cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 595 results. Next

A033676 Largest divisor of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 1, 4, 5, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 6, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = sqrt(n) is a new record if and only if n is a square. - Zak Seidov, Jul 17 2009
a(n) = A060775(n) unless n is a square, when a(n) = A033677(n) = sqrt(n) is strictly larger than A060775(n). It would be nice to have an efficient algorithm to calculate these terms when n has a large number of divisors, as for example in A060776, A060777 and related problems such as A182987. - M. F. Hasler, Sep 20 2011
a(n) = 1 when n = 1 or n is prime. - Alonso del Arte, Nov 25 2012
a(n) is the smallest central divisor of n. Column 1 of A207375. - Omar E. Pol, Feb 26 2019
a(n^4+n^2+1) = n^2-n+1: suppose that n^2-n+k divides n^4+n^2+1 = (n^2-n+k)*(n^2+n-k+2) - (k-1)*(2*n+1-k) for 2 <= k <= 2*n, then (k-1)*(2*n+1-k) >= n^2-n+k, or n^2 - (2*k-1)*n + (k^2-k+1) = (n-k+1/2)^2 + 3/4 < 0, which is impossible. Hence the next smallest divisor of n^4+n^2+1 than n^2-n+1 is at least n^2-n+(2*n+1) = n^2+n+1 > sqrt(n^4+n^2+1). - Jianing Song, Oct 23 2022

References

  • G. Tenenbaum, pp. 268 ff, in: R. L. Graham et al., eds., Mathematics of Paul Erdős I.

Crossrefs

Cf. A033677 (n/a(n)), A000196 (sqrt), A027750 (list of divisors), A056737 (n/a(n) - a(n)), A219695 (half of this for odd numbers), A207375 (list the central divisor(s)).
The strictly inferior case is A060775. Cf. also A140271.
Indices of given values: A008578 (1 and the prime numbers: a(n) = 1), A161344 (a(n) = 2), A161345 (a(n) = 3), A161424 (4), A161835 (5), A162526 (6), A162527 (7), A162528 (8), A162529 (9), A162530 (10), A162531 (11), A162532 (12), A282668 (indices of primes).

Programs

  • Haskell
    a033676 n = last $ takeWhile (<= a000196 n) $ a027750_row n
    -- Reinhard Zumkeller, Jun 04 2012
    
  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; end if; end do: a; end proc: # R. J. Mathar, Aug 09 2009
  • Mathematica
    largestDivisorLEQR[n_Integer] := Module[{dvs = Divisors[n]}, dvs[[Ceiling[Length@dvs/2]]]]; largestDivisorLEQR /@ Range[100] (* Borislav Stanimirov, Mar 28 2010 *)
    Table[Last[Select[Divisors[n],#<=Sqrt[n]&]],{n,100}] (* Harvey P. Dale, Mar 17 2017 *)
  • PARI
    A033676(n) = {local(d);if(n<2,1,d=divisors(n);d[(length(d)+1)\2])} \\ Michael B. Porter, Jan 30 2010
    
  • Python
    from sympy import divisors
    def A033676(n):
        d = divisors(n)
        return d[(len(d)-1)//2]  # Chai Wah Wu, Apr 05 2021

Formula

a(n) = n / A033677(n).
a(n) = A161906(n,A038548(n)). - Reinhard Zumkeller, Mar 08 2013
a(n) = A162348(2n-1). - Daniel Forgues, Sep 29 2014

A014963 Exponential of Mangoldt function M(n): a(n) = 1 unless n is a prime or prime power, in which case a(n) = that prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

There are arbitrarily long runs of ones (Sierpiński). - Franz Vrabec, Sep 26 2005
a(n) is the smallest positive integer such that n divides Product_{k=1..n} a(k), for all positive integers n. - Leroy Quet, May 01 2007
For n>1, resultant of the n-th cyclotomic polynomial with the 1st cyclotomic polynomial x-1. - Ralf Stephan, Aug 14 2013
A368749(n) is the smallest prime p such that the interval [a(p), a(q)] contains n 1's; q = nextprime(p), n >= 0. - David James Sycamore, Mar 21 2024

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 17.7.
  • I. Vardi, Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 146-147, 152-153 and 249, 1991.

Crossrefs

Apart from initial 1, same as A020500. With ones replaced by zeros, equal to A120007.
Cf. A003418, A007947, A008683, A008472, A008578, A048671 (= n/a(n)), A072107 (partial sums), A081386, A081387, A099636, A100994, A100995, A140255 (inverse Mobius transform), A140254 (Mobius transform), A297108, A297109, A340675, A000027, A348846, A368749.
First column of A140256. Row sums of triangle A140581.
Cf. also A140579, A140580 (= n*a(n)).

Programs

  • Haskell
    a014963 1 = 1
    a014963 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf
              | otherwise = 1
              where spf = a020639 n
    -- Reinhard Zumkeller, Sep 09 2011
    
  • Maple
    a := n -> if n < 2 then 1 else numtheory[factorset](n); if 1 < nops(%) then 1 else op(%) fi fi; # Peter Luschny, Jun 23 2009
    A014963 := n -> n/ilcm(op(numtheory[divisors](n) minus {1,n}));
    seq(A014963(i), i=1..69); # Peter Luschny, Mar 23 2011
    # The following is Nowicki's LCM-Transform - N. J. A. Sloane, Jan 09 2024
    LCMXFM:=proc(a)  local p,q,b,i,k,n:
    if whattype(a) <> list then RETURN([]); fi:
    n:=nops(a):
    b:=[a[1]]: p:=[a[1]];
    for i from 2 to n do q:=[op(p),a[i]]; k := lcm(op(q))/lcm(op(p));
    b:=[op(b),k]; p:=q;; od:
    RETURN(b); end:
    # Alternative, to be called by 'seq' as shown, not for a single n.
    a := proc(n) option remember; local i; global f; f := ifelse(n=1, 1, f*n);
    iquo(f, mul(a(i)^iquo(n, i), i=1..n-1)) end: seq(a(n), n=1..95); # Peter Luschny, Apr 05 2025
  • Mathematica
    a[n_?PrimeQ] := n; a[n_/;Length[FactorInteger[n]] == 1] := FactorInteger[n][[1]][[1]]; a[n_] := 1; Table[a[n], {n, 95}] (* Alonso del Arte, Jan 16 2011 *)
    a[n_] := Exp[ MangoldtLambda[n]]; Table[a[n], {n, 95}] (* Jean-François Alcover, Jul 29 2013 *)
    Ratios[LCM @@ # & /@ Table[Range[n], {n, 100}]] (* Horst H. Manninger, Mar 08 2024 *)
    Table[Which[PrimeQ[n],n,PrimePowerQ[n],Surd[n,FactorInteger[n][[-1,2]]],True,1],{n,100}] (* Harvey P. Dale, Mar 01 2025 *)
  • PARI
    A014963(n)=
    {
        local(r);
        if( isprime(n), return(n));
        if( ispower(n,,&r) && isprime(r), return(r) );
        return(1);
    }  \\ Joerg Arndt, Jan 16 2011
    
  • PARI
    a(n)=ispower(n,,&n);if(isprime(n),n,1) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    from sympy import factorint
    def A014963(n):
        y = factorint(n)
        return list(y.keys())[0] if len(y) == 1 else 1
    print([A014963(n) for n in range(1, 71)]) # Chai Wah Wu, Sep 04 2014
  • Sage
    def A014963(n) : return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))
    [A014963(n) for n in (1..50)]  # Peter Luschny, Feb 02 2012
    
  • Sage
    def a(n):
        if n == 1: return 1
        return prod(1 - E(n)**k for k in ZZ(n).coprime_integers(n+1))
    [a(n) for n in range(1, 14)] # F. Chapoton, Mar 17 2020
    

Formula

a(n) = A003418(n) / A003418(n-1) = lcm {1..n} / lcm {1..n-1}. [This is equivalent to saying that this sequence is the LCM-transform (as defined by Nowicki, 2013) of the positive integers. - David James Sycamore, Jan 09 2024.]
a(n) = 1/Product_{d|n} d^mu(d) = Product_{d|n} (n/d)^mu(d). - Vladeta Jovovic, Jan 24 2002
a(n) = gcd( C(n+1,1), C(n+2,2), ..., C(2n,n) ) where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003
a(n) = gcd(C(n,1), C(n+1,2), C(n+2,3), ...., C(2n-2,n-1)), where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003; corrected by Ant King, Dec 27 2005
Note: a(n) != gcd(A008472(n), A007947(n)) = A099636(n), GCD of rad(n) and sopf(n) (this fails for the first time at n=30), since a(30) = 1 but gcd(rad(30), sopf(30)) = gcd(30,10) = 10.
a(n)^A100995(n) = A100994(n). - N. J. A. Sloane, Feb 20 2005
a(n) = Product_{k=1..n-1, if(gcd(n, k)=1, 1-exp(2*Pi*i*k/n), 1)}, i=sqrt(-1); a(n) = n/A048671(n). - Paul Barry, Apr 15 2005
Sum_{n>=1} (log(a(n))-1)/n = -2*A001620 [Bateman Manuscript Project Vol III, ed. by Erdelyi et al.]. - R. J. Mathar, Mar 09 2008
n*a(n) = A140580(n) = n^2/A048671(n) = A140579 * [1,2,3,...]. - Gary W. Adamson, May 17 2008
a(n) = (2*Pi)^phi(n) / Product_{gcd(n,k)=1} Gamma(k/n)^2 (for n > 1). - Peter Luschny, Aug 08 2009
a(n) = A166140(n) / A166142(n). - Mats Granvik, Oct 08 2009
a(n) = GCD of rows in A167990. - Mats Granvik, Nov 16 2009
a(n) = A010055(n)*(A007947(n) - 1) + 1. - Reinhard Zumkeller, Mar 26 2010
a(n) = 1 + (A007947(n)-1) * floor(1/A001221(n)), for n>1. - Enrique Pérez Herrero, Jun 01 2011
a(n) = Product_{k=1..n-1} if(gcd(k,n)=1, 2*sin(Pi*k/n), 1). - Peter Luschny, Jun 09 2011
a(n) = exp(Sum_{k>=1} A191898(n,k)/k) for n>1 (conjecture). - Mats Granvik, Jun 19 2011
Dirichlet g.f.: Sum_{n>0} e^Lambda(n)/n^s = Zeta(s) + Sum_{p prime} Sum_{k>0} (p-1)/p^(k*s) = Zeta(s) - ppzeta(s) + Sum(p prime, p/(p^s-1)); for a ppzeta definition see A010055. - Enrique Pérez Herrero, Jan 19 2013
a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} moebius(d)/d^(s-1)) for n>1. - Mats Granvik, Jul 31 2013
a(n) = gcd_{k=1..n-1} binomial(n,k) for n > 1, see A014410. - Michel Marcus, Dec 08 2015 [Corrected by Jinyuan Wang, Mar 20 2020]
a(n) = 1 + Sum_{k=2..n} (k-1)*A010051(k)*(floor(k^n/n) - floor((k^n - 1)/n)). - Anthony Browne, Jun 16 2016
The Dirichlet series for log(a(n)) = Lambda(n) is given by the logarithmic derivative of the zeta function -zeta'(s)/zeta(s). - Mats Granvik, Oct 30 2016
a(n) = A008578(1+A297109(n)), For all n >= 1, Product_{d|n} a(d) = n. - Antti Karttunen, Feb 01 2021
Product_{k=1..floor(n/2)} Product_{j=1..floor(n/k)} a(j) = n!. - Ammar Khatab, Jan 28 2025

Extensions

Additional reference from Eric W. Weisstein, Jun 29 2008

A246547 Prime powers p^e where p is a prime and e >= 2 (prime powers without the primes or 1).

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

These are sometimes called the proper prime powers.
A proper subset of A001597.
Equals A000961 \ A008578 = { x in A001597 | A001221(x)=1 }. - M. F. Hasler, Aug 29 2014

Crossrefs

Essentially the same as A025475.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018

Programs

  • Maple
    isA246547 := proc(n)
        local ifs;
        ifs := ifactors(n)[2] ;
        if nops(ifs) <> 1 then
            false;
        else
            is(op(2, op(1, ifs)) > 1);
        end if;
    end proc:
    for n from 2 do
        if isA246547(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Feb 01 2016 # Or:
    isA246547 := n -> not isprime(n) and nops(numtheory:-factorset(n)) = 1:
    select(isA246547, [$1..10000]); # Peter Luschny, May 01 2018
  • Mathematica
    With[{upto=15000},Complement[Select[Range[upto],PrimePowerQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Nov 28 2014 *)
    Select[ Range@ 15000, PrimePowerQ@# && !SquareFreeQ@# &] (* Robert G. Wilson v, Dec 01 2014 *)
    With[{n = 15000}, Union@ Flatten@ Table[Array[p^# &, Floor@ Log[p, n] - 1, 2], {p, Prime@ Range@ PrimePi@ Sqrt@ n}] ] (* Michael De Vlieger, Jul 06 2018, faster program *)
  • PARI
    for(n=1,10^5,if(isprimepower(n)>=2,print1(n,", ")));
    
  • PARI
    m=10^5; v=[]; forprime(p=2, sqrtint(m), e=2; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
    
  • Python
    from sympy import primepi, integer_nthroot
    def A246547(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024
  • SageMath
    def A246547List(n):
        return [p for p in srange(2, n) if p.is_prime_power() and not p.is_prime()]
    print(A246547List(14642))  # Peter Luschny, Sep 16 2023
    

Formula

a(n) = A025475(n+1). - M. F. Hasler, Aug 29 2014
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Dec 21 2020

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A003309 Ludic numbers: apply the same sieve as Eratosthenes, but cross off every k-th remaining number.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 23, 25, 29, 37, 41, 43, 47, 53, 61, 67, 71, 77, 83, 89, 91, 97, 107, 115, 119, 121, 127, 131, 143, 149, 157, 161, 173, 175, 179, 181, 193, 209, 211, 221, 223, 227, 233, 235, 239, 247, 257, 265, 277, 283, 287, 301, 307, 313
Offset: 1

Views

Author

Keywords

Comments

The definition can obviously only be applied from k = a(2) = 2 on: for k = 1, all remaining numbers would be deleted. - M. F. Hasler, Nov 02 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Without the initial 1 occurs as the leftmost column in arrays A255127 and A260717.
Cf. A003310, A003311, A100464, A100585, A100586 (variants).
Cf. A192503 (primes in sequence), A192504 (nonprimes), A192512 (number of terms <= n).
Cf. A192490 (characteristic function).
Cf. A192607 (complement).
Cf. A260723 (first differences).
Cf. A255420 (iterates of f(n) = A003309(n+1) starting from n=1).
Subsequence of A302036.
Cf. A237056, A237126, A237427, A235491, A255407, A255408, A255421, A255422, A260435, A260436, A260741, A260742 (permutations constructed from Ludic numbers).
Cf. also A000959, A008578, A255324, A254100, A272565 (Ludic factor of n), A297158, A302032, A302038.
Cf. A376237 (ludic factorial: cumulative product), A376236 (ludic Fortunate numbers).

Programs

  • Haskell
    a003309 n = a003309_list !! (n - 1)
    a003309_list = 1 : f [2..] :: [Int]
       where f (x:xs) = x : f (map snd [(u, v) | (u, v) <- zip [1..] xs,
                                                 mod u x > 0])
    -- Reinhard Zumkeller, Feb 10 2014, Jul 03 2011
    
  • Maple
    ludic:= proc(N) local i, k,S,R;
      S:= {$2..N};
      R:= 1;
      while nops(S) > 0 do
        k:= S[1];
        R:= R,k;
        S:= subsop(seq(1+k*j=NULL, j=0..floor((nops(S)-1)/k)),S);
      od:
    [R];
    end proc:
    ludic(1000); # Robert Israel, Feb 23 2015
  • Mathematica
    t = Range[2, 400]; r = {1}; While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}];]; r (* Ray Chandler, Dec 02 2004 *)
  • PARI
    t=vector(399,x,x+1); r=[1]; while(length(t)>0, k=t[1];r=concat(r,[k]);t=vector((length(t)*(k-1))\k,x,t[(x*k+k-2)\(k-1)])); r \\ Phil Carmody, Feb 07 2007
    
  • PARI
    A3309=[1]; next_A003309(n)=nn && break); n+!if(n=setsearch(A3309,n+1,1),return(A3309[n])) \\ Should be made more efficient if n >> max(A3309). - M. F. Hasler, Nov 02 2024
    {A003309(n) = while(n>#A3309, next_A003309(A3309[#A3309])); A3309[n]} \\ Should be made more efficient in case n >> #A3309. - M. F. Hasler, Nov 03 2024
    
  • PARI
    upto(nn)= my(r=List([1..nn]), p=1); while(p++<#r, my(k=r[p], i=p); while((i+=k)<=#r, listpop(~r, i); i--)); Vec(r); \\ Ruud H.G. van Tol, Dec 13 2024
    
  • Python
    remainders = [0]
    ludics = [2]
    N_MAX = 313
    for i in range(3, N_MAX) :
        ludic_index = 0
        while ludic_index < len(ludics) :
            ludic = ludics[ludic_index]
            remainder = remainders[ludic_index]
            remainders[ludic_index] = (remainder + 1) % ludic
            if remainders[ludic_index] == 0 :
                break
            ludic_index += 1
        if ludic_index == len(ludics) :
            remainders.append(0)
            ludics.append(i)
    ludics = [1] + ludics
    print(ludics)
    # Alexandre Herrera, Aug 10 2023
    
  • Python
    def A003309(): # generator of the infinite list of ludic numbers
        L = [2, 3]; yield 1; yield 2; yield 3
        while k := len(L)//2: # could take min{k | k >= L[-1-k]-1}
            for j in L[-1-k::-1]: k += 1 + k//(j-1)
            L.append(k+2); yield k+2
    A003309_upto = lambda N=99: [t for t,_ in zip(A003309(),range(N))]
    # M. F. Hasler, Nov 02 2024
  • Scheme
    (define (A003309 n) (if (= 1 n) n (A255127bi (- n 1) 1))) ;; Code for A255127bi given in A255127.
    ;; Antti Karttunen, Feb 23 2015
    

Formula

Complement of A192607; A192490(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2011
From Antti Karttunen, Feb 23 2015: (Start)
a(n) = A255407(A008578(n)).
a(n) = A008578(n) + A255324(n).
(End)

Extensions

More terms from David Applegate and N. J. A. Sloane, Nov 23 2004

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).

A014689 a(n) = prime(n)-n, the number of nonprimes less than prime(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 10, 11, 14, 19, 20, 25, 28, 29, 32, 37, 42, 43, 48, 51, 52, 57, 60, 65, 72, 75, 76, 79, 80, 83, 96, 99, 104, 105, 114, 115, 120, 125, 128, 133, 138, 139, 148, 149, 152, 153, 164, 175, 178, 179, 182, 187, 188, 197, 202, 207, 212, 213, 218, 221, 222
Offset: 1

Views

Author

Keywords

Comments

a(n) = A048864(A000040(n)) = number of nonprimes in RRS of n-th prime. - Labos Elemer, Oct 10 2002
A000040 - A014689 = A000027; in other words, the sequence of natural numbers subtracted from the prime sequence produces A014689. - Enoch Haga, May 25 2009
a(n) = A000040(n) - n. a(n) = inverse (frequency distribution) sequence of A073425(n), i.e., number of terms of sequence A073425(n) less than n. a(n) = A065890(n) + 1, for n >= 1. a(n) - 1 = A065890(n) = the number of composite numbers, i.e., (A002808) less than n-th primes, (i.e., < A000040(n)). - Jaroslav Krizek, Jun 27 2009
a(n) = A162177(n+1) + 1, for n >= 1. a(n) - 1 = A162177(n+1) = the number of composite numbers, i.e., (A002808) less than (n+1)-th number of set {1, primes}, (i.e., < A008578(n+1)). - Jaroslav Krizek, Jun 28 2009
Conjecture: Each residue class contains infinitely many terms of this sequence. Similarly, for any integers m > 0 and r, we have prime(n) + n == r (mod m) for infinitely many positive integers n. - Zhi-Wei Sun, Nov 25 2013
First differences are A046933 = differences minus one between successive primes. - Gus Wiseman, Jan 18 2020

Crossrefs

Equals A014692 - 1.
The sum of prime factors of n is A001414(n).
The sum of prime indices of n is A056239(n).
Their difference is A331415(n).

Programs

Formula

G.f: b(x) - x/((1-x)^2), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016

Extensions

More terms from Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998
Correction for Aug 2009 change of offset in A158611 and A008578 by Jaroslav Krizek, Jan 27 2010

A093641 Numbers of form 2^i * prime(j), i>=0, j>0, together with 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 86, 88, 89, 92, 94, 96, 97, 101, 103, 104, 106, 107, 109, 112
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2004

Keywords

Comments

a(n) is either 1, prime, or of form 2a(m), m
1 and Heinz numbers of hook integer partitions. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). A hook is a partition of the form (n,1,1,...,1). - Gus Wiseman, Sep 15 2018
Numbers whose odd part is noncomposite. - Peter Munn, Aug 06 2020

Examples

			55 is not a member, as 5*11 is not of the form 2^i * prime.
		

Crossrefs

A093640(a(n)) = A000005(a(n)); A000040 and A000079 are subsequences.
A105440 is a subsequence, see also A105442. - Reinhard Zumkeller, Apr 09 2005
Complement of A105441; A001221(a(n))<=2; A005087(a(n))<=1; A087436(a(n))<=1.
See also A105442.
Union of A038550 and A000079, see also A008578.
Cf. A000265 (odd part), A008578 (noncomposite).

Programs

  • Haskell
    a093641 n = a093641_list !! (n-1)
    a093641_list = filter ((<= 2) . a001227) [1..]
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    hookQ[n_]:=MatchQ[DeleteCases[FactorInteger[n],{2,}],{}|{{,1}}];
    Select[Range[100],hookQ] (* Gus Wiseman, Sep 15 2018 *)
  • PARI
    upTo(lim)=my(v=List([1])); for(e=0, log(lim)\log(2), forprime(p=2, lim>>e, listput(v,p<Charles R Greathouse IV, Aug 21 2011
    
  • PARI
    isok(m) = my(k=m/2^valuation(m,2)); (k == 1) || isprime(k); \\ Michel Marcus, Mar 16 2023
    
  • Python
    from sympy import primepi
    def A093641(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+x-sum(primepi(x>>i) for i in range(x.bit_length()))
        return bisection(f,n,n) # Chai Wah Wu, Feb 02 2025

Formula

A001227(a(n)) <= 2. - Reinhard Zumkeller, May 01 2012
Number A(x) of a(n) not exceeding x equals 1 + pi(x) + pi(x/2) + pi(x/4) + ..., where pi(x) is the number of primes <= x. If x goes to infinity, A(x)~2*x/log(x) and a(n)~n*log(n)/2 (n-->infinity). - Vladimir Shevelev, Feb 06 2014

A037143 Numbers with at most 2 prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118
Offset: 1

Keywords

Comments

A001222(a(n)) <= 2; A054576(a(n)) = 1. - Reinhard Zumkeller, Mar 10 2006
Products of two noncomposite numbers. - Juri-Stepan Gerasimov, Apr 15 2010
Also, numbers with permutations of all divisors only with coprime adjacent elements: A109810(a(n)) > 0. - Reinhard Zumkeller, May 24 2010
A060278(a(n)) = 0. - Reinhard Zumkeller, Apr 05 2013
1 together with numbers k such that sigma(k) + phi(k) - d(k) = 2k - 2. - Wesley Ivan Hurt, May 03 2015
Products of two not necessarily distinct terms of A008578 (the same relation between A000040 and A001358). - Flávio V. Fernandes, May 28 2021

Crossrefs

Union of A008578 and A001358. Complement of A033942.
A101040(a(n))=1 for n>1.
Subsequence of A037144. - Reinhard Zumkeller, May 24 2010
A098962 and A139690 are subsequences.

Programs

  • Haskell
    a037143 n = a037143_list !! (n-1)
    a037143_list = 1 : merge a000040_list a001358_list where
       merge xs'@(x:xs) ys'@(y:ys) =
             if x < y then x : merge xs ys' else y : merge xs' ys
    -- Reinhard Zumkeller, Dec 18 2012
    
  • Maple
    with(numtheory): A037143:=n->`if`(bigomega(n)<3,n,NULL): seq(A037143(n), n=1..200); # Wesley Ivan Hurt, May 03 2015
  • Mathematica
    Select[Range[120], PrimeOmega[#] <= 2 &] (* Ivan Neretin, Aug 16 2015 *)
  • PARI
    is(n)=bigomega(n)<3 \\ Charles R Greathouse IV, Apr 29 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A037143(n):
        def f(x): return int(n-2+x-primepi(x)-sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

More terms from Henry Bottomley, Aug 15 2001

A014688 a(n) = n-th prime + n.

Original entry on oeis.org

3, 5, 8, 11, 16, 19, 24, 27, 32, 39, 42, 49, 54, 57, 62, 69, 76, 79, 86, 91, 94, 101, 106, 113, 122, 127, 130, 135, 138, 143, 158, 163, 170, 173, 184, 187, 194, 201, 206, 213, 220, 223, 234, 237, 242, 245, 258, 271, 276, 279, 284, 291, 294, 305, 312, 319, 326
Offset: 1

Keywords

Comments

Conjecture: this sequence contains an infinite number of primes (A061068), yet contains arbitrarily long "prime deserts" such as the 11 composites in A014688 between a(6) = 19 and a(18) = 79 and the 17 composites in A014688 between a(48) = 271 and a(66) = 383. - Jonathan Vos Post, Nov 22 2004
Does an n exist such that n*prime(n)/(n+prime(n)) is an integer? - Ctibor O. Zizka, Mar 04 2008. The answer to Zizka's question is easily seen to be No: such an integer k would be positive and less than prime(n), but then k*(n + prime(n)) = prime(n)*n would be impossible. - Robert Israel, Apr 20 2015
Complement of A064427. - Jaroslav Krizek, Oct 28 2009
According to a theorem of Lu and Deng (see LINKS), there exists at least one prime number p such that a(n)-n < p <= a(n); equivalently pi(a(n)) - pi(a(n)-n) >= 1 (see A332086). For example, prime number 3 is in the range of (2,3], 5 in (3,5], 7 in (5,8], and 29 & 31 in (23,32]. - Ya-Ping Lu, Sep 02 2020

Crossrefs

Programs

Formula

a(n) = n + A000040(n) = n + A008578(n+1) = n + A158611(n+2). - Jaroslav Krizek, Aug 31 2009
a(n) = A090178(n+1) - 1 = (n+1)-th noncomposite number + n for n >= 2. a(n) = A167136(n+1). a(1) = 3, a(n) = a(n-1) + A008578(n+1) - A008578(n) + 1 for n >= 2. a(1) = 3, a(n) = a(n-1) + A001223(n-1) + 1 for n >= 3. - Jaroslav Krizek, Oct 28 2009
a(n) = 2*OR(p,n) - XOR(p,n), for n-th prime p. - Gary Detlefs, Oct 26 2013
a(n) = A078916(n) - n. - Zak Seidov, Nov 10 2013

Extensions

More terms from Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998
Corrected for changes of offsets of A008578 and A158611 by Jaroslav Krizek, Oct 28 2009
Previous Showing 81-90 of 595 results. Next