cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 2827 results. Next

A003417 Continued fraction for e.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 1, 1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, 54, 1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, 1, 1, 66
Offset: 0

Views

Author

Keywords

Comments

This is also the Engel expansion for 3*exp(1/2)/2 - 1/2. - Gerald McGarvey, Aug 07 2004
Sorted with duplicate terms dropped, this is A004277, 1 together with the positive even numbers. - Alonso del Arte, Jan 27 2012
From Peter Bala, Nov 26 2019: (Start)
Related continued fractions expansions:
2*e = [5; 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, ..., 1, 3, 2*n, 3, 1, 2*n, ...].
(1/2)*e = [1; 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, ..., 1, 3, 2*n + 1, 3, 1, 2*n + 1, ...].
4*e = [10, 1, 6, 1, 7, 2, 7, 2, 7, 1, 1, 1, 7, 3, 7, 1, 2, 1, 7, 4, 7, 1, 3, 1, 7, 5, 7, 1, 4, ..., 1, 7, n+1, 7, 1, n, ...].
(1/4)*e = [0, 1, 2, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, 7, 1, 3, 2, 1, 1, 1, 4, 7, 1, 4, 2, ..., 1, 1, 1, n, 7, 1, n, 2, ...]. (End)

Examples

			2.718281828459... = 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...))))
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.2.
  • Jay R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    numtheory[cfrac](exp(1),100,'quotients'); # Jani Melik, May 25 2006
    A003417:=(2+z+2*z**2-3*z**3-z**4+z**6)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    ContinuedFraction[E, 100] (* Stefan Steinerberger, Apr 07 2006 *)
    a[n_] := KroneckerDelta[1, n] + 2 n/3 - (2 n - 3)/3 DirichletCharacter[3, 1, n]; Table[a[n], {n, 1, 20}] (* Enrique Pérez Herrero, Feb 23 2013 *)
    Table[Piecewise[{{2, n == 0}, {2 (n + 1)/3, Mod[n, 3] == 2}}, 1], {n, 0, 120}] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 1, 1, 4, 1}, 120]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Table[(2 (n + 4) + (1 - 2 n) Cos[2 n Pi/3] + Sqrt[3] (1 - 2 n) Sin[2 n Pi/3])/9, {n, 120}]] (* Eric W. Weisstein, Jan 05 2019 *)
    Join[{2}, Flatten[Table[{1, 2n, 1}, {n, 40}]]] (* Harvey P. Dale, Jan 21 2020 *)
  • PARI
    contfrac(exp(1)) \\ Alexander R. Povolotsky, Feb 23 2008
    
  • PARI
    { allocatemem(932245000); default(realprecision, 25000); x=contfrac(exp(1)); for (n=1, 10000, write("b003417.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
    
  • PARI
    A003417(n)=if(n%3<>2,1+(n==0),(n+1)/3*2) \\ M. F. Hasler, May 01 2013
    
  • Python
    def A003417(n): return 2 if n == 0 else 1 if n % 3 != 2 else (n+1)//3<<1 # Chai Wah Wu, Jul 27 2022
  • Scala
    def eContFracTrio(n: Int): List[Int] = List(1, 2 * n, 1)
    2 +: ((1 to 40).map(eContFracTrio).flatten) // Alonso del Arte, Nov 22 2020, with thanks to Harvey P. Dale
    

Formula

From Paul Barry, Jun 27 2006: (Start)
G.f.: (2 + x + 2*x^2 - 3*x^3 - x^4 + x^6)/(1 - 2*x^3 + x^6).
a(n) = 0^n + Sum{k = 0..n} 2*sin(2*Pi*(k - 1)/3)*floor((2*k - 1)/3)/sqrt(3). [Corrected and simplified by Jianing Song, Jan 05 2019] (End)
a(n) = 2*a(n-3) - a(n-6), n >= 7. - Philippe Deléham, Feb 10 2009
G.f.: 1 + U(0) where U(k)= 1 + x/(1 - x*(2*k + 1)/(1 + x*(2*k + 1) - 1/((2*k + 1) + 1 - (2*k + 1)*x/(x + 1/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012
a(3*n-1) = 2*n, a(0) = 2, a(n) = 1 otherwise (i.e., for n+1 > 1, not a multiple of 3). - M. F. Hasler, May 01 2013
E.g.f.: First derivative of (2/9)*exp(x)*(x + 3) + (2/9)*exp(-x/2)*(2*x*cos((sqrt(3)/2)*x+2*Pi/3) - 3*cos((sqrt(3)/2)*x)) + x. - Jianing Song, Jan 05 2019
a(n) = floor(1/(n+1))-(floor(n/3)-floor((n+1)/3))*(2*n-1)/3+1. - Aaron J Grech, Sep 06 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - log(2)/2. - Amiram Eldar, May 03 2025

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A013631 Continued fraction for zeta(3).

Original entry on oeis.org

1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, 1, 1, 1, 3, 1, 6, 1, 30, 1, 4, 1, 1, 4, 1, 3, 1, 2, 7, 1, 3, 1, 2, 2, 1, 16, 1, 1, 3, 3, 1, 2, 2, 1, 6, 1, 1, 1, 6, 1, 1, 4, 428, 5, 1, 1, 3, 1, 1, 11, 2, 4, 4, 5, 4, 1, 5, 14, 1, 3, 1, 2, 19, 1, 2, 5, 1, 7, 1, 1, 1, 1, 1, 57, 3, 2, 14, 2
Offset: 0

Views

Author

N. J. A. Sloane, John Morrison (John.Morrison(AT)armltd.co.uk)

Keywords

Examples

			zeta(3) = 1.2020569031595942... = 1 + 1/(4 + 1/(1 + 1/(18 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009
		

Crossrefs

Cf. A002117 (decimal expansion), A078984, A078985 (convergents).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[ Zeta[3], 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(zeta(3)); for (n=1, 20000, write("b013631.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A174500 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003500(n)) ), where A003500(n) = (2+sqrt(3))^n + (2-sqrt(3))^n.

Original entry on oeis.org

1, 2, 1, 12, 1, 50, 1, 192, 1, 722, 1, 2700, 1, 10082, 1, 37632, 1, 140450, 1, 524172, 1, 1956242, 1, 7300800, 1, 27246962, 1, 101687052, 1, 379501250, 1, 1416317952, 1, 5285770562, 1, 19726764300, 1, 73621286642, 1, 274758382272, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 20 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A003500(n)) or, more explicitly,
L = 1/4 + 1/(2*14) + 1/(3*52) + 1/(4*194) + 1/(5*724) + 1/(6*2702) +...
so that L = 0.2937696594138291094177057532058145970820225289928...
then exp(L) = 1.3414748719687236691269115428250035920032300984596...
equals the continued fraction expansion given by this sequence:
exp(L) = [1;2,1,12,1,50,1,192,1,722,1,2700,1,10082,1,...]; i.e.,
exp(L) = 1 + 1/(2 + 1/(1 + 1/(12 + 1/(1 + 1/(50 + 1/(1 +...)))))).
Compare these partial quotients to A003500(n), n=1,2,3,...:
[4,14,52,194,724,2702,10084,37634,140452,524174,1956244,...].
		

Crossrefs

Programs

  • Mathematica
    a[n_?OddQ] = 1; a[n_?EvenQ] := a[n] = 4*a[n-2] - a[n-4] + 4;  a[2] = 2; a[4] = 12; Table[a[n], {n, 1, 41}] (* Jean-François Alcover, May 15 2014, after the first conjecture *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((2+sqrt(3))^m+(2-sqrt(3))^m))));contfrac(exp(L))[n]}

Formula

a(2n-1) = 1, a(2n) = A003500(n) - 2, for n>=1 [conjecture].
From Peter Bala, Jan 04 2013: (Start)
The above conjectures are correct. The real number exp( Sum_{n>=1} 1/(n*A003500(n)) ) is equal to the infinite product F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = 2 - sqrt(3). Ramanujan has given a continued fraction expansion for F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(N - sqrt(N^2 - 4))), N an integer greater than 3. The present case is when N = 4. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F((2 - sqrt(3))^k), k = 1, 2, 3, ...: if [1; c(1), 1, c(2), 1, c(3), 1, ...] denotes the present sequence then the simple continued fraction expansion of F((2 - sqrt(3))^k) is given by [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. (End)
a(n) = 5*a(n-2)-5*a(n-4)+a(n-6). G.f.: -x*(x^4+2*x^3-4*x^2+2*x+1) / ((x-1)*(x+1)*(x^4-4*x^2+1)). [Colin Barker, Jan 20 2013]

A007400 Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931...

Original entry on oeis.org

0, 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 6, 4
Offset: 0

Views

Author

Keywords

Examples

			0.816421509021893143708079737... = 0 + 1/(1 + 1/(4 + 1/(2 + 1/(4 + ...))))
		

References

  • M. Kmošek, Rozwinieçie Niektórych Liczb Niewymiernych na Ulamki Lancuchowe (Continued Fraction Expansion of Some Irrational Numbers), Master's thesis, Uniwersytet Warszawski, 1979.

Crossrefs

Cf. A007404 (decimal), A073088 (partial sums), A073414/A073415 (convergents), A088431 (half), A089267, A092910.

Programs

  • Maple
    a:= proc(n) option remember; local n8, n16;
        n8:= n mod 8;
        if n8 = 0 or n8 = 3 then return 2
        elif n8 = 4 or n8 = 7 then return 4
        elif n8 = 1 then return procname((n+1)/2)
        elif n8 = 2 then return procname((n+2)/2)
        fi;
        n16:= n mod 16;
        if n16 = 5 or n16 = 14 then return 4
        elif n16 = 6 or n16 = 13 then return 6
        fi
    end proc:
    a(0):= 0: a(1):= 1: a(2):= 4:
    map(a, [$0..1000]); # Robert Israel, Jun 14 2016
  • Mathematica
    a[n_] := a[n] = Which[n < 3, {0, 1, 4}[[n+1]], Mod[n, 8] == 1, a[(n+1)/2], Mod[n, 8] == 2, a[(n+2)/2], True, {2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4}[[Mod[n, 16]+1]]]; Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Nov 29 2013, after Ralf Stephan *)
  • PARI
    a(n)=if(n<3,[0,1,4][n+1],if(n%8==1,a((n+1)/2),if(n%8==2,a((n+2)/2),[2,0,0,2,4,4,6,4,2,0,0,2,4,6,4,4][(n%16)+1]))) /* Ralf Stephan */
    
  • PARI
    a(n)=contfrac(suminf(n=0,1/2^(2^n)))[n+1]
    
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(x); for (n=1, 20001, write("b007400.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 07 2009
    
  • Scheme
    (define (A007400 n) (cond ((<= n 1) n) ((= 2 n) 4) (else (case (modulo n 8) ((0 3) 2) ((4 7) 4) ((1) (A007400 (/ (+ 1 n) 2))) ((2) (A007400 (/ (+ 2 n) 2))) (else (case (modulo n 16) ((5 14) 4) ((6 13) 6))))))) ;; (After Ralf Stephan's recurrence) - Antti Karttunen, Aug 12 2017

Formula

From Ralf Stephan, May 17 2005: (Start)
a(0)=0, a(1)=1, a(2)=4; for n > 2:
a(8k) = a(8k+3) = 2;
a(8k+4) = a(8k+7) = a(16k+5) = a(16k+14) = 4;
a(16k+6) = a(16k+13) = 6;
a(8k+1) = a(4k+1);
a(8k+2) = a(4k+2). (End)

A013679 Continued fraction for zeta(2) = Pi^2/6.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 4, 7, 1, 4, 2, 3, 4, 10, 1, 2, 1, 1, 1, 15, 1, 3, 6, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 5, 1, 2, 2, 1, 1, 6, 27, 20, 3, 97, 105, 1, 1, 1, 1, 1, 45, 2, 8, 19, 1, 4, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 1, 2, 3, 6, 1, 1, 1, 2, 1, 5, 1, 1, 2, 9, 5, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			1.644934066848226436472415166... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...))))
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A013661 (decimal expansion).
Cf. continued fractions for zeta(3)-zeta(20): A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[ Pi^2/6, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2/6); for (n=1, 20000, write("b013679.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A040002 Continued fraction for sqrt(5).

Original entry on oeis.org

2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 11/45. - Natan Arie Consigli, Jan 19 2016

Examples

			2.236067977499789696409173668... = 2 + 1/(4 + 1/(4 + 1/(4 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A002163 (decimal expansion), A001077/A001076 (convergents), A248235 (Egyptian fraction).
Cf. Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
Essentially the same as A010709.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[5],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    PadRight[{2},120,{4}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(5)); for (n=0, 20000, write("b040002.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(0) = 2, a(n) = 4 n>0. - Natan Arie Consigli, Jan 19 2016
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 2*(1+x)/(1-x).
E.g.f.: 4*exp(x) - 2.
a(n) = 2*A040000(n). (End)

A041025 Denominators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, 151693352, 1232221121, 10009462320, 81307919681, 660472819768, 5365090477825, 43581196642368, 354014663616769, 2875698505576520, 23359602708228929, 189752520171407952, 1541379764079492545
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011
a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)

Crossrefs

Programs

Formula

G.f.: 1/(1 - 8*x - x^2).
a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.
a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)
Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007
a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008
a(p-1) == 68^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [Corrected by Jason Yuen, Apr 05 2025. See A087475 for more info about this congruence.]
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A122553 a(0)=1, a(n)=3 for n > 0.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006

Keywords

Comments

Continued fraction for (sqrt(13) - 1)/2 = A223139.
Decimal expansion of 4/30. - Alonso del Arte, Aug 16 2012
4/3 is the volume of the regular octahedron inscribed in the unit-radius sphere. - Amiram Eldar, Jun 02 2023

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, pp. 95-96, 224.

Crossrefs

Cf. A118273 (cube), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).
Cf. A223139.

Programs

Formula

a(n) = 3 - 2*0^n.
G.f.: (1 + 2*x)/(1 - x).
Sum_{n >= 0} a(n)*10^(-n) = 4/3.
From Amiram Eldar, Jun 05 2021: (Start)
4/3 = Product_{k>=1} (1 + 1/2^(2^k)).
4/3 = Sum_{k>=0} binomial(2*k,k)/((k+2)*4^k). (End)
Sum_{k>0} 3*k/4^k = 4/3 [Nicole Oresme]. - Stefano Spezia, Jun 27 2024
K_{n>=3} n/(n-2) = 4/3 (see Clawson at p. 224). - Stefano Spezia, Jul 01 2024
E.g.f.: 3*exp(x) - 2. - Elmo R. Oliveira, Aug 05 2024

A013680 Continued fraction for zeta(4).

Original entry on oeis.org

1, 12, 6, 1, 3, 1, 4, 183, 1, 1, 2, 1, 3, 1, 1, 5, 4, 2, 7, 23, 1, 1, 1, 1, 3, 2, 4, 2, 2, 22, 1, 13, 5, 1, 4, 2, 1, 3, 1, 1, 1, 6, 11, 40, 1, 7, 5, 2, 4, 1, 2, 3, 14, 9, 1, 33, 78, 1, 12, 4, 1, 2, 551, 1, 1, 1, 1, 1, 1, 2, 1, 9, 2, 7, 3, 1, 3, 2, 15, 1, 1, 2, 2
Offset: 0

Views

Author

Keywords

Examples

			zeta(4) = 1 + 1/(12 + 1/(6 + 1/(1 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 29 2009
		

Crossrefs

Cf. A013662 (zeta(4)). - Harry J. Smith, Apr 29 2009
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013681-A013696.

Programs

  • Mathematica
    ContinuedFraction[Zeta[4],80] (* Harvey P. Dale, Oct 13 2013 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4/90); for (n=1, 20000, write("b013680.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

Extensions

Offset changed by Andrew Howroyd, Jul 09 2024

A176059 Periodic sequence: Repeat 3, 2.

Original entry on oeis.org

3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Interleaving of A010701 and A007395.
Also continued fraction expansion of (3+sqrt(15))/2.
Also decimal expansion of 32/99.
a(n) = A010693(n+1).
Essentially first differences of A047218.
Binomial transform of 3 followed by -A122803.
Inverse binomial transform of 3 followed by A020714.
Second inverse binomial transform of A057198 without initial term 1.

Crossrefs

Cf. A010701 (all 3's sequence), A007395 (all 2's sequence), A176058 (decimal expansion of (3+sqrt(15))/2), A010693 (repeat 2, 3), A047218 (congruent to {0, 3} mod 5), A122803 (powers of -2), A020714 (5*2^n), A057198 ((5*3^(n-1)+1)/2, n > 0).
Cf. A026532 (partial products).

Programs

Formula

a(n) = (5+(-1)^n)/2.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 2.
a(n) = -a(n-1)+5 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+2*(n mod 2).
G.f.: (3+2*x)/((1-x)*(1+x)).
E.g.f.: 3*cosh(x) + 2*sinh(x). - Stefano Spezia, Aug 04 2025
Previous Showing 11-20 of 2827 results. Next