Gary W. Adamson, Feb 09 2007
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2008
From Paul Weisenhorn, Feb 09 2011: (Start)
Triangle read by rows: T(r,c) is the number of unordered partitions of n=r*(r+1)/2+c into (r+1) parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2.
Triangle read by rows: T(r,c) is the number of unordered partitions of the number n=r*(r+1)/2+(c-1) into r parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2. (End)
Triangle read by rows: T(r,c) is the number of ordered partitions (compositions) of r into c parts. - Juergen Will, Jan 04 2016
From Tom Copeland, Oct 25 2012: (Start)
Given a basis composed of a sequence of polynomials p_n(x) characterized by ladder (creation / annihilation, or raising / lowering) operators defined by R p_n(x) = p_(n+1)(x) and L p_n(x) = n p_(n-1)(x) with p_0(x)=1, giving the number operator # p_n(x) = RL p_n(x) = n p_n(x), the lower triangular padded Pascal matrix Pd (A097805) serves as a matrix representation of the operator exp(R^2*L) = exp(R#) =
1) exp(x^2D) for the set x^n and
2) D^(-1) exp(t*x)D for the set x^n/n! (see A218234).
(End)
From James East, Apr 11 2014: (Start)
Square array a(m,n) with m,n=0,1,2,... read by off-diagonals.
a(m,n) gives the number of order-preserving functions f:{1,...,m}->{1,...,n}. Order-preserving means that x
a(n,n)=A088218(n) is the size of the semigroup O_n of all order-preserving transformations of {1,...,n}.
Read as a triangle, this sequence may be obtained by augmenting Pascal's triangle by appending the column 1,0,0,0,... on the left.
(End)
A formula based on the partitions of n with largest part k is given as a Sage program below. The 'conjugate' formula leads to A048004. - Peter Luschny, Jul 13 2015
From Wolfdieter Lang, Feb 17 2017: (Start)
The transposed of this lower triangular Riordan matrix of the associated type T provides the transition matrix between the monomial basis {x^n}, n >= 0, and the basis {y^n}, n >= 0, with y = x/(1-x): x^0 = 1 = y^0, x^n = Sum_{m >= n} Ttrans(n,m) y^m, for n >= 1, with Ttrans(n,m) = binomial(m-1,n-1).
Therefore, if a transformation with this Riordan matrix from a sequence {a} to the sequence {b} is given by b(n) = Sum_{m=0..n} T(n, m)*a(m), with T(n, m) = binomial(n-1, m-1), for n >= 1, then Sum_{n >= 0} a(n)*x^n = Sum_{n >= 0} b(n)*y^n, with y = x/(1-x) and vice versa. This is a modified binomial transformation; the usual one belongs to the Pascal Riordan matrix A007318. (End)
From Gus Wiseman, Jan 23 2022: (Start)
Also the number of compositions of n with alternating sum k, with k ranging from -n to n in steps of 2. For example, row n = 6 counts the following compositions (empty column indicated by dot):
. (15) (24) (33) (42) (51) (6)
(141) (132) (123) (114)
(1113) (231) (222) (213)
(1212) (1122) (321) (312)
(1311) (1221) (1131) (411)
(2112) (2121)
(2211) (3111)
(11121) (11112)
(12111) (11211)
(111111) (21111)
The reverse-alternating version is the same. Counting compositions by all three parameters (sum, length, alternating sum) gives A345197. Compositions of 2n with alternating sum 2k with k ranging from -n + 1 to n are A034871. (End)
Also the convolution triangle of A000012. - Peter Luschny, Oct 07 2022
From Sergey Kitaev, Nov 18 2023: (Start)
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k right-to-left maxima. A right-to-left maximum in a permutation a(1)a(2)...a(n) is position i such that a(j) < a(i) for all i < j.
Number of permutations of length n avoiding simultaneously the patterns 231 and 312 with k right-to-left minima (resp., left-to-right maxima). A right-to-left minimum (resp., left-to-right maximum) in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j > i (resp., a(j) < a(i) for all j < i).
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with k right-to-left maxima (resp., left-to-right maxima).
Number of permutations of length n avoiding simultaneously the patterns 213 and 231 with k right-to-left maxima (resp., right-to-left minima). (End)

Examples

			G.f. = 1 + x * (x + x^3 * (1 + x) + x^6 * (1 + x)^2 + x^10 * (1 + x)^3 + ...). - _Michael Somos_, Aug 20 2006
The triangle T(n, k) begins:
n\k  0 1 2  3  4   5   6  7  8 9 10 ...
0:   1
1:   0 1
2:   0 1 1
3:   0 1 2  1
4:   0 1 3  3  1
5:   0 1 4  6  4   1
6:   0 1 5 10 10   5   1
7:   0 1 6 15 20  15   6  1
8:   0 1 7 21 35  35  21  7  1
9:   0 1 8 28 56  70  56 28  8 1
10:  0 1 9 36 84 126 126 84 36 9  1
... reformatted _Wolfdieter Lang_, Jul 31 2017
From _Paul Weisenhorn_, Feb 09 2011: (Start)
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+c = 18 with (r+1)=6 summands: (5+5+4+2+1+1), (5+5+3+3+1+1), (5+4+4+3+1+1), (5+5+3+2+2+1), (5+4+4+2+2+1), (5+4+3+3+2+1).
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+(c-1) = 17 with r=5 summands: (5+5+4+2+1), (5+5+3+3+1), (5+5+3+2+2), (5+4+4+3+1), (5+4+4+2+2), (5+4+3+3+2).  (End)
From _James East_, Apr 11 2014: (Start)
a(0,0)=1 since there is a unique (order-preserving) function {}->{}.
a(m,0)=0 for m>0 since there is no function from a nonempty set to the empty set.
a(3,2)=4 because there are four order-preserving functions {1,2,3}->{1,2}: these are [1,1,1], [2,2,2], [1,1,2], [1,2,2]. Here f=[a,b,c] denotes the function defined by f(1)=a, f(2)=b, f(3)=c.
a(2,3)=6 because there are six order-preserving functions {1,2}->{1,2,3}: these are [1,1], [1,2], [1,3], [2,2], [2,3], [3,3].
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Part 1, Section 7.2.1.3, 2011.

Crossrefs

Case m=0 of the polynomials defined in A278073.
Cf. A000012 (diagonal), A011782 (row sums), A088218 (central terms).
The terms just left of center in odd-indexed rows are A001791, even A002054.
The odd-indexed rows are A034871.
Row sums without the center are A058622.
The unordered version is A072233, without zeros A008284.
Right half without center has row sums A027306(n-1).
Right half with center has row sums A116406(n).
Left half without center has row sums A294175(n-1).
Left half with center has row sums A058622(n-1).
A025047 counts alternating compositions.
A098124 counts balanced compositions, unordered A047993.
A106356 counts compositions by number of maximal anti-runs.
A344651 counts partitions by sum and alternating sum.
A345197 counts compositions by sum, length, and alternating sum.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, May 25 2014
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else
    add(T(k-1,n-i), i=1..n-k+1) fi end:
    A097805 := (n,k) -> T(k,n):
    for n from 0 to 12 do seq(A097805(n,k), k=0..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 1);  # Peter Luschny, Oct 07 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 03 2014, after Paul Weisenhorn *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jan 23 2022 *)
  • PARI
    {a(n) = my(m); if( n<2, n==0, n--; m = (sqrtint(8*n + 1) - 1)\2; binomial(m-1, n - m*(m + 1)/2))}; /* Michael Somos, Aug 20 2006 */
    
  • PARI
    T(n,k) = if (k==0, 0^n, binomial(n-1, k-1)); \\ Michel Marcus, May 06 2022
    
  • PARI
    row(n) = vector(n+1, k, k--; if (k==0, 0^n, binomial(n-1, k-1))); \\ Michel Marcus, May 06 2022
    
  • Python
    from math import comb
    def T(n, k): return comb(n-1, k-1) if k != 0 else k**n  # Peter Luschny, May 06 2022
  • Sage
    # Illustrates a basic partition formula, is not efficient as a program for large n.
    def A097805_row(n):
        r = []
        for k in (0..n):
            s = 0
            for q in Partitions(n, max_part=k, inner=[k]):
                s += mul(binomial(q[j],q[j+1]) for j in range(len(q)-1))
            r.append(s)
        return r
    [A097805_row(n) for n in (0..9)] # Peter Luschny, Jul 13 2015
    

Formula

Number triangle T(n, k) defined by T(n,k) = Sum_{j=0..n} binomial(n, j)*if(k<=j, (-1)^(j-k), 0).
T(r,c) = binomial(r-1,c-1), 0 <= c <= r. - Paul Weisenhorn, Feb 09 2011
G.f.: (-1+x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015
a(0,0) = 1, a(n,k) = binomial(n-1,n-k) = binomial(n-1,k-1) Juergen Will, Jan 04 2016
G.f.: (x^1 + x^2 + x^3 + ...)^k = (x/(1-x))^k. - Juergen Will, Jan 04 2016
From Tom Copeland, Nov 15 2016: (Start)
E.g.f.: 1 + x*[e^((x+1)t)-1]/(x+1).
This padded Pascal matrix with the odd columns negated is NpdP = M*S = S^(-1)*M^(-1) = S^(-1)*M, where M(n,k) = (-1)^n A130595(n,k), the inverse Pascal matrix with the odd rows negated, S is the summation matrix A000012, the lower triangular matrix with all elements unity, and S^(-1) = A167374, a finite difference matrix. NpdP is self-inverse, i.e., (M*S)^2 = the identity matrix, and has the e.g.f. 1 - x*[e^((1-x)t)-1]/(1-x).
M = NpdP*S^(-1) follows from the well-known recursion property of the Pascal matrix, implying NpdP = M*S.
The self-inverse property of -NpdP is implied by the self-inverse relation of its embedded signed Pascal submatrix M (cf. A130595). Also see A118800 for another proof.
Let P^(-1) be A130595, the inverse Pascal matrix. Then T = A200139*P^(-1) and T^(-1) = padded P^(-1) = P*A097808*P^(-1). (End)
The center (n>0) is T(2n+1,n+1) = A000984(n) = 2*A001700(n-1) = 2*A088218(n) = A126869(2n) = 2*A138364(2n-1). - Gus Wiseman, Jan 25 2022

Extensions

Corrected by Philippe Deléham, Oct 05 2005
New name using classical terminology by Peter Luschny, Feb 05 2019

A359893 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  1  0  1
  1  1  0  0  1
  2  0  2  0  0  0  1
  3  0  1  2  0  0  0  0  1
  4  1  2  0  3  0  0  0  0  0  1
  6  1  3  0  1  3  0  0  0  0  0  0  1
  8  1  6  0  2  0  4  0  0  0  0  0  0  0  1
 11  2  7  1  3  0  1  4  0  0  0  0  0  0  0  0  1
 15  2 10  3  4  0  2  0  5  0  0  0  0  0  0  0  0  0  1
 20  3 13  3  7  0  3  0  1  5  0  0  0  0  0  0  0  0  0  0  1
 26  4 19  3 11  1  4  0  2  0  6  0  0  0  0  0  0  0  0  0  0  0  1
For example, row n = 8 counts the following partitions:
  611       4211  422    .  332  .  44  .  .  .  .  .  .  .  8
  5111            521       431     53
  32111           2222              62
  41111           3221              71
  221111          3311
  311111          22211
  2111111
  11111111
		

Crossrefs

Row sums are A000041.
Row lengths are 2n-1 = A005408(n-1).
Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
The mean statistic is ranked by A326567/A326568.
Omitting half-steps gives A359901.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]

A239455 Number of Look-and-Say partitions of n; see Comments.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0

Author

Keywords

Comments

Suppose that p = x(1) >= x(2) >= ... >= x(k) is a partition of n. Let y(1) > y(2) > ... > y(h) be the distinct parts of p, and let m(i) be the multiplicity of y(i) for 1 <= i <= h. Then we can "look" at p as "m(1) y(1)'s and m(2) y(2)'s and ... m(h) y(h)'s". Reversing the m's and y's, we can then "say" the Look-and-Say partition of p, denoted by LS(p). The name "Look-and-Say" follows the example of Look-and-Say integer sequences (e.g., A005150). As p ranges through the partitions of n, LS(p) ranges through all the Look-and-Say partitions of n. The number of these is A239455(n).
The Look-and-Say array is distinct from the Wilf array, described at A098859; for example, the number of Look-and-Say partitions of 9 is A239455(9) = 16, whereas the number of Wilf partitions of 9 is A098859(9) = 15. The Look-and-Say partition of 9 which is not a Wilf partition of 9 is [2,2,2,1,1,1].
Conjecture: a partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are all distinct, so y is counted under a(9). - Gus Wiseman, Aug 11 2025
Also the number of integer partitions y of n such that there is a pairwise disjoint way to choose a strict integer partition of each multiplicity (or run-length) of y. - Gus Wiseman, Aug 11 2025

Examples

			The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
		

Crossrefs

These include all Wilf partitions, counted by A098859, ranked by A130091.
These partitions are listed by A239454 in graded reverse-lex order.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351204, complement A351203.
The complement is counted by A351293, apparently ranked by A351295, conjugate A381433.
These partitions appear to be ranked by A351294, conjugate A381432.
The non-Wilf case is counted by A351592.
For normal multisets we appear to have A386580, complement A386581.
A000110 counts set partitions, ordered A000670.
A000569 = graphical partitions, complement A339617.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
A386583 counts separable partitions, sums A325534, ranks A335433.
A386584 counts inseparable partitions, sums A325535, ranks A335448.
A386585 counts separable type partitions, sums A336106, ranks A335127.
A386586 counts inseparable type partitions, sums A386638 or A025065, ranks A335126.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018, ranked by A044813.
- A329739 = compositions, for runs A351013, ranked by A351596.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
    Flatten[t](*A239454,sequence*)
    Map[Length[LS[#]] &, Range[25]](*A239455*)
    (* Peter J. C. Moses, Mar 18 2014 *)
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)

A238343 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k descents, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 9, 0, 0, 0, 0, 11, 19, 2, 0, 0, 0, 0, 15, 41, 8, 0, 0, 0, 0, 0, 22, 77, 29, 0, 0, 0, 0, 0, 0, 30, 142, 81, 3, 0, 0, 0, 0, 0, 0, 42, 247, 205, 18, 0, 0, 0, 0, 0, 0, 0, 56, 421, 469, 78, 0, 0, 0, 0, 0, 0, 0, 0, 77, 689, 1013, 264, 5, 0, 0, 0, 0, 0, 0, 0, 0, 101, 1113, 2059, 786, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Counting ascents gives the same triangle.
For n > 0, also the number of compositions of n with k + 1 maximal weakly increasing runs. - Gus Wiseman, Mar 23 2020

Examples

			Triangle starts:
00:    1;
01:    1,    0;
02:    2,    0,    0;
03:    3,    1,    0,    0;
04:    5,    3,    0,    0,   0;
05:    7,    9,    0,    0,   0, 0;
06:   11,   19,    2,    0,   0, 0, 0;
07:   15,   41,    8,    0,   0, 0, 0, 0;
08:   22,   77,   29,    0,   0, 0, 0, 0, 0;
09:   30,  142,   81,    3,   0, 0, 0, 0, 0, 0;
10:   42,  247,  205,   18,   0, 0, 0, 0, 0, 0, 0;
11:   56,  421,  469,   78,   0, 0, 0, 0, 0, 0, 0, 0;
12:   77,  689, 1013,  264,   5, 0, 0, 0, 0, 0, 0, 0, 0;
13:  101, 1113, 2059,  786,  37, 0, 0, 0, 0, 0, 0, 0, 0, 0;
14:  135, 1750, 4021, 2097, 189, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
15:  176, 2712, 7558, 5179, 751, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
...
From _Gus Wiseman_, Mar 23 2020: (Start)
Row n = 5 counts the following compositions:
  (5)          (3,2)
  (1,4)        (4,1)
  (2,3)        (1,3,1)
  (1,1,3)      (2,1,2)
  (1,2,2)      (2,2,1)
  (1,1,1,2)    (3,1,1)
  (1,1,1,1,1)  (1,1,2,1)
               (1,2,1,1)
               (2,1,1,1)
(End)
		

Crossrefs

T(3n,n) gives A000045(n+1).
T(3n+1,n) = A136376(n+1).
Row sums are A011782.
Compositions by length are A007318.
The version for co-runs or levels is A106356.
The case of partitions (instead of compositions) is A133121.
The version for runs is A238279.
The version without zeros is A238344.
The version for weak ascents is A333213.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, j)*`if`(j (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*If[jJean-François Alcover, Jan 08 2015, translated from Maple *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],n==0||Length[Split[#,LessEqual]]==k+1&]],{n,0,9},{k,0,n}] (* Gus Wiseman, Mar 23 2020 *)

Formula

Sum_{k=0..n} k * T(n,k) = A045883(n-2) for n>=2.

A333213 Triangle read by rows where T(n,k) is the number of compositions of n with k adjacent terms that are equal or increasing (weak ascents) n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 4, 1, 1, 0, 3, 6, 5, 1, 1, 0, 4, 10, 10, 6, 1, 1, 0, 5, 17, 20, 13, 7, 1, 1, 0, 6, 27, 38, 31, 16, 8, 1, 1, 0, 8, 40, 69, 67, 42, 19, 9, 1, 1, 0, 10, 58, 123, 132, 101, 54, 22, 10, 1, 1
Offset: 0

Author

Gus Wiseman, Mar 14 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also the number of compositions of n with k + 1 maximal strictly decreasing subsequences.
Also the number of compositions of n with k adjacent terms that are equal or decreasing (weak descents).

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   1   1
   0   2   4   1   1
   0   3   6   5   1   1
   0   4  10  10   6   1   1
   0   5  17  20  13   7   1   1
   0   6  27  38  31  16   8   1   1
   0   8  40  69  67  42  19   9   1   1
   0  10  58 123 132 101  54  22  10   1   1
   0  12  86 202 262 218 139  67  25  11   1   1
   0  15 121 332 484 467 324 182  81  28  12   1   1
Row n = 6 counts the following compositions:
  (6)    (15)    (114)   (1113)   (11112)  (111111)
  (42)   (24)    (123)   (1122)
  (51)   (33)    (222)   (11121)
  (321)  (132)   (1131)  (11211)
         (141)   (1212)  (12111)
         (213)   (1221)  (21111)
         (231)   (1311)
         (312)   (2112)
         (411)   (2211)
         (2121)  (3111)
		

Crossrefs

Compositions by length are A007318.
The case of reversed partitions (instead of compositions) is A008284.
The version counting equal adjacencies is A106356.
The case of partitions (instead of compositions) is A133121.
The version counting unequal adjacencies is A238279.
The strict/strong version is A238343.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#,#1>#2&]]==k&]],{n,0,12},{k,0,n}]
  • PARI
    T(n)={my(M=matrix(n+1, n+1)); M[1,1]=x; for(n=1, n, for(k=1, n, M[1+n,1+k] = M[1+n,1+k-1] + x*M[1+n-k, 1+n-k] + (1-x)*M[1+n-k, 1+min(k-1, n-k)])); M[1,1]=1; vector(n+1, i, Vecrev(M[i,i]))}
    { my(A=T(12)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

A116861 Triangle read by rows: T(n,k) is the number of partitions of n such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 1, 3, 1, 1, 3, 1, 1, 4, 1, 0, 3, 2, 2, 2, 5, 1, 1, 3, 3, 2, 4, 2, 6, 1, 0, 5, 2, 3, 4, 4, 3, 8, 1, 1, 4, 3, 4, 7, 4, 5, 3, 10, 1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12, 1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15, 1, 0, 6, 4, 5, 10, 10, 9, 10, 11, 10, 7, 18, 1, 1, 6, 4, 5, 15, 11, 13, 9, 16, 11, 13, 8, 22
Offset: 1

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)

Examples

			T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
  1;
  1, 1;
  1, 0, 2;
  1, 1, 1, 2;
  1, 0, 2, 1, 3;
  1, 1, 3, 1, 1,  4;
  1, 0, 3, 2, 2,  2, 5;
  1, 1, 3, 3, 2,  4, 2, 6;
  1, 0, 5, 2, 3,  4, 4, 3, 8;
  1, 1, 4, 3, 4,  7, 4, 5, 3, 10;
  1, 0, 5, 3, 4,  7, 7, 6, 6,  5, 12;
  1, 1, 6, 4, 3, 12, 6, 8, 7,  9,  5, 15;
  ...
		

Crossrefs

Cf. A000041 (row sums), A000009 (diagonal), A014153.
Cf. A114638 (count partitions with #parts = sum(distinct parts)).
Column 1: A000012, column 2: A000035(1..), column 3: A137719(1..).
For subsets instead of partitions we have A026820.
This statistic is ranked by A066328.
The central diagonal is T(2n,n) = A364910(n), non-strict A364907.
Partial sums of columns are columns of A364911.
Same as A364916 (offset 0) with rows reversed.
A008284 counts partitions by length, strict A008289.
A364912 counts linear combinations of partitions.
A364913 counts combination-full partitions, strict A364839.

Programs

  • Maple
    g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; local f, g, j;
          if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
             for j to n/i do
               f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
             od; f
          fi
        end:
    T:= n-> subsop(1=NULL, b(n, n))[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[Length[Select[IntegerPartitions[n],Total[Union[#]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Aug 29 2023 *)
  • PARI
    A116861(n,k,s=0)={forpart(X=n,vecsum(Set(X))==k&&s++,k);s} \\ M. F. Hasler, Oct 27 2019

Formula

G.f.: -1 + Product_{j>=1} (1 + t^j*x^j/(1-x^j)).
Sum_{k=1..n} T(n,k) = A000041(n).
T(n,n) = A000009(n).
Sum_{k=1..n} k*T(n,k) = A014153(n-1).
T(n,1) = 1. T(n,2) = A000035(n+1). T(n,3) = A137719(n-2). - R. J. Mathar, Oct 27 2019
T(n,4) = A002264(n-1) + A121262(n). - R. J. Mathar, Oct 28 2019

A072233 Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Author

Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002

Keywords

Comments

Regarded as a triangular table, this is another version of the number of partitions of n into k parts, A008284. - Franklin T. Adams-Watters, Dec 18 2006
From Gus Wiseman, Feb 10 2021: (Start)
T(n,k) is also the number of partitions of n with greatest part k, if we assume the greatest part of an empty partition to be 0. Row n = 9 counts the following partitions:
111111111 22221 333 432 54 63 72 81 9
222111 3222 441 522 621 711
2211111 3321 4221 531 6111
21111111 32211 4311 5211
33111 42111 51111
321111 411111
3111111
(End)

Examples

			Table begins (upper left corner = T(0,0)):
1 1 1  1  1  1  1  1  1 ...
0 1 1  1  1  1  1  1  1 ...
0 1 2  2  2  2  2  2  2 ...
0 1 2  3  3  3  3  3  3 ...
0 1 3  4  5  5  5  5  5 ...
0 1 3  5  6  7  7  7  7 ...
0 1 4  7  9 10 11 11 11 ...
0 1 4  8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From _Wolfdieter Lang_, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k  0  1  2  3  4  5  6  7  8  9 10 ...
00   1
01   0  1
02   0  1  1
03   0  1  1  1
04   0  1  2  1  1
05   0  1  2  2  1  1
06   0  1  3  3  2  1  1
07   0  1  3  4  3  2  1  1
08   0  1  4  5  5  3  2  1  1
09   0  1  4  7  6  5  3  2  1  1
10   0  1  5  8  9  7  5  3  2  1  1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From _Gus Wiseman_, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
  9  54  333  3222  22221  222111  2211111  21111111  111111111
     63  432  3321  32211  321111  3111111
     72  441  4221  33111  411111
     81  522  4311  42111
         531  5211  51111
         621  6111
         711
(End)
		

Crossrefs

Sum of antidiagonal entries T(n, k) with n+k=m equals A000041(m).
Alternating row sums are A081362.
Cf. A008284.
The version for factorizations is A316439.
The version for set partitions is A048993/A080510.
The version for strict partitions is A008289/A059607.
A047993 counts balanced partitions, ranked by A106529.
A063995/A105806 count partitions by Dyson rank.

Programs

  • Mathematica
    Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015

Formula

T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012

Extensions

Corrected by Franklin T. Adams-Watters, Dec 18 2006
Previous Showing 41-50 of 579 results. Next