cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 182 results. Next

A002212 Number of restricted hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, 67030785, 304036170, 1387247580, 6363044315, 29323149825, 135700543190, 630375241380, 2938391049395, 13739779184085, 64430797069375, 302934667061301, 1427763630578197
Offset: 0

Views

Author

N. J. A. Sloane, Ronald C. Read

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0) with no peaks at odd level. Example: a(2)=3 because we have UUDD, UHD and HH. - Emeric Deutsch, Dec 06 2003
Number of 3-Motzkin paths of length n-1 (i.e., lattice paths from (0,0) to (n-1,0) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0)). Example: a(4)=36 because we have 27 HHH paths, 3 HUD paths, 3 UHD paths and 3 UDH paths. - Emeric Deutsch, Jan 22 2004
Number of rooted, planar trees having edges weighted by strictly positive integers (multi-trees) with weight-sum n. - Roland Bacher, Feb 28 2005
Number of skew Dyck paths of semilength n. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. - Emeric Deutsch, May 10 2007
Equivalently, number of self-avoiding paths of semilength n in the first quadrant beginning at the origin, staying weakly above the diagonal, ending on the diagonal, and consisting of steps r=(+1,0) (right), U=(0,+1) (up), and D=(0,-1) (down). Self-avoidance implies that factors UD and DU and steps D reaching the diagonal before the end are forbidden. The a(3) = 10 such paths are UrUrUr, UrUUrD, UrUUrr, UUrrUr, UUrUrD, UUrUrr, UUUDrD, UUUrDD, UUUrrD, and UUUrrr. - Joerg Arndt, Jan 15 2024
Hankel transform of [1,3,10,36,137,543,...] is A000012 = [1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
From Gary W. Adamson, May 17 2009: (Start)
Convolved with A026375, (1, 3, 11, 45, 195, ...) = A026378: (1, 4, 17, 75, ...)
(1, 3, 10, 36, 137, ...) convolved with A026375 = A026376: (1, 6, 30, 144, ...).
Starting (1, 3, 10, 36, ...) = INVERT transform of A007317: (1, 2, 5, 15, 51, ...). (End)
Binomial transform of A032357. - Philippe Deléham, Sep 17 2009
a(n) = number of rooted trees with n vertices in which each vertex has at most 2 children and in case a vertex has exactly one child, it is labeled left, middle or right. These are the hex trees of the Deutsch, Munarini, Rinaldi link. This interpretation yields the second MATHEMATICA recurrence below. - David Callan, Oct 14 2012
The left shift (1,3,10,36,...) of this sequence is the binomial transform of the left-shifted Catalan numbers (1,2,5,14,...). Example: 36 =1*14 + 3*5 + 3*2 + 1*1. - David Callan, Feb 01 2014
Number of Schroeder paths from (0,0) to (2n,0) with no level steps H=(2,0) at even level. Example: a(2)=3 because we have UUDD, UHD and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015
This is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the Catalan sequence A000108. See a Feb 17 2017 comment in A097805. - Wolfdieter Lang, Feb 17 2017
a(n) is the number of parking functions of size n avoiding the patterns 132 and 231. - Lara Pudwell, Apr 10 2023

Examples

			G.f. = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 137*x^5 + 543*x^6 + 2219*x^7 + 9285*x^8 + ...
		

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq 14.
  • S. J. Cyvin, J. Brunvoll, G. Xiaofeng, and Z. Fuji, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38(1) (1993), 65-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A007317.
Row sums of triangle A104259.

Programs

  • Magma
    I:= [1,3]; [1] cat [n le 2 select I[n]  else ((6*n-3)*Self(n-1)-5*(n-2)*Self(n-2)) div (n+1): n in [1..30]]; // Vincenzo Librandi, Jun 15 2015
  • Maple
    t1 := series(1+ (1-3*x-(1-x)^(1/2)*(1-5*x)^(1/2))/(2*x), x, 50):
    A002212_list := len -> seq(coeff(t1,x,n),n=0..len): A002212_list(40);
    a[0] := 1: a[1] := 1: for n from 2 to 50 do a[n] := (3*(2*n-1)*a[n-1]-5*(n-2)*a[n-2])/(n+1) od: print(convert(a,list)); # Zerinvary Lajos, Jan 01 2007
    a := n -> `if`(n=0,1,simplify(GegenbauerC(n-1, -n, -3/2)/n)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    InverseSeries[Series[(y)/(1+3*y+y^2), {y, 0, 24}], x] (* then A(x)=1+y(x) *) (* Len Smiley, Apr 14 2000 *)
    (* faster *)
    a[0]=1;a[1]=1;
    a[n_]/;n>=2 := a[n] = a[n-1] +  Sum[a[i]a[n-1-i],{i,0,n-1}];
    Table[a[n],{n,0,14}] (* See COMMENTS above, [David Callan, Oct 14 2012] *)
    (* fastest *)
    s[0]=s[1]=1;
    s[n_]/;n>=2 := s[n] = (3(2n-1)s[n-1]-5(n-2)s[n-2])/(n+1);
    Table[s[n],{n,0,14 }] (* See Deutsch, Munarini, Rinaldi link, [David Callan, Oct 14 2012] *)
    (* 2nd fastest *)
    a[n_] := Hypergeometric2F1[3/2, 1-n, 3, -4]; a[0]=1; Table[a[n], {n, 0, 14}]  (* Jean-François Alcover, May 16 2013 *)
    CoefficientList[Series[(1 - x - Sqrt[1 - 6x + 5x^2])/(2x), {x, 0, 20}], x] (* Nikolaos Pantelidis, Jan 30 2023 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(n-k,k)*3^(n-2*k)/(k+1),k,0,n/2),n,0,24); /* for a(n+1) */ /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    {a(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1)};
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + 3*x + x^2) + x * O(x^n)), n))}; /* Michael Somos */
    
  • PARI
    my(N=66,x='x+O('x^N)); Vec((1 - x - sqrt(1-6*x+5*x^2))/(2*x)) \\ Joerg Arndt, Jan 13 2024
    
  • Sage
    def A002212():
        x, y, n = 1, 1, 1
        while True:
            yield x
            n += 1
            x, y = y, ((6*n - 3)*y - (5*n - 10)*x) / (n + 1)
    a = A002212()
    [next(a) for i in range(24)]  # Peter Luschny, Oct 12 2013
    

Formula

a(0)=1, for n > 0: a(n) = Sum_{j=0..n-1} Sum_{i=0..j} a(i)*a(j-i). G.f.: A(x) = 1 + x*A(x)^2/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
a(n) = Sum_{i=ceiling((n-1)/2)..n-1} (3^(2i+1-n)*binomial(n, i)*binomial(i, n-i-1))/n. - Emeric Deutsch, Jul 23 2002
a(n) = Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)/(k+1), i.e., binomial transform of the Catalan numbers 1, 2, 5, 14, 42, ... (A000108). a(n) = Sum_{k=0..floor((n-1)/2)} 3^(n-1-2*k)*binomial(2k, k)*binomial(n-1, 2k)/(k+1). - Emeric Deutsch, Aug 05 2002
D-finite with recurrence: a(1)=1, a(n) = (3(2n-1)*a(n-1)-5(n-2)*a(n-2))/(n+1) for n > 1. - Emeric Deutsch, Dec 18 2002
a(n) is asymptotic to c*5^n/n^(3/2) with c=0.63.... - Benoit Cloitre, Jun 23 2003
In closed form, c = (1/2)*sqrt(5/Pi) = 0.63078313050504... - Vaclav Kotesovec, Oct 04 2012
Reversion of Sum_{n>0} a(n)x^n = -Sum_{n>0} A001906(n)(-x)^n.
G.f. A(x) satisfies xA(x)^2 + (1-x)(1-A(x)) = 0.
G.f.: (1 - x - sqrt(1 - 6x + 5x^2))/(2x). For n > 1, a(n) = 3*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1). - John W. Layman, Feb 22 2001
The Hankel transform of this sequence gives A001519 = 1, 2, 5, 13, 34, 89, ... E.g., Det([1, 1, 3, 10, 36; 1, 3, 10, 36, 137; 3, 10, 36, 137, 543; 10, 36, 137, 543, 2219; 36, 137, 543, 2219, 9285 ])= 34. - Philippe Deléham, Jan 25 2004
a(m+n+1) = Sum_{k>=0} A091965(m, k)*A091965(n, k) = A091965(m+n, 0). - Philippe Deléham, Sep 14 2005
a(n+1) = Sum_{k=0..n} 2^(n-k)*M(k)*binomial(n,k), where M(k) = A001006(k) is the k-th Motzkin number (from here it follows that a(n+1) and M(n) have the same parity). - Emeric Deutsch, May 10 2007
a(n+1) = Sum_{k=0..n} A097610(n,k)*3^k. - Philippe Deléham, Oct 02 2007
G.f.: 1/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: (1-x)/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x) (continued fraction); more generally g.f. C(x/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = -5^(1/2)/(10*(n+1)) * (5*hypergeom([1/2, n], [1], 4/5) -3*hypergeom([1/2, n+1], [1], 4/5)) (for n>0). - Mark van Hoeij, Nov 12 2009
For n >= 1, a(n) = (1/(2*Pi))*Integral_{x=1..5} x^(n-1)*sqrt((x-1)*(5-x)) dx. - Groux Roland, Mar 16 2011
a(n+1) = [x^n](1-x^2)(1+3*x+x^2)^n. - Emanuele Munarini, May 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows (with 3,2,2,2,... as the main diagonal):
3, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 0, ...
...
Alternatively, let M = the previous matrix but change the 3 to a 2. Then a(n) = sum of top row terms of M^(n-1). (End)
a(n) = hypergeometric([1-n,3/2],[3],-4), for n>0. - Peter Luschny, Aug 15 2012
a(n) = GegenbauerC(n-1, -n, -3/2)/n for n >= 1. - Peter Luschny, May 09 2016
E.g.f.: 1 + Integral (exp(3*x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020
G.f.: 1 + x/G(0) with G(k) = (1 - 3*x - x^2/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Dec 12 2022
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1 + x/(1 - x) * c(x/(1 - x))^2 = 1 + x/(1 - 5*x) * c(-x/(1 - 5*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+1) = Sum_{k = 0..n} binomial(n, k)*Catalan(k+1).
a(n+1) = hypergeom([-n, 3/2], [3], -4).
a(n+1) = 5^n * Sum_{k = 0..n} (-5)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+1) = 5^n * hypergeom([-n, 3/2], [3], 4/5). (End)

A000346 a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).

Original entry on oeis.org

1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0

Views

Author

Keywords

Comments

Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - David Callan, Jul 14 2006
Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - Paul Barry, Jan 21 2007
Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - Emanuele Munarini, Mar 16 2011
From Gus Wiseman, Jul 19 2021: (Start)
For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:
(6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)
(2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)
(4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)
(5,1) (2,1,3) (1,3,1,1)
(2,2,2) (2,1,2,1)
(3,1,2) (3,1,1,1)
(3,2,1)
(4,1,1)
(End)

Examples

			G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
		

References

  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.
Bisection of A058622 and (possibly) A007008.
Even bisection of A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by A000302.
- The k <= 0 case is counted by A000302.
- The k != 0 case is counted by A000346 (this sequence).
- The k = 0 case is counted by A001700 or A088218.
- The k < 0 case is counted by A008549.
- The k >= 0 case is counted by A114121.
A011782 counts compositions.
A086543 counts partitions with nonzero alternating sum (bisection: A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
  • Maple
    seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
  • Mathematica
    Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
    a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
  • Maxima
    makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
    

Formula

G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.
Convolution of Catalan numbers and powers of 4.
Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...
a(n) = A045621(2n+1) = (1/2)*A068551(n+1).
a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - Paul Barry, Nov 13 2004
a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - Paul Barry, Jan 21 2007
Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - Vladimir Kruchinin, Aug 10 2010
D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - Emanuele Munarini, Mar 16 2011
E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).
This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - Wolfdieter Lang, Jan 16 2012
a(n) = Sum_{0<=iMircea Merca, Apr 05 2012
A000346 = A004171 - A001700. See A032443 for the sum. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - Michael Somos, Jan 25 2014
REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - Michael Somos, Jan 25 2014
Convolution square is A038806. - Michael Somos, Jan 25 2014
BINOMIAL transform of A055217(n-1) is a(n-1). - Michael Somos, Jan 25 2014
(n+1) * a(n) = A033504(n). - Michael Somos, Jan 25 2014
Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - Fung Lam, Mar 21 2014
Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - Fung Lam, Mar 21 2014
a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - Wolfdieter Lang, May 22 2015
a(n) = A000302(n) + A008549(n). - Gus Wiseman, Jul 19 2021
a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - Fabio Visonà, May 04 2022
a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - Peter Luschny, Nov 29 2023

Extensions

Corrected by Christian G. Bower

A002054 Binomial coefficient C(2n+1, n-1).

Original entry on oeis.org

1, 5, 21, 84, 330, 1287, 5005, 19448, 75582, 293930, 1144066, 4457400, 17383860, 67863915, 265182525, 1037158320, 4059928950, 15905368710, 62359143990, 244662670200, 960566918220, 3773655750150, 14833897694226, 58343356817424, 229591913401900
Offset: 1

Views

Author

Keywords

Comments

a(n) = number of permutations in S_{n+2} containing exactly one 312 pattern. E.g., S_3 has a_1 = 1 permutations containing exactly one 312 pattern, and S_4 has a_2 = 5 permutations containing exactly one 312 pattern, namely 1423, 2413, 3124, 3142, and 4231. This comment is also true if 312 is replaced by any of 132, 213, or 231 (but not 123 or 321, for which see A003517). [Comment revised by N. J. A. Sloane, Nov 26 2022]
Number of valleys in all Dyck paths of semilength n+1. Example: a(2)=5 because UD*UD*UD, UD*UUDD, UUDD*UD, UUD*UDD, UUUDDD, where U=(1,1), D=(1,-1) and the valleys are shown by *. - Emeric Deutsch, Dec 05 2003
Number of UU's (double rises) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDU*UDD, U*UDDUD, U*UDUDD, U*U*UDDD, the double rises being shown by *. - Emeric Deutsch, Dec 05 2003
Number of peaks at level higher than one (high peaks) in all Dyck paths of semilength n+1. Example: a(2)=5 because UDUDUD, UDUU*DD, UU*DDUD, UU*DU*DD, UUU*DDD, the high peaks being shown by *. - Emeric Deutsch, Dec 05 2003
Number of diagonal dissections of a convex (n+3)-gon into n regions. Number of standard tableaux of shape (n,n,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of dissections of a convex (n+3)-gon by noncrossing diagonals into several regions, exactly n-1 of which are triangular. Example: a(2)=5 because the convex pentagon ABCDE is dissected by any of the diagonals AC, BD, CE, DA, EB into regions containing exactly 1 triangle. - Emeric Deutsch, May 31 2004
Number of jumps in all full binary trees with n+1 internal nodes. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
a(n) is the total number of nonempty Dyck subpaths in all Dyck paths (A000108) of semilength n. For example, the Dyck path UUDUUDDD has Dyck subpaths stretching over positions 1-8 (the entire path), 2-3, 2-7, 4-7, 5-6 and so contributes 5 to a(4). - David Callan, Jul 25 2008
a(n+1) is the total number of ascents in the set of all n-permutations avoiding the pattern 132. For example, a(2) = 5 because there are 5 ascents in the set 123, 213, 231, 312, 321. - Cheyne Homberger, Oct 25 2013
Number of increasing tableaux of shape (n+1,n+1) with largest entry 2n+1. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 5 counts the five tableaux (124)(235), (123)(245), (124)(345), (134)(245), (123)(245). - Oliver Pechenik, May 02 2014
a(n) is the number of noncrossing partitions of 2n+1 into n-1 blocks of size 2 and 1 block of size 3. - Oliver Pechenik, May 02 2014
Number of paths in the half-plane x>=0, from (0,0) to (2n+1,3), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=2, we have the 5 paths: UUUUD, UUUDU, UUDUU, UDUUU, DUUUU. - José Luis Ramírez Ramírez, Apr 19 2015
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of binary numbers with 2n+2 digits and with two more 0's than 1's. For example, the a(2) = 5 binary numbers are: 100001, 100010, 100100, 101000, 110000, with decimal values 33, 34, 36, 40, 48. Allowing first digit 0 gives A001791, ranked by A345910/A345912.
Also the number of integer compositions of 2n+2 with alternating sum -2, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 21 compositions are:
(35) (152) (1124) (11141) (111113)
(251) (1223) (12131) (111212)
(1322) (13121) (111311)
(1421) (14111) (121112)
(2114) (121211)
(2213) (131111)
(2312)
(2411)
The following pertain to these compositions:
- The unordered version is A344741.
- Ranked by A345924 (reverse: A345923).
- A345197 counts compositions by length and alternating sum.
- A345925 ranks compositions with alternating sum 2 (reverse: A345922).
(End)

Examples

			G.f. = x + 5*x^2 + 21*x^3 + 84*x^4 + 330*x^5 + 1287*x^6 + 5005*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • George Grätzer, General Lattice Theory. Birkhauser, Basel, 1998, 2nd edition, p. 474, line -3.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 4 of triangle A100257. Also a diagonal of A033282.
Equals (1/2) A024483(n+2). Bisection of A037951 and A037955.
Cf. A001263.
Column k=1 of A263771.
Counts terms of A031445 with 2n+2 digits in binary.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([1..25],n->Binomial(2*n+1,n-1)); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    [Binomial(2*n+1, n-1): n in [1..30]]; // Vincenzo Librandi, Apr 20 2015
    
  • Maple
    with(combstruct): seq((count(Composition(2*n+2), size=n)), n=1..24); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[8/(((Sqrt[1-4x] +1)^3)*Sqrt[1-4x]), {x,0,22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    a[ n_]:= Binomial[2 n + 1, n - 1]; (* Michael Somos, Apr 25 2014 *)
  • PARI
    {a(n) = binomial( 2*n+1, n-1)};
    
  • Python
    from _future_ import division
    A002054_list, b = [], 1
    for n in range(1,10**3):
        A002054_list.append(b)
        b = b*(2*n+2)*(2*n+3)//(n*(n+3)) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [binomial(2*n+1, n-1) for n in (1..25)] # G. C. Greubel, Mar 22 2019

Formula

a(n) = Sum_{j=0..n-1} binomial(2*j, j) * binomial(2*n - 2*j, n-j-1)/(j+1). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
G.f.: z*C^4/(2-C), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. - Emeric Deutsch, Jul 05 2003
From Wolfdieter Lang, Jan 09 2004: (Start)
a(n) = binomial(2*n+1, n-1) = n*C(n+1)/2, C(n)=A000108(n) (Catalan).
G.f.: (1 - 2*x - (1-3*x)*c(x))/(x*(1-4*x)) with g.f. c(x) of A000108. (End)
G.f.: z*C(z)^3/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
G.f.: 2F1(5/2, 2; 4; 4*x). - R. J. Mathar, Aug 09 2015
D-finite with recurrence: a(n+1) = a(n)*(2*n+3)*(2*n+2)/(n*(n+3)). - Chai Wah Wu, Jan 26 2016
From Ilya Gutkovskiy, Aug 30 2016: (Start)
E.g.f.: (BesselI(0,2*x) + (1 - 1/x)*BesselI(1,2*x))*exp(2*x).
a(n) ~ 2^(2*n+1)/sqrt(Pi*n). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-1} (n+1-i)*binomial(2n+2,i), n >= 1. - Taras Goy, Aug 09 2018
G.f.: (x - 1 + (1 - 3*x)/sqrt(1 - 4*x))/(2*x^2). - Michael Somos, Jul 28 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=1} 1/a(n) = 5/3 - 2*Pi/(9*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 52*log(phi)/(5*sqrt(5)) - 7/5, where phi is the golden ratio (A001622). (End)
a(n) = A001405(2*n+1) - A000108(n+1), n >= 1 (from Eremin link, page 7). - Gennady Eremin, Sep 05 2023
G.f.: x/(1 - 4*x)^2 * c(-x/(1 - 4*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 03 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x - 3)/sqrt(4 - x) (see Penson).
G.f. x*/sqrt(1 - 4*x) * c(x)^3. (End)

A131689 Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,6,...] where DELTA is the operator defined in A084938; another version of A019538.
See also A019538: version with n > 0 and k > 0. - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 21 2014: (Start)
T(n,k) gives the number of (k-1)-dimensional faces in the interior of the first barycentric subdivision of the standard (n-1)-dimensional simplex. For example, the barycentric subdivision of the 1-simplex is o--o--o, with 1 interior vertex and 2 interior edges, giving T(2,1) = 1 and T(2,2) = 2.
This triangle is used when calculating the face vectors of the barycentric subdivision of a simplicial complex. Let S be an n-dimensional simplicial complex and write f_k for the number of k-dimensional faces of S, with the usual convention that f_(-1) = 1, so that F := (f_(-1), f_0, f_1,...,f_n) is the f-vector of S. If M(n) denotes the square matrix formed from the first n+1 rows and n+1 columns of the present triangle, then the vector F*M(n) is the f-vector of the first barycentric subdivision of the simplicial complex S (Brenti and Welker, Lemma 2.1). For example, the rows of Pascal's triangle A007318 (but with row and column indexing starting at -1) are the f-vectors for the standard n-simplexes. It follows that A007318*A131689, which equals A028246, is the array of f-vectors of the first barycentric subdivision of standard n-simplexes. (End)
This triangle T(n, k) appears in the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} (x^k/(1 - x)^(k+2))*T(n, k). See also the Eulerian triangle A008292 with a Mar 31 2017 comment for a rewritten form. For the e.g.f. see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
T(n,k) = the number of alignments of length k of n strings each of length 1. See Slowinski. An example is given below. Cf. A122193 (alignments of strings of length 2) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018
The row polynomials R(n,x) are the Fubini polynomials. - Emanuele Munarini, Dec 05 2020
From Gus Wiseman, Feb 18 2022: (Start)
Also the number of patterns of length n with k distinct parts (or with maximum part k), where we define a pattern to be a finite sequence covering an initial interval of positive integers. For example, row n = 3 counts the following patterns:
(1,1,1) (1,2,2) (1,2,3)
(2,1,2) (1,3,2)
(2,2,1) (2,1,3)
(1,1,2) (2,3,1)
(1,2,1) (3,1,2)
(2,1,1) (3,2,1)
(End)
Regard A048994 as a lower-triangular matrix and divide each term A048994(n,k) by n!, then this is the matrix inverse. Because Sum_{k=0..n} (A048994(n,k) * x^n / n!) = A007318(x,n), Sum_{k=0..n} (A131689(n,k) * A007318(x,k)) = x^n. - Natalia L. Skirrow, Mar 23 2023
T(n,k) is the number of ordered partitions of [n] into k blocks. - Alois P. Heinz, Feb 21 2025

Examples

			The triangle T(n,k) begins:
  n\k 0 1    2     3      4       5        6        7        8        9      10 ...
  0:  1
  1:  0 1
  2:  0 1    2
  3:  0 1    6     6
  4:  0 1   14    36     24
  5:  0 1   30   150    240     120
  6:  0 1   62   540   1560    1800      720
  7:  0 1  126  1806   8400   16800    15120     5040
  8:  0 1  254  5796  40824  126000   191520   141120    40320
  9:  0 1  510 18150 186480  834120  1905120  2328480  1451520   362880
  10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
  ... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
  (i) A -    (ii) A -    (iii) A -
      B -         B -          - B
      C -         - C          - C
      - D         - D          - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
		

Crossrefs

Case m=1 of the polynomials defined in A278073.
Cf. A000142 (diagonal), A000670 (row sums), A000012 (alternating row sums), A210029 (central terms).
Cf. A008292, A028246 (o.g.f. and e.g.f. of sums of powers).
A version for partitions is A116608, or by maximum A008284.
A version for compositions is A235998, or by maximum A048004.
Classes of patterns:
- A000142 = strict
- A005649 = anti-run, complement A069321
- A019536 = necklace
- A032011 = distinct multiplicities
- A060223 = Lyndon
- A226316 = (1,2,3)-avoiding, weakly A052709, complement A335515
- A296975 = aperiodic
- A345194 = alternating, up/down A350354, complement A350252
- A349058 = weakly alternating
- A351200 = distinct runs
- A351292 = distinct run-lengths

Programs

  • Julia
    function T(n, k)
        if k < 0 || k > n return 0 end
        if n == 0 && k == 0 return 1 end
        k*(T(n-1, k-1) + T(n-1, k))
    end
    for n in 0:7
        println([T(n, k) for k in 0:n])
    end
    # Peter Luschny, Mar 26 2020
    
  • Maple
    A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
    # Alternatively:
    A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
  • Mathematica
    t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
    T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
  • PARI
    {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
    /* Michael Somos, Jul 08 2018 */
    
  • SageMath
    @cached_function
    def F(n): # Fubini polynomial
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021

Formula

T(n,k) = k*(T(n-1,k-1) + T(n-1,k)) with T(0,0)=1. Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A000629(n), A033999(n), A000007(n), A000670(n), A004123(n+1), A032033(n), A094417(n), A094418(n), A094419(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. [corrected by Philippe Deléham, Feb 11 2013]
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A000670(n), A122704(n) for x=-1, 0, 1, 2 respectively. - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} (-1)^k*T(n,k)/(k+1) = Bernoulli numbers A027641(n)/A027642(n). - Peter Luschny, Sep 17 2011
G.f.: F(x,t) = 1 + x*t + (x+x^2)*t^2/2! + (x+6*x^2+6*x^3)*t^3/3! + ... = Sum_{n>=0} R(n,x)*t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = (x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. - Philippe Deléham, Feb 11 2013
T(n,k) = [t^k] (n! [x^n] (1/(1-t*(exp(x)-1)))). - Peter Luschny, Jan 23 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See also Bala, Example E8. - Peter Bala, Jan 08 2018

A027306 a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0

Views

Author

Keywords

Comments

Inverse binomial transform of A027914. Hankel transform (see A001906 for definition) is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 21 2005
Number of walks of length n on a line that starts at the origin and ends at or above 0. - Benjamin Phillabaum, Mar 05 2011
Number of binary integers (i.e., with a leading 1 bit) of length n+1 which have a majority of 1-bits. E.g., for n+1=4: (1011, 1101, 1110, 1111) a(3)=4. - Toby Gottfried, Dec 11 2011
Number of distinct symmetric staircase walks connecting opposite corners of a square grid of side n > 1. - Christian Barrientos, Nov 25 2018
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of integer compositions of n + 1 with alternating sum > 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A345917. For example, the a(0) = 1 through a(4) = 11 compositions are:
(1) (2) (3) (4) (5)
(21) (31) (32)
(111) (112) (41)
(211) (113)
(122)
(212)
(221)
(311)
(1121)
(2111)
(11111)
The following relate to these compositions:
- The unordered version is A027193.
- The complement is counted by A058622.
- The reverse unordered version is A086543.
- The version for alternating sum >= 0 is A116406.
- The version for alternating sum < 0 is A294175.
- Ranked by A345917. (End)
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Examples

			From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
  1   11   101   1011   10011
           110   1101   10101
           111   1110   10110
                 1111   10111
                        11001
                        11010
                        11011
                        11100
                        11101
                        11110
                        11111
The version allowing an initial zero is A058622.
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)

Crossrefs

a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by A008315.
Column k=2 of A226873. - Alois P. Heinz, Jun 21 2013
The even bisection is A000302.
The odd bisection appears to be A032443.

Programs

  • GAP
    List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
  • Haskell
    a027306 n = a008949 n (n `div` 2)  -- Reinhard Zumkeller, Nov 14 2014
    
  • Magma
    [2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
    
  • Maple
    a:= proc(n) add(binomial(n, j), j=0..n/2) end:
    seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
    (* Second program: *)
    a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
  • PARI
    a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k).
Odd terms are 2^(n-1). Also a(2n) - 2^(2n-1) is given by A001700. a(n) = 2^n + (n mod 2)*binomial(n, (n-1)/2).
E.g.f.: (exp(2x) + I_0(2x))/2.
O.g.f.: 2*x/(1-2*x)/(1+2*x-((1+2*x)*(1-2*x))^(1/2)). - Vladeta Jovovic, Apr 27 2003
a(n) = A008949(n, floor(n/2)); a(n) + a(n-1) = A248574(n), n > 0. - Reinhard Zumkeller, Nov 14 2014
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 2*x - 1/(1 - x) )^n.
O.g.f.: (1/2)*( 1/sqrt(1 - 4*x^2) + 1/(1 - 2*x) ).
Inverse binomial transform is (-1)^n*A246437(n).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + ... is the o.g.f. for A001405. (End)
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n-1,(2n+1-(-1)^n)/4 -k). - Anthony Browne, Jun 18 2016
D-finite with recurrence: n*a(n) + 2*(-n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017

Extensions

Better description from Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000

A008549 Number of ways of choosing at most n-1 items from a set of size 2*n+1.

Original entry on oeis.org

0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0

Views

Author

Keywords

Comments

Area under Dyck excursions (paths ending in 0): a(n) is the sum of the areas under all Dyck excursions of length 2*n (nonnegative walks beginning and ending in 0 with jumps -1,+1).
Number of inversions in all 321-avoiding permutations of [n+1]. Example: a(2)=6 because the 321-avoiding permutations of [3], namely 123,132,312,213,231, have 0, 1, 2, 1, 2 inversions, respectively. - Emeric Deutsch, Jul 28 2003
Convolution of A001791 and A000984. - Paul Barry, Feb 16 2005
a(n) = total semilength of "longest Dyck subpath" starting at an upstep U taken over all upsteps in all Dyck paths of semilength n. - David Callan, Jul 25 2008
[1,6,29,130,562,2380,...] is convolution of A001700 with itself. - Philippe Deléham, May 19 2009
From Ran Pan, Feb 04 2016: (Start)
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x to the right. This is related to paired pattern P_2 in Pan and Remmel's link and more details can be found in Section 3.2 in the link.
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) horizontally cross the diagonal y = x. This is related to paired pattern P_3 in Pan and Remmel's link and more details can be found in Section 3.3 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x. This is related to paired pattern P_2 and P_4 in Pan and Remmel's link and more details can be found in Section 4.2 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) cross the diagonal y = x. This is related to paired pattern P_3 and P_4 in Pan and Remmel's link and more details can be found in Section 4.3 in the link. (End)
From Gus Wiseman, Jul 17 2021: (Start)
Also the number of integer compositions of 2*(n+1) with alternating sum < 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 29 compositions of 8 are:
(1,7) (1,5,2) (1,1,1,5) (1,1,1,4,1) (1,1,1,1,1,3)
(2,6) (1,6,1) (1,1,2,4) (1,2,1,3,1) (1,1,1,2,1,2)
(3,5) (2,5,1) (1,2,1,4) (1,3,1,2,1) (1,1,1,3,1,1)
(1,2,2,3) (1,4,1,1,1) (1,2,1,1,1,2)
(1,3,1,3) (1,2,1,2,1,1)
(1,3,2,2) (1,3,1,1,1,1)
(1,4,1,2)
(1,4,2,1)
(1,5,1,1)
(2,1,1,4)
(2,2,1,3)
(2,3,1,2)
(2,4,1,1)
Also the number of integer compositions of 2*(n+1) with reverse-alternating sum < 0. For a bijection, keep the odd-length compositions and reverse the even-length ones.
Also the number of 2*(n+1)-digit binary numbers with more 0's than 1's. For example, the a(2) = 6 binary numbers are: 100000, 100001, 100010, 100100, 101000, 110000; or in decimal: 32, 33, 34, 36, 40, 48.
(End)

Examples

			a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.

Crossrefs

Odd bisection of A294175 (even is A000346).
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is A000302.
- The weak (k <= 0) version is (also) A000302.
- The k = 0 version is A001700 or A088218.
- The reverse-alternating version is also A008549 (this sequence).
- These compositions are ranked by A053754 /\ A345919.
- The complement (k >= 0) is counted by A114121.
- The case of reversed integer partitions is A344743(n+1).
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
  • Mathematica
    Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
    a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
    
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A008549(n):
        return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017

Formula

a(n) = 4^n - C(2*n+1, n).
a(n) = Sum_{k=1..n} Catalan(k)*4^(n-k): convolution of Catalan numbers and powers of 4.
G.f.: x*c(x)^2/(1 - 4*x), c(x) = g.f. of Catalan numbers. - Wolfdieter Lang
Note Sum_{k=0..2*n+1} binomial(2*n+1, k) = 2^(2n+1). Therefore, by the symmetry of Pascal's triangle, Sum_{k=0..n} binomial(2*n+1, k) = 2^(2*n) = 4^n. This explains why the following two expressions for a(n) are equal: Sum_{k=0..n-1} binomial(2*n+1, k) = 4^n - binomial(2*n+1, n). - Dan Velleman
G.f.: (2*x^2 - 1 + sqrt(1 - 4*x^2))/(2*(1 + 2*x)*(2*x - 1)*x^3).
a(n) = Sum_{k=0..n} C(2*k, k)*C(2*(n-k), n-k-1). - Paul Barry, Feb 16 2005
Second binomial transform of 2^n - C(n, floor(n/2)) = A045621(n). - Paul Barry, Jan 13 2006
a(n) = Sum_{0 < i <= k < n} binomial(n, k+i)*binomial(n, k-i). - Mircea Merca, Apr 05 2012
D-finite with recurrence (n+1)*a(n) + 2*(-4*n-1)*a(n-1) + 8*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n > -5. - Michael Somos, Jan 25 2014
Convolution square is A045894. - Michael Somos, Jan 25 2014
HANKEL transform is [0, -1, 2, -3, 4, -5, ...]. - Michael Somos, Jan 25 2014
BINOMIAL transform of [0, 0, 1, 3, 11, 35,...] (A109196) is [0, 0, 1, 6, 29, 130, ...]. - Michael Somos, Jan 25 2014
(n+1) * a(n) = A153338(n+1). - Michael Somos, Jan 25 2014
a(n) = Sum_{m = n+2..2*n+1} binomial(2*n+1,m), n >= 0. - Wolfdieter Lang, May 22 2015
E.g.f.: (exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 30 2016

Extensions

Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000

A170758 Expansion of g.f.: (1+x)/(1-38*x).

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547968, 353563778431304822784, 13435423580389583265792, 510546096054804164100096
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2009

Keywords

Crossrefs

Cf. A003945.

Programs

  • GAP
    k:=39;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
  • Magma
    [1] cat [39*38^(n-1): n in [1..20]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    k:=39; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
  • Mathematica
    CoefficientList[Series[(1+x)/(1-38x), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
    With[{k = 39}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
    Join[{1},NestList[38#&,39,20]] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    vector(26, n, k=39; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
    
  • Sage
    k=39; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
    

Formula

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*39^k. - Philippe Deléham, Dec 04 2009
a(0)=1; for n>0, a(n) = 39*38^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (39*exp(38*x) - 1)/38. - G. C. Greubel, Oct 09 2019

A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021

Examples

			Triangle begins:
   1
   1
   1   1
   2   1
   2   2   1
   4   2   1
   3   5   2   1
   7   5   2   1
   5   9   5   2   1
  12  10   5   2   1
   7  17  10   5   2   1
  19  19  10   5   2   1
  11  28  20  10   5   2   1
  30  33  20  10   5   2   1
  15  47  35  20  10   5   2   1
  45  57  36  20  10   5   2   1
  22  73  62  36  20  10   5   2   1
  67  92  64  36  20  10   5   2   1
  30 114 102  65  36  20  10   5   2   1
  97 147 107  65  36  20  10   5   2   1
Row n = 10 counts the following partitions (A = 10):
  (55)          (64)         (73)       (82)     (91)   (A)
  (3322)        (442)        (433)      (622)    (811)
  (4411)        (541)        (532)      (721)
  (222211)      (3331)       (631)      (7111)
  (331111)      (4222)       (5221)     (61111)
  (22111111)    (4321)       (6211)
  (1111111111)  (5311)       (42211)
                (22222)      (52111)
                (32221)      (511111)
                (33211)      (4111111)
                (43111)
                (322111)
                (421111)
                (2221111)
                (3211111)
                (31111111)
                (211111111)
The conjugate version is:
  (A)      (55)      (3331)     (331111)    (31111111)   (1111111111)
  (64)     (73)      (5311)     (511111)    (211111111)
  (82)     (91)      (7111)     (3211111)
  (442)    (433)     (33211)    (4111111)
  (622)    (532)     (43111)    (22111111)
  (4222)   (541)     (52111)
  (22222)  (631)     (61111)
           (721)     (322111)
           (811)     (421111)
           (3322)    (2221111)
           (4321)
           (4411)
           (5221)
           (6211)
           (32221)
           (42211)
           (222211)
		

Crossrefs

This is A103919 with all zeros removed.
The strict version is A152146 interleaved with A152157.
The rows are those of A239830 interleaved with those of A239829.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with rev-alternating sum <= 0, ranked by A028260.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with rev-alternating sum >= 0, ranked by A344609.
A344608 counts partitions with rev-alternating sum < 0, ranked by A119899.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
A346697 gives the sum of odd-indexed prime indices (reverse: A346699).
A346702 represents the odd bisection of compositions, sums A209281.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

A170733 Expansion of g.f.: (1+x)/(1-13*x).

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598, 9315832528564517774, 121105822871338731062, 1574375697327403503806
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2009

Keywords

Comments

For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,13} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015

Crossrefs

Programs

  • GAP
    k:=14;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
  • Magma
    k:=14; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
    
  • Maple
    k:=14; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 24 2019
  • Mathematica
    Join[{1}, 14*13^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    CoefficientList[Series[(1+x)/(1-13x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
    Join[{1},NestList[13#&,14,20]] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    vector(26, n, k=14; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 24 2019
    
  • Sage
    k=14; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
    

Formula

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*14^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 14*13^(n-1). - Vincenzo Librandi, Dec 05 2009
a(0)=1, a(1)=14, a(n) = 13*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (14*exp(13*x) - 1)/13. - G. C. Greubel, Sep 24 2019

A058622 a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

0, 1, 1, 4, 5, 16, 22, 64, 93, 256, 386, 1024, 1586, 4096, 6476, 16384, 26333, 65536, 106762, 262144, 431910, 1048576, 1744436, 4194304, 7036530, 16777216, 28354132, 67108864, 114159428, 268435456, 459312152, 1073741824, 1846943453
Offset: 0

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 29 2000

Keywords

Comments

a(n) is the number of n-digit binary sequences that have more 1's than 0's. - Geoffrey Critzer, Jul 16 2009
Maps to the number of walks that end above 0 on the number line with steps being 1 or -1. - Benjamin Phillabaum, Mar 06 2011
Chris Godsil observes that a(n) is the independence number of the (n+1)-folded cube graph; proof is by a Cvetkovic's eigenvalue bound to establish an upper bound and a direct construction of the independent set by looking at vertices at an odd (resp., even) distance from a fixed vertex when n is odd (resp., even). - Stan Wagon, Jan 29 2013
Also the number of subsets of {1,2,...,n} that contain more odd than even numbers. For example, for n=4, a(4)=5 and the 5 subsets are {1}, {3}, {1,3}, {1,2,3}, {1,3,4}. See A014495 when same number of even and odd numbers. - Enrique Navarrete, Feb 10 2018
Also half the number of length-n binary sequences with a different number of zeros than ones. This is also the number of integer compositions of n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Also the number of integer compositions of n+1 with alternating sum <= 0, ranked by A345915 (reverse: A345916). - Gus Wiseman, Jul 19 2021

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 16*x^5 + 22*x^6 + 64*x^7 + 93*x^8 + ...
From _Gus Wiseman_, Jul 19 2021: (Start)
The a(1) = 1 through a(5) = 16 compositions with nonzero alternating sum:
  (1)  (2)  (3)      (4)      (5)
            (1,2)    (1,3)    (1,4)
            (2,1)    (3,1)    (2,3)
            (1,1,1)  (1,1,2)  (3,2)
                     (2,1,1)  (4,1)
                              (1,1,3)
                              (1,2,2)
                              (1,3,1)
                              (2,1,2)
                              (2,2,1)
                              (3,1,1)
                              (1,1,1,2)
                              (1,1,2,1)
                              (1,2,1,1)
                              (2,1,1,1)
                              (1,1,1,1,1)
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.7)

Crossrefs

The odd bisection is A000302.
The even bisection is A000346.
The following relate to compositions with nonzero alternating sum:
- The complement is counted by A001700 or A138364.
- The version for alternating sum > 0 is A027306.
- The unordered version is A086543 (even bisection: A182616).
- The version for alternating sum < 0 is A294175.
- These compositions are ranked by A345921.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Magma
    [(2^n -(1+(-1)^n)*Binomial(n, Floor(n/2))/2)/2: n in [0..40]]; // G. C. Greubel, Aug 08 2022
    
  • Mathematica
    Table[Sum[Binomial[n, Floor[n/2 + i]], {i, 1, n}], {n, 0, 32}] (* Geoffrey Critzer, Jul 16 2009 *)
    a[n_] := If[n < 0, 0, (2^n - Boole[EvenQ @ n] Binomial[n, Quotient[n, 2]])/2]; (* Michael Somos, Nov 22 2014 *)
    a[n_] := If[n < 0, 0, n! SeriesCoefficient[(Exp[2 x] - BesselI[0, 2 x])/2, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
    Table[2^(n - 1) - (1 + (-1)^n) Binomial[n, n/2]/4, {n, 0, 40}] (* Eric W. Weisstein, Mar 21 2018 *)
    CoefficientList[Series[2 x/((1-2x)(1 + 2x + Sqrt[(1+2x)(1-2x)])), {x, 0, 40}], x] (* Eric W. Weisstein, Mar 21 2018 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]!=0&]],{n,0,15}] (* Gus Wiseman, Jul 19 2021 *)
  • PARI
    a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n\2); \\ Michel Marcus, Dec 30 2015
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))))) \\ Altug Alkan, Dec 30 2015
    
  • Python
    from math import comb
    def A058622(n): return (1<>1)>>1) if n else 0 # Chai Wah Wu, Aug 25 2025
  • SageMath
    [(2^n - binomial(n, n//2)*((n+1)%2))/2 for n in (0..40)] # G. C. Greubel, Aug 08 2022
    

Formula

a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n, i).
G.f.: 2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))). - Vladeta Jovovic, Apr 27 2003
E.g.f: (e^(2x)-I_0(2x))/2 where I_n is the Modified Bessel Function. - Benjamin Phillabaum, Mar 06 2011
Logarithmic derivative of the g.f. of A210736 is a(n+1). - Michael Somos, Nov 22 2014
Even index: a(2n) = 2^(n-1) - A088218(n). Odd index: a(2n+1) = 2^(2n). - Gus Wiseman, Jul 19 2021
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +4*(-n+1)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 23 2021
a(n) = 2^n-A027306(n). - R. J. Mathar, Sep 23 2021
A027306(n) - a(n) = A126869(n). - R. J. Mathar, Sep 23 2021
Previous Showing 11-20 of 182 results. Next