cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A054871 a(n) = H_n(3,2) where H_n is the n-th hyperoperator.

Original entry on oeis.org

3, 5, 6, 9, 27, 7625597484987
Offset: 0

Views

Author

Walter Nissen, May 28 2000

Keywords

Comments

H_n(x,y) is defined recursively by:
H_0(x,y) = y+1;
H_1(x,0) = x;
H_2(x,0) = 0;
H_n(x,0) = 1, for n>2;
H_n(x,y) = H_{n-1}(x,H_n(x,y-1)), for integers n>0 and y>0.
Consequently:
H_0(x,y) = y+1 is the successor function on y;
H_1(x,y) = x+y is addition;
H_2(x,y) = x*y is multiplication;
H_3(x,y) = x^y is exponentiation;
H_4(x,y) = x^^y is tetration (a height-y exponential tower x^x^x^... );
...
Extending to negative-order hyperoperators via the recursive formula:
H_0(x,y) = H_{-1}(x,H_0(x,y-1)) = H_{-1}(x,y).
Therefore:
H_{-n}(x,y) = H_0(x,y), for every nonnegative n.
This function is an Ackermann function variant because it satisfies the recurrence relation above (see A046859).
Other hyperoperation notations equivalent to H_n(x,y) include:
Square Bracket or Box: a [n] b;
Conway Chain Arrows: a -> b -> n-2;
Knuth Up-arrow: a "up-arrow"(n-2) b;
Standard Caret: a ^(n-2) b.
Originally published as 3 agg-op-n 3 for n > 0. - Natan Arie Consigli, Apr 22 2015
Sequence can also be defined as a(0) = 3, a(1) = 5, a(n) = H_{n-1}(3,3) for n > 1. - Natan Arie Consigli, Apr 22 2015; edited by Danny Rorabaugh, Oct 18 2015
Before introducing the H_n notation, this sequence was named "3 agg-op-n 2, where the binary aggregation operators agg-op-n are zeration, addition, multiplication, exponentiation, superexponentiation, ..." - Danny Rorabaugh, Oct 14 2015
The next term is 3^3^...^3 (with 7625594784987 3's). - Jianing Song, Dec 25 2018

Examples

			a(0) = H_0(3,2) = 2+1 = 3;
a(1) = H_1(3,2) = 3+2 = 5;
a(2) = H_2(3,2) = 3*2   = 3+3  = 6;
a(3) = H_3(3,2) = 3^2   = 3*3  = 9;
a(4) = H_4(3,2) = 3^^2  = 3^3  = 27;
a(5) = H_5(3,2) = 3^^^2 = 3^^3 = 3^(3^3) = 7625597484987.
		

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 60.

Crossrefs

H_n(x,y) for various x,y: A001695 (2,n), this sequence (3,2; almost 3,3), A067652 (2,3; almost 2,4), A141044 (1,1), A175796 (n,2), A179184 (0,0), A189896 (n,n), A213619 (n,H_n(n,n)), A253855 (4,2; almost 4,4), A255176 (2,2), A255340 (4,3), A256131 (10,2; almost 10,10), A261143 (1,2), A261146 (n,3). - Natan Arie Consigli and Danny Rorabaugh, Oct 14-26 2015
H_4(x,n) for various x: A000035 (x=0), A014221 (x=2), A014222 (x=3, shifted), A057427 (x=1).
H_5(x,n) for various x: A266198 (x=2), A266199 (x=3).

Extensions

First two terms prepended by Natan Arie Consigli, Apr 22 2015
First term corrected and hyperoperator notation implemented by Danny Rorabaugh, Oct 14 2015
Definition extended to include negative n by Natan Arie Consigli, Oct 19 2015
More hyperoperator notation added by Natan Arie Consigli, Jan 19 2016

A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers.

Original entry on oeis.org

2, 6, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255
Offset: 0

Views

Author

Paul Curtz, May 09 2011

Keywords

Comments

Apparently a(n) = A181131(n) for n>=2 (checked numerically up to n=640). - R. J. Mathar, Aug 25 2025
The denominators of the T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972.
The T(n, m) are defined by A164555(n)/A027642(n) and its successive differences, see the formulas.
Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/A085738(n).
A164555(n)/A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1).
We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/A191302.
Also the denominators of T(n, n+1) of the table defined by A085737(n)/A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - Michel Marcus, Feb 01 2013
The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. Paul Curtz, Feb 03 2015

Examples

			The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are:
1,       1/2,     1/6,      0,     -1/30,         0,        1/42,
-1/2,   -1/3,    -1/6,  -1/30,      1/30,      1/42,       -1/42,
1/6,     1/6,    2/15,   1/15,    -1/105,     -1/21,      -1/105,
0,     -1/30,   -1/15, -8/105,    -4/105,     4/105,       8/105,
-1/30, -1/30,  -1/105,  4/105,     8/105,     4/105,   -116/1155,
0,      1/42,    1/21,  4/105,    -4/105,   -32/231,     -16/231,
1/42,   1/42,  -1/105, -8/105, -116/1155,    16/231,  6112/15015,
		

References

  • Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Programs

  • Maple
    T := proc(n,m)
        option remember;
        if n < 0 or m < 0 then
            0 ;
        elif n = 0 then
            if m = 1 then
                -bernoulli(m) ;
            else
                bernoulli(m) ;
            end if;
        else
            procname(n-1,m+1)-procname(n-1,m) ;
        end if;
    end proc:
    A190339 := proc(n)
        denom( T(n+1,n)) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* Jean-François Alcover, Aug 08 2012 *)
  • Sage
    def A190339_list(n) :
        T = matrix(QQ, 2*n+1)
        for m in (0..2*n) :
            T[0,m] = bernoulli_polynomial(1,m)
            for k in range(m-1,-1,-1) :
                T[m-k,k] = T[m-k-1,k+1] - T[m-k-1,k]
        for m in (0..n-1) : print([T[m,k] for k in (0..n-1)])
        return [denominator(T[k,k+1]) for k in (0..n-1)]
    A190339_list(7) # Also prints the table as displayed in EXAMPLE. Peter Luschny, Jun 21 2012

Formula

T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
T(1, m) = A051716(m+1)/A051717(m+1);
T(n, n) = 2*T(n, n+1).
T(n+1, n+1) = (-1)^(1+n)*A181130(n+1)/A181131(n+1). - R. J. Mathar, Jun 18 2011
a(n) = A141044(n)*A181131(n). - Paul Curtz, Apr 21 2013

Extensions

Edited and Maple program added by Johannes W. Meijer, Jun 29 2011, Jun 30 2011
New name from Peter Luschny, Jun 21 2012

A161739 The RSEG2 triangle.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
Offset: 0

Views

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Comments

The EG2[2*m,n] matrix coefficients were introduced in A008955. We discovered that EG2[2m,n] = Sum_{k = 1..n} (-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2 with t1(n,m) the central factorial numbers A008955 and eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
A different way to define these matrix coefficients is EG2[2*m,n] = (1/m)*Sum_{k = 0..m-1} ZETA(2*m-2*k, n-1)*EG2[2*k, n] with ZETA(2*m, n-1) = zeta(2*m) - Sum_{k = 1..n-1} (k)^(-2*m) and EG2[0, n] = 1, for m = 0, 1, 2, ..., and n = 1, 2, 3, ... .
We define the row sums of the EG2 matrix rs(2*m,p) = Sum_{n >= 1} (n^p)*EG2(2*m,n) for p = -2, -1, 0, 1, ... and m >= p+2. We discovered that rs(2*m,p=-2) = 2*eta(2*m+2) = (1 - 2^(1-(2*m+2)))*zeta(2*m+2). This formula is quite unlike the other rs(2*m,p) formulas, see the examples.
The series expansions of the row generators RGEG2(z,2*m) about z = 0 lead to the EG2[2*m,n] coefficients while the series expansions about z = 1 lead to the ZG1[2*m-1,n] coefficients, see the formulas.
The first Maple program gives the triangle coefficients. Adding the second program to the first one gives information about the row sums rs(2*m,p).
The a(n) formulas of the right hand columns are related to sequence A036283, see also A161740 and A161741.

Examples

			The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
  ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
  ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
  ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
  ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=0) = ZG1[2*m-1,1]
  rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
  rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
  rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
  rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
  rs(2*m, p=0) = zeta(2*m-1)/(1/2)
  rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
  rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
  rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
  [1]
  [0, 1]
  [0, 1, 1]
  [0, 1, 4, 1]
  [0, 0, 13, 10, 1]
  [0, -4, 30, 73, 20, 1]
		

Crossrefs

A000007, A129825, A161742 and A161743 are the first four left hand columns.
A000012, A000292, A107963, A161740 and A161741 are the first five right hand columns.
A010790 equals 2*r(n) and A054977 equals denom(r(n)).
A001710 equals numer(q(n)) and A141044 equals denom(q(n)).
A000142 equals the row sums.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.

Programs

  • Maple
    nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0,0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n,m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
    m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;

Formula

RGEG2(2*m,z) = Sum_{n >= 1} EG2[2*m,n]*z^(n-1) = Integral_{y = 0..oo}((2*y)^(2*m)/(2*m)!)* cosh(y)/(cosh(y)^2 - z)^(3/2) for m >= 0.
EG2[2*m,n] = Sum_{k = 1..n} (-1)^(k+n)* A008955(n-1, k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2.
ZG1[2*m-1,p+1] = Sum_{j = 0..p} (-1)^j*A008955(p, j)*zeta(2*m-(2*p+1-2*j))/ r(p) with r(p)= p!*(p+1)!/2 and p >= 0.
rs(2*m,p) = Sum_{k = 0..p} A028246(p+1,k+1)*ZG1[2*m-1,k+1] and p >= 0; p <= m-2.
rs(2*m,p) = Sum_{k = 0..p+1} A161739(p+1,k)*zeta(2*m+1-2*k)/q(p+1) with q(p+1) = (p+1)!/2 and p >= -1; p <= m-2.
From Peter Bala, Mar 19 2022: (Start)
It appears that the k-th row polynomial (with indexing starting at k = 1) is given by R(k,n^2) = (k-1)!*Sum_{i = 0..n} (-1)^(n-i)*(i^k)* binomial(n,i)*binomial(n+i,i)/(n+i) for n >= 1.
For example, for k = 6, Maple's SumTools:-Summation procedure gives 5!*Sum_{i = 0..n} (-1)^(n-i)*(i^6)*binomial(n,i)*binomial(n+i,i)/(n+i) = -4*n^2 + 30*n^4 + 73*n^6 + 20*n^8 + n^10 = R(6,n^2). (End)

Extensions

Minor error corrected and edited by Johannes W. Meijer, Sep 22 2012

A189896 Weak Ackermann numbers: H_n(n,n) where H_n is the n-th hyperoperator.

Original entry on oeis.org

1, 2, 4, 27
Offset: 0

Views

Author

Max Sills, Apr 30 2011

Keywords

Comments

The next term, a(4), has about 8*10^153 decimal digits. - Charles R Greathouse IV, Nov 15 2022

Examples

			a(0) = succ(0) = 0 + 1 = 1, because the zeroth hyperoperation is successor.
a(1) = 1 + 1 = 2, because the first hyperoperation is addition.
a(2) = 2 * 2 = 4, because the second hyperoperation is multiplication.
a(3) = 3^3 = 27, because the third hyperoperation is exponentiation.
a(4) = 4^4^4^4 = 4^(4^(4^4)) = 4^(4^256), because the fourth hyperoperation is tetration. The term is too big to be included: log_2(a(4)) = 2^513.
		

Crossrefs

For H_n(x,x) with fixed x, cf. A054871 (x=3, shifted), A141044 (x=1), A253855 (x=4, shifted), A255176 (x=2), A256131 (x=10, shifted). - Danny Rorabaugh, Oct 20 2015
Cf. A271553 ( H_n-1(n,n) ). - Natan Arie Consigli, Apr 10 2016

Formula

a(n) = H_n(n, n), where H_n the hyperoperation indexed by n.

Extensions

"Weak" added to definition by Natan Arie Consigli, Apr 18 2015

A294619 a(0) = 0, a(1) = 1, a(2) = 2 and a(n) = 1 for n > 2.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of (sqrt(5) + 1)/(2*sqrt(5)).
Inverse binomial transform is {0, 1, 4, 10, 21, 41, 78, 148, ...}, A132925 with one leading zero.
Also the main diagonal in the expansion of (1 + x)^n - 1 + x^2 (A300453).
The partial sum of this sequence is A184985.
a(n) is the number of state diagrams having n components that are obtained from an n-foil [(2,n)-torus knot] shadow. Let a shadow diagram be the regular projection of a mathematical knot into the plane, where the under/over information at every crossing is omitted. A state for the shadow diagram is a diagram obtained by merging either of the opposite areas surrounding each crossing.
a(n) satisfies the identities a(n)^a(n+k) = a(n), 2^a(k) = 2*a(k) and a(k)! = a(k), k > 0.
Also the number of non-isomorphic simple connected undirected graphs with n+1 edges and a longest path of length 2. - Nathaniel Gregg, Nov 02 2021

Examples

			For n = 2, the shadow of the Hopf link yields 2 two-component state diagrams (see example in A300453). Thus a(2) = 2.
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • L. H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
  • V. Manturov, Knot Theory, CRC Press, 2004.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + x^2 - x^3)/(1 - x), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 05 2017 *)
    f[n_] := If[n > 2, 1, n]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 27 2017 *)
    PadRight[{0,1,2},120,{1}] (* Harvey P. Dale, Feb 20 2023 *)
  • Maxima
    makelist((1 + (-1)^((n + 1)!))/2 + kron_delta(n, 2), n, 0, 100);
  • PARI
    a(n) = if(n>2, 1, n);
    

Formula

a(n) = ((-1)^2^(n^2 + 3*n + 2) + (-1)^2^(n^2 - n) - (-1)^2^(n^2 - 3*n + 2) + 1)/2.
a(n) = (1 + (-1)^((n + 1)!))/2 + Kronecker(n, 2).
a(n) = min(n, 3) - 2*(max(n - 2, 0) - max(n - 3, 0)).
a(n) = floor(F(n+1)/F(n)) for n > 0, with a(0) = 0, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) for n > 3, with a(0) = 0, a(1) = 1, a(2) = 2 and a(3) = 1.
A005803(a(n)) = A005096(a(n)) = A000007(n).
A107583(a(n)) = A103775(n+5).
a(n+1) = 2^A185012(n+1), with a(0) = 0.
a(n) = A163985(n) mod A004278(n+1).
a(n) = A157928(n) + A171386(n+1).
a(n) = A063524(n) + A157928(n) + A185012(n).
a(n) = A010701(n) - A141044(n) - A179184(n).
G.f.: (x + x^2 - x^3)/(1 - x).
E.g.f.: (2*exp(x) - 2 + x^2)/2.

A329684 Number of excursions of length n with Motzkin-steps forbidding all consecutive steps of length 2 except UD and HH.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Valerie Roitner, Nov 29 2019

Keywords

Comments

The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending on the x-axis and never crossing the x-axis, i.e., staying at nonnegative altitude.
This sequence is periodic with a pre-period of length 3 (namely 1, 1, 2) and a period of length 1 (namely 1).
Decimal expansion of 1009/9000. - Elmo R. Oliveira, Jun 16 2024

Examples

			a(2)=2 since UD and HH are allowed. For n different from 2, only the excursion H^n is allowed.
		

Crossrefs

Essentially the same as A294619, A261143 and A141044.

Programs

  • Mathematica
    PadRight[{1, 1, 2}, 100, 1] (* Paolo Xausa, Aug 28 2024 *)

Formula

G.f.: (1+t^2-t^3)/(1-t).
For n >= 0, a(2) = 2, otherwise a(n) = 1. - Elmo R. Oliveira, Jun 16 2024

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.

A238157 Reduced denominators of integral of the Stirling numbers of first kind.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 1, 4, 1, 1, 3, 2, 5, 1, 1, 3, 4, 1, 6, 1, 1, 3, 4, 1, 2, 7, 1, 1, 1, 1, 1, 6, 1, 8, 1, 1, 1, 1, 5, 3, 1, 2, 9, 1, 1, 1, 1, 5, 2, 1, 4, 1, 10, 1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 11, 1, 1, 1, 1, 1, 3, 1, 8, 3, 1, 1, 12
Offset: 0

Views

Author

Paul Curtz, Feb 18 2014

Keywords

Comments

s(n,k), signed Stirling numbers of the first kind (A048994):
1,
0, 1,
0, -1, 1,
0, 2, -3, 1,
0, -6, 11, -6, 1
etc.
The unsigned numbers, abs(s(n,k)), are the unsigned Stirling numbers of the first kind, A132393(n).
For the integration of these triangles we divide by A002260(n+1). For the first one the reduced numbers are
1,
0, 1/2,
0, -1/2, 1/3,
0, 1, -1, 1/4,
0, -3, 11/3, -3/2, 1/5,
etc.
Hence the denominators in the example.
Sums by rows: 1, 1/2, -1/6, 1/4, -19/30, 27/12 = 9/4, = (-1)^(n+1)*A141417(n)/A002790(n) = A006232(n)/A006233(n) (*).
Because the integration is between 0 and 1, the fractions appear in a numerical Adams integration with the denominators multiplied by n!, i.e., 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... . Reference, array p. 36.
(*) The Cauchy numbers of the first type or the Bernoulli numbers of the second kind.
Without signs, the row sums are 1, 1/2, 5/6, 9/4, 251/30, 475/12, ... = A002657(n)/A002790(n), Cauchy numbers of the second type. See Nørlund numbers, 1924.

Examples

			Denominators triangle (a(n)):
1,
1, 2
1, 2, 3,
1, 1, 1, 4,
1, 1, 3, 2, 5,
1, 1, 3, 4, 1, 6,
1, 1, 3, 4, 1, 2, 7,
etc.
The Least Common Multiples are A002790. The second column is A141044(n).
		

References

  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969 (see array p. 56).
  • N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924

Crossrefs

Cf. A091137.

Programs

  • Mathematica
    Table[StirlingS1[n, k]/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2014 *)

Formula

Denominators of reduced A132393(n)/A002260(n+1).

A306821 Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Denominators.

Original entry on oeis.org

2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1
Offset: 0

Views

Author

Paul Curtz, Jun 04 2019

Keywords

Comments

Fractions: 1/2, 1/2, -4/3, 2, -38/15, 3, -73/21, 4, -68/15, 5, -179/33, 6, -9218/1365, 7, ... .
Numerators are A307974(n).
a(2n) same as denominators of cosecant numbers A001897 for n>0 (conjectured).

Crossrefs

Essentially the same as A141459.

Programs

  • Mathematica
    b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
    a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Denominator;
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 04 2019 *)

Formula

a(n) = A141459(n) * A141044(n).
a(n) = A141459(n) for n>2.
a(2n+1) = A054977(n).
a(2n) = A001897(n) * A054977(n).
Showing 1-10 of 12 results. Next