cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 172 results. Next

A048883 a(n) = 3^wt(n), where wt(n) = A000120(n).

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81
Offset: 0

Views

Author

Keywords

Comments

Or, a(n)=number of 1's ("live" cells) at stage n of a 2-dimensional cellular automata evolving by the rule: 1 if NE+NW+S=1, else 0.
This is the odd-rule cellular automaton defined by OddRule 013 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Or, start with S=[1]; replace S by [S, 3*S]; repeat ad infinitum.
Fixed point of the morphism 1 -> 13, 3 -> 39, 9 -> 9(27), ... = 3^k -> 3^k 3^(k+1), ... starting from a(0) = 1; 1 -> 13 -> 1339 -> = 1339399(27) -> 1339399(27)399(27)9(27)(27)(81) -> ..., . - Robert G. Wilson v, Jan 24 2006
Equals row sums of triangle A166453 (the square of Sierpiński's gasket, A047999). - Gary W. Adamson, Oct 13 2009
First bisection of A169697=1,5,3,19,3,. a(2n+2)+a(2n+3)=12,12,36,=12*A147610 ? Distribution of terms (in A000244): A011782=1,A000079 for first array, A000079 for second. - Paul Curtz, Apr 20 2010
a(A000225(n)) = A000244(n) and a(m) != A000244(n) for m < A000225(n). - Reinhard Zumkeller, Nov 14 2011
This sequence pertains to phenotype Punnett square mathematics. Start with X=1. Each hybrid cross involves the equation X:3X. Therefore, the ratio in the first (mono) hybrid cross is X=1:3X=3(1) or 3; or 3:1. When you move up to the next hybridization level, replace the previous cross ratio with X. X now represents 2 numbers-1:3. Therefore, the ratio in the second (di) hybrid cross is X=(1:3):3X=[3(1):3(3)] or (3:9). Put it together and you get 1:3:3:9. Each time you move up a hybridization level, replace the previous ratio with X, and use the same equation-X:3X to get its ratio. - John Michael Feuk, Dec 10 2011
Number of odd values in the n-th layer of Pascal's tetrahedron (see A268240). - Caden Le, Mar 03 2025
a(x*y) <= a(x)^A000120(y). - Joe Amos, Mar 28 2025

Examples

			From _Omar E. Pol_, Jun 07 2009: (Start)
Triangle begins:
  1;
  3;
  3,9;
  3,9,9,27;
  3,9,9,27,9,27,27,81;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243;
  3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27,...
Or
  1;
  3,3;
  9,3,9,9;
  27,3,9,9,27,9,27,27;
  81,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81;
  243,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27...
(End)
		

Crossrefs

For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
A generalization of A001316. Cf. A102376.
Partial sums give A130665. - David Applegate, Jun 11 2009

Programs

  • Haskell
    a048883 = a000244 . a000120  -- Reinhard Zumkeller, Nov 14 2011
  • Mathematica
    Nest[ Join[#, 3#] &, {1}, 6] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014*)
    a[n_] := 3^DigitCount[n, 2, 1]; Array[a, 80, 0] (* Jean-François Alcover, Nov 15 2017 *)
  • PARI
    a(n)=n=binary(n);3^sum(i=1,#n,n[i])
    

Formula

a(n) = Product_{k=0..log_2(n)} 3^b(n,k), where b(n,k) = coefficient of 2^k in binary expansion of n (offset 0). - Paul D. Hanna
a(n) = 3*a(n/2) if n is even, otherwise a(n) = a((n+1)/2).
G.f.: Product_{k>=0} (1+3*x^(2^k)). The generalization k^A000120 has generating function (1 + kx)*(1 + kx^2)*(1 + kx^4)*...
a(n+1) = Sum_{i=0..n} (binomial(n, i) mod 2) * Sum_{j=0..i} (binomial(i, j) mod 2). - Benoit Cloitre, Nov 16 2003
a(0)=1, a(n) = 3*a(n-A053644(n)) for n > 0. - Joe Slater, Jan 31 2016
G.f. A(x) satisfies: A(x) = (1 + 3*x) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

Extensions

Corrected by Ralf Stephan, Jun 19 2003
Entry revised by N. J. A. Sloane, May 30 2009
Offset changed to 0, Jun 11 2009

A001610 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520
Offset: 0

Views

Author

Keywords

Comments

For prime p, p divides a(p-1). - T. D. Noe, Apr 11 2009 [This result follows immediately from the fact that A032190(n) = (1/n)*Sum_{d|n} a(d-1)*phi(n/d). - Petros Hadjicostas, Sep 11 2017]
Generalization. If a(0,x)=0, a(1,x)=2 and, for n>=2, a(n,x)=a(n-1,x)+x*a(n-2,x)+1, then we obtain a sequence of polynomials Q_n(x)=a(n,x) of degree floor((n-1)/2), such that p is prime iff all coefficients of Q_(p-1)(x) are multiple of p (sf. A174625). Thus a(n) is the sum of coefficients of Q_(n-1)(x). - Vladimir Shevelev, Apr 23 2010
Odd composite numbers n such that n divides a(n-1) are in A005845. - Zak Seidov, May 04 2010; comment edited by N. J. A. Sloane, Aug 10 2010
a(n) is the number of ways to modify a circular arrangement of n objects by swapping one or more adjacent pairs. E.g., for 1234, new arrangements are 2134, 2143, 1324, 4321, 1243, 4231 (taking 4 and 1 to be adjacent) and a(4) = 6. - Toby Gottfried, Aug 21 2011
For n>2, a(n) equals the number of Markov equivalence classes with skeleton the cycle on n+1 nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
From Gus Wiseman, Feb 12 2019: (Start)
For n > 0, also the number of nonempty subsets of {1, ..., n + 1} containing no two cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(5) = 17 stable subsets are:
{1}, {2}, {3}, {4}, {5}, {6},
{1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {2,4,6}.
(End)
Also the rank of the n-Lucas cube graph. - Eric W. Weisstein, Aug 01 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+1)[2] -1); # G. C. Greubel, Jul 12 2019
  • Haskell
    a001610 n = a001610_list !! n
    a001610_list =
       0 : 2 : map (+ 1) (zipWith (+) a001610_list (tail a001610_list))
    -- Reinhard Zumkeller, Aug 21 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+1: n in [1..40]]; // Vincenzo Librandi, Mar 20 2015
    
  • Magma
    [Lucas(n+1) -1: n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    t = {0, 2}; Do[AppendTo[t, t[[-1]] + t[[-2]] + 1], {n, 2, 40}]; t
    RecurrenceTable[{a[n] == a[n - 1] +a[n - 2] +1, a[0] == 0, a[1] == 2}, a, {n, 0, 40}] (* Robert G. Wilson v, Apr 13 2013 *)
    CoefficientList[Series[x (2 - x)/((1 - x - x^2) (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    Table[Fibonacci[n] + Fibonacci[n + 2] - 1, {n, 0, 40}] (* Eric W. Weisstein, Feb 13 2018 *)
    LinearRecurrence[{2, 0, -1}, {2, 3, 6}, 20] (* Eric W. Weisstein, Feb 13 2018 *)
    Table[LucasL[n] - 1, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
    LucasL[Range[20]] - 1 (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;2;3])[1,1] \\ Charles R Greathouse IV, Sep 08 2016
    
  • PARI
    vector(40, n, f=fibonacci; f(n+1)+f(n-1)-1) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    [lucas_number2(n+1,1,-1) -1 for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = A000204(n)-1 = A000032(n+1)-1 = A000071(n+1) + A000045(n).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)) = (2*x-x^2)/(1-2*x+x^3). [Simon Plouffe in his 1992 dissertation]
a(n) = F(n) + F(n+2) - 1 where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = A014217(n+1) - A000035(n+1). - Paul Curtz, Sep 21 2008
a(n) = Sum_{i=1..floor((n+1)/2)} ((n+1)/i)*C(n-i,i-1). In more general case of polynomials Q_n(x)=a(n,x) (see our comment) we have Q_n(x) = Sum_{i=1..floor((n+1)/2)}((n+1)/i)*C(n-i,i-1)*x^(i-1). - Vladimir Shevelev, Apr 23 2010
a(n) = Sum_{k=0..n-1} Lucas(k), where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
a(0)=0, a(1)=2, a(2)=3; for n>=3, a(n) = 2*a(n-1) - a(n-3). - George F. Johnson, Jan 28 2013
For n > 1, a(n) = A048162(n+1) + 3. - Toby Gottfried, Apr 13 2013
For n > 0, a(n) = A169985(n + 1) - 1. - Gus Wiseman, Feb 12 2019

A318921 In binary expansion of n, delete one symbol from each run. Set a(n)=0 if the result is the empty string.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 1, 3, 7, 0, 0, 0, 1, 0, 0, 1, 3, 4, 2, 1, 3, 6, 3, 7, 15, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 1, 3, 7, 8, 4, 2, 5, 2, 1, 3, 7, 12, 6, 3, 7, 14, 7, 15, 31, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 1, 3, 7, 0, 0, 0, 1, 0, 0, 1, 3, 4, 2, 1, 3, 6, 3, 7, 15, 16
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2018

Keywords

Comments

If the binary expansion of n is 1^b 0^c 1^d 0^e ..., then a(n) is the number whose binary expansion is 1^(b-1) 0^(c-1) 1^(d-1) 0^(e-1) .... Leading 0's are omitted, and if the result is the empty string, here we set a(n) = 0. See A319419 for a version which represents the empty string by -1.
Lenormand refers to this operation as planing ("raboter") the runs (or blocks) of the binary expansion.
A175046 expands the runs in a similar way, and a(A175046(n)) = A001477(n). - Andrew Weimholt, Sep 08 2018. In other words, this is a left inverse to A175046: A318921 o A175046 = A001477 = id on [0..oo). - M. F. Hasler, Sep 10 2018
Conjecture: For n in the range 2^k, ..., 2^(k+1)-1, the total value of a(n) appears to be 2*3^(k-1) - 2^(k-1) (see A027649), and so the average value of a(n) appears to be (3/2)^(k-1) - 1/2. - N. J. A. Sloane, Sep 25 2018
The above conjecture was proved by Doron Zeilberger on Nov 16 2018 (see link) and independently by Chai Wah Wu on Nov 18 2018 (see below). - N. J. A. Sloane, Nov 20 2018
From Chai Wah Wu, Nov 18 2018: (Start)
Conjecture is correct for k > 0. Proof: looking at the least significant 2 bits of n, it is easy to see that a(4n) = 2a(2n), a(4n+1) = a(2n), a(4n+2) = a(2n+1) and a(4n+3) = 2a(2n+1)+1. Define f(k) = Sum_{i=2^k..2^(k+1)-1} a(i), i.e. the sum ranges over all numbers with a (k+1)-bit binary expansion. Thus f(0) = a(1) = 0 and f(1) = a(2)+a(3) = 1. By summing over the recurrence relations for a(n), we get f(k+2) = Sum_{i=2^k..2^(k+1)-1} (f(4i) + f(4i+1) + f(4i+2) + f(4i+3)) = Sum_{i=2^k..2^(k+1)-1} (3a(2i) + 3a(2i+1) + 1) = 3*f(k+1) + 2^k. Solving this first order recurrence relation with the initial condition f(1) = 1 shows that f(k) = 2*3^(k-1)-2^(k-1) for k > 0.
(End)

Examples

			      n / "planed" string / a(n)
      0   e 0 (e = empty string)
      1   e 0
     10   e 0
     11   1 1
    100   0 0
    101   e 0
    110   1 1
    111  11 3
   1000  00 0
   1001   0 0
   1010   e 0
   1011   1 1
   1100  10 2
   1101   1 1
   1110  11 3
   1111 111 7
  10000 000 0
  ...
		

Crossrefs

Cf. A027649 (average value), A175046, A319419 (a version where a(n)=-1 if the result is the empty string).
See also A319416.

Programs

  • Maple
    r:=proc(n) local t1,t2,L1,len,i,j,k,b1;
    if n <= 2 then return(0); fi;
    b1:=[]; t1:=convert(n,base,2); L1:=nops(t1); p:=1; len:=1;
    for i from 2 to L1 do
    t2:=t1[L1+1-i];
    if (t2=p) and (i1 then for j from 1 to len-1 do b1:=[op(b1),p]; od: fi;
       p:=t2; len:=1;
    fi;               od;
    if nops(b1)=0 then return(0);
    else k:=b1[1];
    for i from 2 to nops(b1) do k:=2*k+b1[i]; od;
    return(k);
    fi;
    end;
    [seq(r(n),n=0..120)];
  • Mathematica
    a[n_] := FromDigits[Flatten[Rest /@ Split[IntegerDigits[n, 2]]], 2];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 10 2018 *)
  • PARI
    a(n) = if (n==0, 0, n%2==0, my (z=valuation(n,2)); a(n/2^z) * 2^(z-1), my (o=valuation(n+1,2)); (a(n\2^o)+1) * 2^(o-1)-1) \\ Rémy Sigrist, Sep 09 2018
    
  • PARI
    a(n)={forstep(i=#n=binary(n+!n),2,-1,n[i-1]!=n[i] && n=n[^i]); fromdigits(n[^1],2)} \\ For illustration purpose. - M. F. Hasler, Sep 10 2018
    
  • PARI
    A318921(n)=if(n<3, 0, bittest(n, 0), (A318921(n>>n=valuation(n+1, 2))+1)<<(n-1)-1, A318921(n>>n=valuation(n, 2))<<(n-1)) \\ M. F. Hasler, Sep 11 2018
    
  • Python
    from itertools import groupby
    def a(n):
        s = "".join(k*(len(list(g))-1) for k, g in groupby(bin(n)[2:]))
        return int(s, 2) if s != "" else 0
    print([a(n) for n in range(82)]) # Michael S. Branicky, Jun 01 2025

Formula

a(4n) = 2a(2n), a(4n+1) = a(2n), a(4n+2) = a(2n+1) and a(4n+3) = 2a(2n+1)+1. - Chai Wah Wu, Nov 18 2018

A338899 Concatenated sequence of prime indices of squarefree semiprimes (A006881).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 1, 5, 1, 6, 2, 5, 1, 7, 3, 4, 1, 8, 2, 6, 1, 9, 2, 7, 3, 5, 2, 8, 1, 10, 1, 11, 3, 6, 2, 9, 1, 12, 4, 5, 1, 13, 3, 7, 1, 14, 2, 10, 4, 6, 2, 11, 1, 15, 3, 8, 1, 16, 2, 12, 3, 9, 1, 17, 4, 7, 1, 18, 2, 13, 2, 14, 4, 8, 1, 19, 2, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2020

Keywords

Comments

This is a triangle with two columns and strictly increasing rows, namely {A270650(n), A270652(n)}.
A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}     57: {2,8}     106: {1,16}    155: {3,11}
     10: {1,3}     58: {1,10}    111: {2,12}    158: {1,22}
     14: {1,4}     62: {1,11}    115: {3,9}     159: {2,16}
     15: {2,3}     65: {3,6}     118: {1,17}    161: {4,9}
     21: {2,4}     69: {2,9}     119: {4,7}     166: {1,23}
     22: {1,5}     74: {1,12}    122: {1,18}    177: {2,17}
     26: {1,6}     77: {4,5}     123: {2,13}    178: {1,24}
     33: {2,5}     82: {1,13}    129: {2,14}    183: {2,18}
     34: {1,7}     85: {3,7}     133: {4,8}     185: {3,12}
     35: {3,4}     86: {1,14}    134: {1,19}    187: {5,7}
     38: {1,8}     87: {2,10}    141: {2,15}    194: {1,25}
     39: {2,6}     91: {4,6}     142: {1,20}    201: {2,19}
     46: {1,9}     93: {2,11}    143: {5,6}     202: {1,26}
     51: {2,7}     94: {1,15}    145: {3,10}    203: {4,10}
     55: {3,5}     95: {3,8}     146: {1,21}    205: {3,13}
		

Crossrefs

A270650 is the first column.
A270652 is the second column.
A320656 counts multiset partitions using these rows, or factorizations into squarefree semiprimes.
A338898 is the version including squares, with columns A338912 and A338913.
A338900 gives row differences.
A338901 gives the row numbers for first appearances.
A001221 and A001222 count distinct/all prime indices.
A001358 lists semiprimes.
A004526 counts 2-part partitions, with strict case shifted right once.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A046315 and A100484 list odd and even semiprimes.
A046388 lists odd squarefree semiprimes.
A166237 gives first differences of squarefree semiprimes.

Programs

  • Mathematica
    Join@@Cases[Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&],k_:>PrimePi/@First/@FactorInteger[k]]

A228474 Number of steps required to reach zero in the wrecker ball sequence starting with n: On the k-th step (k = 1, 2, 3, ...) move a distance of k in the direction of zero. If the result has occurred before, move a distance of k away from zero instead. Set a(n) = -1 if 0 is never reached.

Original entry on oeis.org

0, 1, 4, 2, 24, 26, 3, 1725, 12, 14, 4, 26, 123, 125, 15, 5, 119, 781802, 20, 22, 132896, 6, 51, 29, 31, 1220793, 23, 25, 7, 429, 8869123, 532009, 532007, 532009, 532011, 26, 8, 94, 213355, 213353, 248, 33, 31, 33, 1000, 9, 144, 110, 112, 82, 84, 210, 60, 34
Offset: 0

Views

Author

Gordon Hamilton, Aug 23 2013

Keywords

Comments

This is a Recamán-like sequence (cf. A005132).
The n-th triangular number A000217(n) has a(A000217(n)) = n.
a(n) + 1 = length of row n in tables A248939 and A248973. - Reinhard Zumkeller, Oct 20 2014
Hans Havermann, running code from Hugo van der Sanden, has found that a(11281) is 3285983871526. - N. J. A. Sloane, Mar 22 2019
If a(n) != -1 then floor((a(n)-1)/2)+n is odd. - Robert Gerbicz, Mar 28 2019

Examples

			a(2) = 4 because 2 -> 1 -> -1 -> -4 -> 0.
See A248940 for the full 1725-term trajectory of 7. See A248941 for a bigger example, which shows the start of the 701802-term trajectory of 17. - _N. J. A. Sloane_, Mar 07 2019
		

Crossrefs

Cf. A248939 (rows = the full sequences), A248961 (row sums), A248973 (partial sums per row), A248952 (min per row), A248953 (max per row).
Cf. also A248940 (row 7), A248941 (row 17), A248942 (row 20).
Cf. also A000217, A005132 (Recamán).

Programs

  • Haskell
    a228474 = subtract 1 . length . a248939_row  -- Reinhard Zumkeller, Oct 20 2014
    (C++) #include 
      int A228474(long n) { int c=0, s; for(std::map seen; n; n += seen[n-(s=n>0?c:-c)] ? s:-s) { seen[n]=true; ++c; } return c; } // M. F. Hasler, Mar 18 2019
    
  • Julia
    function A228474(n)
        k, position, beenhere = 0, n, [n]
        while position != 0
            k += 1
            step = position > 0 ? k : -k
            position += (position - step) in beenhere ? step : -step
            push!(beenhere, position)
        end
        return length(beenhere) - 1
    end
    println([A228474(n) for n in 0:16]) # Peter Luschny, Mar 24 2019
  • Maple
    # To compute at most the first M steps of the trajectory of n:
    f:=proc(n) local M,i,j,traj,h;
      M:=200; traj:=[n]; h:=n; s:=1;
      for i from 1 to M do j:=h-s*i;
        if member(j,traj,'p') then s:=-s; fi;
        h:=h-s*i; traj:=[op(traj),h];
        if h=0 then return("steps, trajectory =", i, traj); fi;
        s:=sign(h);
      od;
      lprint("trajectory so far = ", traj); error("Need to increase M");
    end;  # N. J. A. Sloane, Mar 07 2019
  • Mathematica
    {0}~Join~Array[-1 + Length@ NestWhile[Append[#1, If[FreeQ[#1, #3], #3, Sign[#1[[-1]] ] (Abs[#1[[-1]] ] + #2)]] & @@ {#1, #2, Sign[#1[[-1]] ] (Abs[#1[[-1]] ] - #2)} & @@ {#, Length@ #} &, {#}, Last@ # != 0 &] &, 16] (* Michael De Vlieger, Mar 27 2019 *)
  • PARI
    a(n)={my(M=Map(),k=0); while(n, k++; mapput(M,n,1); my(t=if(n>0, -k, +k)); n+=if(mapisdefined(M,n+t),-t,t)); k} \\ Charles R Greathouse IV, Aug 18 2014, revised Andrew Howroyd, Feb 28 2018 [Warning: requires latest PARI. - N. J. A. Sloane, Mar 09 2019]
    

Extensions

More terms from Jon E. Schoenfield, Jan 10 2014
Escape clause in definition added by N. J. A. Sloane, Mar 07 2019
Edited by M. F. Hasler, Mar 18 2019

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A307730 a(n) = A307720(n) * A307720(n+1).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 12, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 15, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 14, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 14, 14, 14, 14, 14, 14, 14
Offset: 1

Views

Author

Rémy Sigrist, Apr 25 2019

Keywords

Comments

For all positive integers n, n appears n times.

Examples

			The first terms in this sequence and in A307720 are:
  n   a(n)  A307720(n)
  --  ----  ----------
   1     1           1
   2     2           1
   3     2           2
   4     3           1
   5     3           3
   6     3           1
   7     6           3
   8     4           2
   9     4           2
  10     4           2
		

Crossrefs

Cf. A348579 (indices of occurrence of each number), A348246 (first occurrence of each number), A348409 (last occurrence).

Programs

  • PARI
    \\ See Links section.
    
  • Python
    from itertools import islice
    from collections import Counter
    def A307730(): # generator of terms. Greedy algorithm
        c, b = Counter(), 1
        while True:
            k, kb = 1, b
            while c[kb] >= kb:
                k += 1
                kb += b
            c[kb] += 1
            b = k
            yield kb
    A307730_list = list(islice(A307730(),100)) # Chai Wah Wu, Oct 21 2021

A038698 Excess of 4k-1 primes over 4k+1 primes, beginning with prime 2.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 6, 5, 6, 5, 6, 5, 6
Offset: 1

Views

Author

Keywords

Comments

a(n) < 0 for infinitely many values of n. - Benoit Cloitre, Jun 24 2002
First negative value is a(2946) = -1, which is for prime 26861. - David W. Wilson, Sep 27 2002

References

  • Stan Wagon, The Power of Visualization, Front Range Press, 1994, p. 2.

Crossrefs

Cf. A112632 (race of 3k-1 and 3k+1 primes), A216057, A269364.
Cf. A156749 (sequence showing Chebyshev bias in prime races (mod 4)), A199547, A267097, A267098, A267107, A292378.
List of primes p such that a(p) = 0 is A007351. List of primes p such that a(p) < 0 is A199547. List of primes p such that a(p) = -1 is A051025. List of integers k such that a(prime(k)) = -1 is A051024. - Ya-Ping Lu, Jan 18 2025

Programs

  • Maple
    ans:=[0]; ct:=0; for n from 2 to 2000 do
    p:=ithprime(n); if (p mod 4) = 3 then ct:=ct+1; else ct:=ct-1; fi;
    ans:=[op(ans),ct]; od: ans; # N. J. A. Sloane, Jun 24 2016
  • Mathematica
    FoldList[Plus, 0, Mod[Prime[Range[2,110]], 4] - 2]
    Join[{0},Accumulate[If[Mod[#,4]==3,1,-1]&/@Prime[Range[2,110]]]] (* Harvey P. Dale, Apr 27 2013 *)
  • PARI
    for(n=2,100,print1(sum(i=2,n,(-1)^((prime(i)+1)/2)),","))
    
  • Python
    from sympy import nextprime; a, p = 0, 2; R = [a]
    for _ in range(2,88): p=nextprime(p); a += p%4-2; R.append(a)
    print(*R, sep = ', ')  # Ya-Ping Lu, Jan 18 2025

Formula

a(n) = Sum_{k=2..n} (-1)^((prime(k)+1)/2). - Benoit Cloitre, Jun 24 2002
a(n) = (Sum_{k=1..n} prime(k) mod 4) - 2*n (assuming that x mod 4 > 0). - Thomas Ordowski, Sep 21 2012
From Antti Karttunen, Oct 01 2017: (Start)
a(n) = A267098(n) - A267097(n).
a(n) = A292378(A000040(n)).
(End)
From Ridouane Oudra, Nov 04 2024: (Start)
a(n) = Sum_{k=2..n} i^(prime(k)+1), where i is the imaginary unit.
a(n) = Sum_{k=2..n} sin(3*prime(k)*Pi/2).
a(n) = Sum_{k=2..n} A163805(prime(k)).
a(n) = Sum_{k=2..n} A212159(k). (End)
a(n) = a(n-1) + prime(n) (mod 4) - 2, n >= 2. - Ya-Ping Lu, Jan 18 2025

A129760 Bitwise AND of binary representation of n-1 and n.

Original entry on oeis.org

0, 0, 2, 0, 4, 4, 6, 0, 8, 8, 10, 8, 12, 12, 14, 0, 16, 16, 18, 16, 20, 20, 22, 16, 24, 24, 26, 24, 28, 28, 30, 0, 32, 32, 34, 32, 36, 36, 38, 32, 40, 40, 42, 40, 44, 44, 46, 32, 48, 48, 50, 48, 52, 52, 54, 48, 56, 56, 58, 56, 60, 60, 62, 0, 64, 64, 66, 64, 68, 68, 70, 64, 72, 72, 74
Offset: 1

Views

Author

Russ Cox, May 15 2007

Keywords

Comments

Also the number of Ducci sequences with period n.
Also largest number less than n having in binary representation fewer ones than n has; A048881(n-1) = A000120(a(n)) = A000120(n)-1. - Reinhard Zumkeller, Jun 30 2010
a(n) is the parent of vertex n in the binomial tree. The binomial tree is root vertex n=0, then for n>=1 the parent of n is n with its least significant 1-bit changed to a 0-bit. Binomial tree order 5, n=0 to 31 inclusive, is the frontispiece of Knuth volume 1, second and subsequent editions. Vertices are shown there with n in binary dots and a(n) is the next vertex towards the root at the bottom of the page. - Kevin Ryde, Jul 24 2019

Examples

			a(6) = 6 AND 5 = binary 110 AND 101 = binary 100 = 4.
		

References

  • Donald E. Knuth, The Art of Computer Programming, volume 1, second edition, frontispiece. Reproduced with brief description of the art in Donald E. Knuth, Selected Papers on Fun and Games, 2010, Chapter 47 Geek Art, figure 16, page 679.

Crossrefs

Programs

  • C
    int a(int n) { return n & (n-1); }
    
  • Magma
    [n - 2^Valuation(n, 2): n in [1..100]]; // Vincenzo Librandi, Jul 25 2019
    
  • Maple
    nmax := 75: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-2) * 2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jun 22 2011, revised Jan 25 2013
    A129760 := n -> Bits:-And(n-1, n):
    seq(A129760(n), n=1..75); # Peter Luschny, Sep 26 2019
  • Mathematica
    Table[BitAnd[n, n - 1], {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    a(n)=bitand(n,n-1) \\ Charles R Greathouse IV, Jun 23 2011
    
  • Python
    def a(n): return n & (n-1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = n AND n-1.
Equals n - A006519(n). - N. J. A. Sloane, May 26 2008
From Johannes W. Meijer, Jun 22 2011: (Start)
a((2*n-1)*2^p) = (2*n-2)*(2^p), p>=0.
a(2*n-1) = (2*n-2), n>=1, and a(2^p+1) = 2^p, p>=1. (End)

A004718 The Danish composer Per Nørgård's "infinity sequence", invented in an attempt to unify in a perfect way repetition and variation: a(2n) = -a(n), a(2n+1) = a(n) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, -1, 2, 1, 0, -2, 3, -1, 2, 0, 1, 2, -1, -3, 4, 1, 0, -2, 3, 0, 1, -1, 2, -2, 3, 1, 0, 3, -2, -4, 5, -1, 2, 0, 1, 2, -1, -3, 4, 0, 1, -1, 2, 1, 0, -2, 3, 2, -1, -3, 4, -1, 2, 0, 1, -3, 4, 2, -1, 4, -3, -5, 6, 1, 0, -2, 3, 0, 1, -1, 2, -2, 3, 1, 0, 3, -2, -4, 5, 0, 1, -1, 2, 1, 0
Offset: 0

Views

Author

Jorn B. Olsson (olsson(AT)math.ku.dk)

Keywords

Comments

Minima are at n=2^i-2, maxima at 2^i-1, zeros at A083866.
a(n) has parity of Thue-Morse sequence on {0,1} (A010060).
a(n) = A000120(n) for all n in A060142.
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
Comment from Michael Nyvang on the "iris" score on the "Voyage into the golden screen" video, Dec 31 2018: That is A004718 on the cover in the 12-tone tempered chromatic scale. The music - as far as I recall - is constructed from this base by choosing subsequences out of this sequence in what Per calls 'wave lengths', and choosing different scales modulo (to-tone, overtones on one fundamental, etc). There quite a lot more to say about this, but I believe this is the foundation. - N. J. A. Sloane, Jan 05 2019
From Antti Karttunen, Mar 09 2019: (Start)
This sequence can be represented as a binary tree. After a(0) = 0 and a(1) = 1, each child to the left is obtained by negating the parent node's contents, and each child to the right is obtained by adding one to the parent's contents:
0
|
...................1...................
-1 2
1......../ \........0 -2......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
-1 2 0 1 2 -1 -3 4
1 0 -2 3 0 1 -1 2 -2 3 1 0 3 -2 -4 5
etc.
Sequences A323907, A323908 and A323909 are in bijective correspondence with this sequence and their terms are all nonnegative.
(End)

Crossrefs

Cf. A083866 (indices of 0's), A256187 (first differences), A010060 (mod 2), A343029, A343030.

Programs

  • Haskell
    import Data.List (transpose)
    a004718 n = a004718_list !! n
    a004718_list = 0 : concat
       (transpose [map (+ 1) a004718_list, map negate $ tail a004718_list])
    -- Reinhard Zumkeller, Mar 19 2015, Nov 10 2012
    
  • Maple
    f:=proc(n) option remember; if n=0 then RETURN(0); fi; if n mod 2 = 0 then RETURN(-f(n/2)); else RETURN(f((n-1)/2)+1); fi; end;
  • Mathematica
    a[n_?EvenQ] := a[n]= -a[n/2]; a[0]=0; a[n_] := a[n]= a[(n-1)/2]+1; Table[a[n], {n, 0, 85}](* Jean-François Alcover, Nov 18 2011 *)
    Table[Fold[If[#2 == 0, -#1, #1 + 1] &, IntegerDigits[n, 2]], {n, 0, 85}] (* Michael De Vlieger, Jun 30 2016 *)
  • PARI
    a=vector(100); a[1]=1; a[2]=-1; for(n=3,#a,a[n]=if(n%2,a[n\2]+1,-a[n\2])); a \\ Charles R Greathouse IV, Nov 18 2011
    
  • PARI
    apply( {A004718(n)=[n=if(b,n+1,-n)|b<-binary(n+n=0)];n}, [0..77]) \\ M. F. Hasler, Jun 13 2025
    
  • Python
    # from first formula
    from functools import reduce
    def f(s, b): return s + 1 if b == '1' else -s
    def a(n): return reduce(f, [0] + list(bin(n)[2:]))
    print([a(n) for n in range(86)]) # Michael S. Branicky, Apr 03 2021
    
  • Python
    # via recursion
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return 0 if n == 0 else (a((n-1)//2)+1 if n%2 else -a(n//2))
    print([a(n) for n in range(86)]) # Michael S. Branicky, Apr 03 2021
    
  • Python
    from itertools import groupby
    def A004718(n):
        c = 0
        for k, g in groupby(bin(n)[2:]):
            c = c+len(list(g)) if k == '1' else (-c if len(list(g))&1 else c)
        return c # Chai Wah Wu, Mar 02 2023

Formula

Write n in binary and read from left to right, starting with 0 and interpreting 1 as "add 1" and 0 as "change sign". For example 19 = binary 10011, giving 0 -> 1 -> -1 -> 1 -> 2 -> 3, so a(19) = 3.
G.f.: sum{k>=0, x^(2^k)/[1-x^(2*2^k)] * prod{l=0, k-1, x^(2^l)-1}}.
The g.f. satisfies F(x^2)*(1-x) = F(x)-x/(1-x^2).
a(n) = (2 * (n mod 2) - 1) * a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
Zumkeller's formula implies that a(2n) = -a(n), and so a(n) = a(4n) = a(16n) = .... - N. J. A. Sloane, Dec 31 2018
From Kevin Ryde, Apr 17 2021: (Start)
a(n) = (-1)^t * (t+1 - a(n-1)) where t = A007814(n) is the 2-adic valuation of n.
a(n) = A343029(n) - A343030(n). (End)
-(log_2(n+2)-1) <= a(n) <= log_2(n+1). - Charles R Greathouse IV, Nov 15 2022

Extensions

Edited by Ralf Stephan, Mar 07 2003
Previous Showing 31-40 of 172 results. Next