cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 263 results. Next

A014132 Complement of triangular numbers (A000217); also array T(n,k) = ((n+k)^2 + n-k)/2, n, k > 0, read by antidiagonals.

Original entry on oeis.org

2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Keywords

Comments

Numbers that are not triangular (nontriangular numbers).
Also definable as follows: a(1)=2; for n>1, a(n) is smallest integer greater than a(n-1) such that the condition "n and a(a(n)) have opposite parities" can always be satisfied. - Benoit Cloitre and Matthew Vandermast, Mar 10 2003
Record values in A256188 that are greater than 1. - Reinhard Zumkeller, Mar 26 2015
From Daniel Forgues, Apr 10 2015: (Start)
With n >= 1, k >= 1:
t(n+k) - k, 1 <= k <= n+k-1, n >= 1;
t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
where t(n+k) = t(n+k-1) + (n+k) is the (n+k)-th triangular number, while the number of compositions of n+k into 2 parts is C(n+k-1, 2-1) = n+k-1, the number of nontriangular numbers between t(n+k-1) and t(n+k), just right!
Related to Hilbert's Infinite Hotel:
0) All rooms, numbered through the positive integers, are full;
1) An infinite number of trains, each containing an infinite number of passengers, arrives: i.e., a 2-D lattice of pairs of positive integers;
2) Move occupant of room m, m >= 1, to room t(m) = m*(m+1)/2, where t(m) is the m-th triangular number;
3) Assign n-th passenger from k-th train to room t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
4) Everybody has his or her own room, no room is empty, for m >= 1.
If situation 1 happens again, repeat steps 2 and 3, you're back to 4.
(End)
1711 + 2*a(n)*(58 + a(n)) is prime for n<=21. The terms that do not have this property start 29,32,34,43,47,58,59,60,62,63,65,68,70,73,... - Benedict W. J. Irwin, Nov 22 2016
Also numbers k with the property that in the symmetric representation of sigma(k) both Dyck paths have a central peak or both Dyck paths have a central valley. (Cf. A237593.) - Omar E. Pol, Aug 28 2018

Examples

			From _Boris Putievskiy_, Jan 14 2013: (Start)
Start of the sequence as a table (read by antidiagonals, right to left), where the k-th row corresponds to the k-th column of the triangle (shown thereafter):
   2,  4,  7, 11, 16, 22, 29, ...
   5,  8, 12, 17, 23, 30, 38, ...
   9, 13, 18, 24, 31, 39, 48, ...
  14, 19, 25, 32, 40, 49, 59, ...
  20, 26, 33, 41, 50, 60, 71, ...
  27, 34, 42, 51, 61, 72, 84, ...
  35, 43, 52, 62, 73, 85, 98, ...
  (...)
Start of the sequence as a triangle (read by rows), where the i elements of the i-th row are t(i) + 1 up to t(i+1) - 1, i >= 1:
   2;
   4,  5;
   7,  8,  9;
  11, 12, 13, 14;
  16, 17, 18, 19, 20;
  22, 23, 24, 25, 26, 27;
  29, 30, 31, 32, 33, 34, 35;
  (...)
Row number i contains i numbers, where t(i) = i*(i+1)/2:
  t(i) + 1, t(i) + 2, ..., t(i) + i = t(i+1) - 1
(End) [Edited by _Daniel Forgues_, Apr 11 2015]
		

Crossrefs

Cf. A000124 (left edge: quasi-triangular numbers), A000096 (right edge: almost-triangular numbers), A006002 (row sums), A001105 (central terms).
Cf. A242401 (subsequence).
Cf. A145397 (the non-tetrahedral numbers).

Programs

  • Haskell
    a014132 n = n + round (sqrt $ 2 * fromInteger n)
    a014132_list = filter ((== 0) . a010054) [0..]
    -- Reinhard Zumkeller, Dec 12 2012
    
  • Magma
    IsTriangular:=func< n | exists{ k: k in [1..Isqrt(2*n)] | n eq (k*(k+1) div 2)} >; [ n: n in [1..90] | not IsTriangular(n) ]; // Klaus Brockhaus, Jan 04 2011
    
  • Mathematica
    f[n_] := n + Round[Sqrt[2n]]; Array[f, 71] (* or *)
    Complement[ Range[83], Array[ #(# + 1)/2 &, 13]] (* Robert G. Wilson v, Oct 21 2005 *)
    DeleteCases[Range[80],?(OddQ[Sqrt[8#+1]]&)] (* _Harvey P. Dale, Jul 24 2021 *)
  • PARI
    a(n)=if(n<1,0,n+(sqrtint(8*n-7)+1)\2)
    
  • PARI
    isok(n) = !ispolygonal(n,3); \\ Michel Marcus, Mar 01 2016
    
  • Python
    from math import isqrt
    def A014132(n): return n+(isqrt((n<<3)-7)+1>>1) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + round(sqrt(2*n)).
a(a(n)) = n + 2*floor(1/2 + sqrt(2n)) + 1.
a(n) = a(n-1) + A035214(n), a(1)=2.
a(n) = A080036(n) - 1.
a(n) = n + A002024(n). - Vincenzo Librandi, Jul 08 2010
A010054(a(n)) = 0. - Reinhard Zumkeller, Dec 10 2012
From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A007401(n)+1.
a(n) = A003057(n)^2 - A114327(n).
a(n) = ((t+2)^2 + i - j)/2, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)
A248952(a(n)) < 0. - Reinhard Zumkeller, Oct 20 2014
a(n) = A256188(A004202(n)). - Reinhard Zumkeller, Mar 26 2015
From Robert Israel, Apr 20 2015 (Start):
a(n) = A118011(n) - n.
G.f.: x/(1-x)^2 + x/(1-x) * Sum(j>=0, x^(j*(j+1)/2)) = x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
G.f. as array: x*y*(2 - 2*y + x^2*y + y^2 - x*(1 + y))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Apr 22 2024

Extensions

Following Alford Arnold's comment: keyword tabl and correspondent crossrefs added by Reinhard Zumkeller, Dec 12 2012
I restored the original definition. - N. J. A. Sloane, Jan 27 2019

A144064 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

A(n,k) is also the number of partitions of n into parts of k kinds.
In general, column k > 0 is asymptotic to k^((k+1)/4) * exp(Pi*sqrt(2*k*n/3)) / (2^((3*k+5)/4) * 3^((k+1)/4) * n^((k+3)/4)) * (1 - (Pi*k^(3/2)/(24*sqrt(6)) + sqrt(3)*(k+1)*(k+3)/(8*Pi*sqrt(2*k))) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field with k elements that contain an upper-triangular matrix. - Geoffrey Critzer, Nov 11 2022

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5, ...
  0,   2,   5,   9,  14,  20, ...
  0,   3,  10,  22,  40,  65, ...
  0,   5,  20,  51, 105, 190, ...
  0,   7,  36, 108, 252, 506, ...
		

Crossrefs

Cf. A082556 (k=30), A082557 (k=32), A082558 (k=48), A082559 (k=64).
Rows n=0-4 give: A000012, A001477, A000096, A006503, A006504.
Main diagonal gives A008485.
Antidiagonal sums give A067687.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A144064Column(k, len) = DedekindEta(len, -k)
    for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
  • PARI
    Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^k.
A(n,k) = Sum_{i=0..k} binomial(k,i) * A060642(n,k-i):

A014107 a(n) = n*(2*n-3).

Original entry on oeis.org

0, -1, 2, 9, 20, 35, 54, 77, 104, 135, 170, 209, 252, 299, 350, 405, 464, 527, 594, 665, 740, 819, 902, 989, 1080, 1175, 1274, 1377, 1484, 1595, 1710, 1829, 1952, 2079, 2210, 2345, 2484, 2627, 2774, 2925, 3080, 3239, 3402, 3569, 3740, 3915, 4094, 4277
Offset: 0

Views

Author

Keywords

Comments

Positive terms give a bisection of A000096. - Omar E. Pol, Dec 16 2016

Crossrefs

Programs

Formula

a(n) = A100345(n, n - 3) for n > 2.
a(n) = A033537(n) - 8*n^2; A100035(a(n)) = 2 for n > 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A014106(-n) for all n in Z. - Michael Somos, Nov 06 2005
From Michael Somos, Nov 06 2005: (Start)
G.f.: x*(-1 + 5*x)/(1 - x)^3.
E.g.f: x*(-1 + 2*x)*exp(x). (End)
a(n) = A097070(n)/A000108(n - 2), n >= 2. - Philippe Deléham, Apr 12 2007
a(n) = 2*a(n-1) - a(n-2) + 4, n > 1; a(0) = 0, a(1) = -1, a(2) = 2. - Zerinvary Lajos, Feb 18 2008
a(n) = a(n-1) + 4*n - 5 with a(0) = 0. - Vincenzo Librandi, Nov 20 2010
a(n) = (2*n-1)*(n-1) - 1. Also, with an initial offset of -1, a(n) = (2*n-1)*(n+1) = 2*n^2 + n - 1. - Alonso del Arte, Dec 15 2012
(a(n) + 1)^2 + (a(n) + 2)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2n - 1)^2 starting with a(1) = -1. - Jeffreylee R. Snow, Sep 17 2013
a(n) = A014105(n-1) - 1 for all n in Z. - Michael Somos, Nov 23 2021
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = -2*(1 - log(2))/3.
Sum_{n>=1} (-1)^n/a(n) = Pi/6 + log(2)/3 + 2/3. (End)
For n > 0, A002378(a(n)) = A000384(n-1)*A000384(n). - Charlie Marion, May 21 2023

A033282 Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
Offset: 3

Views

Author

Keywords

Comments

T(n+3, k) is also the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's cluster algebra of finite type A_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of the triangle of Narayana numbers A001263. For example, x^2 + 5*x + 5 = y^2 + 3*y + 1. - Paul Boddington, Mar 07 2003
Number of standard Young tableaux of shape (k+1,k+1,1^(n-k-3)), where 1^(n-k-3) denotes a sequence of n-k-3 1's (see the Stanley reference).
Number of k-dimensional 'faces' of the n-dimensional associahedron (see Simion, p. 168). - Mitch Harris, Jan 16 2007
Mirror image of triangle A126216. - Philippe Deléham, Oct 19 2007
For relation to Lagrange inversion or series reversion and the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. - Tom Copeland, Sep 29 2008
Row generating polynomials 1/(n+1)*Jacobi_P(n,1,1,2*x+1). Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p. 60]. See A001263 for the corresponding array of h-vectors for associahedra of type A_n. See A063007 and A080721 for the f-vectors for associahedra of type B and type D respectively. - Peter Bala, Oct 28 2008
f-vectors of secondary polytopes for Grobner bases for optimization and integer programming (see De Loera et al. and Thomas). - Tom Copeland, Oct 11 2011
From Devadoss and O'Rourke's book: The Fulton-MacPherson compactification of the configuration space of n free particles on a line segment with a fixed particle at each end is the n-Dim Stasheff associahedron whose refined f-vector is given in A133437 which reduces to A033282. - Tom Copeland, Nov 29 2011
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
The general results on the convolution of the refined partition polynomials of A133437, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
The signed triangle t(n, k) =(-1)^k* T(n+2, k-1), n >= 1, k = 1..n, seems to be obtainable from the partition array A111785 (in Abramowitz-Stegun order) by adding the entries corresponding to the partitions of n with the number of parts k. E.g., triangle t, row n=4: -1, (6+3) = 9, -21, 14. - Wolfdieter Lang, Mar 17 2017
The preceding conjecture by Lang is true. It is implicit in Copeland's 2011 comments in A086810 on the relations among a gf and its compositional inverse for that entry and inversion through A133437 (a differently normalized version of A111785), whose integer partitions are the same as those for A134685. (An inversion pair in Copeland's 2008 formulas below can also be used to prove the conjecture.) In addition, it follows from the relation between the inversion formula of A111785/A133437 and the enumeration of distinct faces of associahedra. See the MathOverflow link concernimg Loday and the Aguiar and Ardila reference in A133437 for proofs of the relations between the partition polynomials for inversion and enumeration of the distinct faces of the A_n associahedra, or Stasheff polytopes. - Tom Copeland, Dec 21 2017
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/(n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 07 2022
Chapoton's observation above is correct: the precise expansion is (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/ (n!*(n+1)!) = Sum_{k = 0..n-1} (-1)^k*T(n+2,n-k-1)*binomial(x+2*n-k,2*n-k), as can be verified using the WZ algorithm. For example, n = 4 gives (x+1)*(x+2)^2*(x+3)^2*(x+4)^2*(x+5)/(4!*5!) = 14*binomial(x+8,8) - 21*binomial(x+7,7) + 9*binomial(x+6,6) - binomial(x+5,5). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) begins:
n\k  0  1   2    3     4     5      6      7     8     9
3:   1
4:   1  2
5:   1  5   5
6:   1  9  21   14
7:   1 14  56   84    42
8:   1 20 120  300   330   132
9:   1 27 225  825  1485  1287    429
10:  1 35 385 1925  5005  7007   5005   1430
11:  1 44 616 4004 14014 28028  32032  19448  4862
12:  1 54 936 7644 34398 91728 148512 143208 75582 16796
... reformatted. - _Wolfdieter Lang_, Mar 17 2017
		

References

  • S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.

Crossrefs

Cf. diagonals: A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281; row sums: A001003 (Schroeder numbers, first term omitted). See A086810 for another version.
A007160 is a diagonal. Cf. A001263.
With leading zero: A086810.
Cf. A019538 'faces' of the permutohedron.
Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image).
Cf. A248727 for a relation to f-polynomials of simplices.
Cf. A111785 (contracted partition array, unsigned; see a comment above).
Antidiagonal sums give A005043. - Jordan Tirrell, Jun 01 2017

Programs

  • Magma
    [[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]];  // G. C. Greubel, Nov 19 2018
    
  • Maple
    T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);
    Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ Hugo Pfoertner, Nov 19 2018
    
  • PARI
    for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ G. C. Greubel, Nov 19 2018
    
  • Sage
    [[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # G. C. Greubel, Nov 19 2018

Formula

G.f. G = G(t, z) satisfies (1+t)*G^2 - z*(1-z-2*t*z)*G + t*z^4 = 0.
T(n, k) = binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <= k <= n-3.
From Tom Copeland, Nov 03 2008: (Start)
Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.
1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)] = t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...
b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)} = (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...
2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)] = (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...
b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)] = (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...
c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)] = t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...
x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437) to generate A033282 and show that A133437 is a refinement of A033282, i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.
y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264) to generate A033282 and show that A134264 is a refinement of A001263, i.e., a refinement of the h-polynomials of the associahedra.
f1[x,t](t+1) gives a generator for A088617.
f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].
f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].
The unsigned coefficients of x1(y t,t) are A074909, reverse rows of A135278. (End)
G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). - Paul Barry, Feb 06 2009
Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u + 2*t + 3*t^2 + 4*t^3 + ...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - Tom Copeland, Sep 06 2011
With a different offset, the row polynomials equal 1/(1 + x)*Integral_{0..x} R(n,t) dt, where R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*t^k are the row polynomials of A063007. - Peter Bala, Jun 23 2016
n-th row polynomial = ( LegendreP(n-1,2*x + 1) - LegendreP(n-3,2*x + 1) )/((4*n - 6)*x*(x + 1)), n >= 3. - Peter Bala, Feb 22 2017
n*T(n+1, k) = (4n-6)*T(n, k-1) + (2n-3)*T(n, k) - (n-3)*T(n-1, k) for n >= 4. - Fang Lixing, May 07 2019

Extensions

Missing factor of 2 for expansions of f1 and f2 added by Tom Copeland, Apr 12 2009

A080956 a(n) = (n+1)*(2-n)/2.

Original entry on oeis.org

1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, -1274, -1325, -1377
Offset: 0

Views

Author

Paul Barry, Mar 01 2003

Keywords

Comments

Coefficient of x in the polynomial C(n,0)+C(n+1,1)x+C(n+2,2)x(x-1)/2.
Equals A154990 * [1,2,3,...]. - Gary W. Adamson & Mats Granvik, Jan 19 2009
a(n) is essentially the case 1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_1(n) = n*(3-n)/2 and a(n) = P_1(n+1). See A005563 for the case k=0. - Peter Luschny, Jul 08 2011
This is the case k=-1 of the formula (k*m*(m+1)-(-1)^k+1)/2. See similar sequences listed in A262221. - Bruno Berselli, Sep 17 2015

Examples

			a(5) = 6-(1+2+3+4+5). - _Stanislav Sykora_, Feb 19 2014
		

Crossrefs

Programs

  • Magma
    [(n+1)*(2-n)/2: n in [0..80]]; // Vincenzo Librandi, Jul 08 2011
    
  • Maple
    G(x):=exp(x)*(x-x^2/2): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..54 ); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    FoldList[#1 - #2 &, 1, Range[0, 44]] (* Arkadiusz Wesolowski, May 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,1,0},60] (* Harvey P. Dale, Nov 29 2019 *)
  • PARI
    a(n)=(n+1)*(2-n)/2;
    
  • SageMath
    def A080956(n): return (2-n)*(n+1)//2 # G. C. Greubel, May 08 2025

Formula

a(n) = 2*(C(n+1, 1)-C(n+2, 2)) = (n+1)*(2-n)/2.
G.f.: (1-2*x)/(1-x)^3. - R. J. Mathar, Jun 11 2009
If we define f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = f(n,n-1,2), for n>=3. - Milan Janjic, Dec 20 2008
E.g.f.: exp(x)*(1-x^2/2). - Zerinvary Lajos, Apr 05 2009, R. J. Mathar, Jun 11 2009
a(n) = - A214292(n,1) for n > 0. - Reinhard Zumkeller, Jul 12 2012
Recurrence: a(0)=1, a(n+1) = a(n) - n. Also a(n)=(n+1)-Sum[k=1..n](k). Also a(n) = A000027(n+1) - A000217(n). Also, for n>1, a(n) = - A000096(n-2). - Stanislav Sykora, Feb 19 2014
Sum_{n>=3} 1/a(n) = -11/9. - Amiram Eldar, Sep 26 2022

Extensions

Lajos e.g.f. adapted to offset zero by R. J. Mathar, Jun 11 2009

A163493 Number of binary strings of length n which have the same number of 00 and 01 substrings.

Original entry on oeis.org

1, 2, 2, 3, 6, 9, 15, 30, 54, 97, 189, 360, 675, 1304, 2522, 4835, 9358, 18193, 35269, 68568, 133737, 260802, 509132, 995801, 1948931, 3816904, 7483636, 14683721, 28827798, 56637969, 111347879, 219019294, 431043814, 848764585, 1672056525, 3295390800, 6497536449
Offset: 0

Views

Author

Keywords

Comments

A variation of problem 11424 in the American Mathematical Monthly. Terms were brute-force calculated using Maple 10.
Proposed Problem 11610 in the Dec 2011 A.M.M.
From Gus Wiseman, Jul 27 2021: (Start)
Also the antidiagonal sums of the matrices counting integer compositions by length and alternating sum (A345197). So a(n) is the number of integer compositions of n + 1 of length (n - s + 3)/2, where s is the alternating sum of the composition. For example, the a(0) = 1 through a(6) = 7 compositions are:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (31) (41) (51) (61)
(121) (122) (123) (124)
(221) (222) (223)
(1112) (321) (322)
(1211) (1122) (421)
(1221) (1132)
(2112) (1231)
(2211) (2122)
(2221)
(3112)
(3211)
(11131)
(12121)
(13111)
For a bijection with the main (binary string) interpretation, take the run-lengths of each binary string of length n + 1 that satisfies the condition and starts with 1.
(End)

Examples

			1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 54*x^8 + 97*x^9 + ...
From _Gus Wiseman_, Jul 27 2021: (Start)
The a(0) = 1 though a(6) = 15 binary strings:
  ()  (0)  (1,0)  (0,0,1)  (0,0,1,0)  (0,0,1,1,0)  (0,0,0,1,0,1)
      (1)  (1,1)  (1,1,0)  (0,0,1,1)  (0,0,1,1,1)  (0,0,1,0,0,1)
                  (1,1,1)  (0,1,0,0)  (0,1,1,0,0)  (0,0,1,1,1,0)
                           (1,0,0,1)  (1,0,0,1,0)  (0,0,1,1,1,1)
                           (1,1,1,0)  (1,0,0,1,1)  (0,1,0,0,0,1)
                           (1,1,1,1)  (1,0,1,0,0)  (0,1,1,1,0,0)
                                      (1,1,0,0,1)  (1,0,0,1,1,0)
                                      (1,1,1,1,0)  (1,0,0,1,1,1)
                                      (1,1,1,1,1)  (1,0,1,1,0,0)
                                                   (1,1,0,0,1,0)
                                                   (1,1,0,0,1,1)
                                                   (1,1,0,1,0,0)
                                                   (1,1,1,0,0,1)
                                                   (1,1,1,1,1,0)
                                                   (1,1,1,1,1,1)
(End)
		

Crossrefs

Antidiagonal sums of the matrices A345197.
Row sums of A345907.
Taking diagonal instead of antidiagonal sums gives A345908.
A011782 counts compositions (or binary strings).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Maple
    with(combinat): count := proc(n) local S, matches, A, k, i; S := subsets(\{seq(i, i=1..n)\}): matches := 0: while not S[finished] do A := S[nextvalue](): k := 0: for i from 1 to n-1 do: if not (i in A) and not (i+1 in A) then k := k + 1: fi: if not (i in A) and (i+1 in A) then k := k - 1: fi: od: if (k = 0) then matches := matches + 1: fi: end do; return(matches); end proc:
    # second Maple program:
    b:= proc(n, l, t) option remember; `if`(n-abs(t)<0, 0, `if`(n=0, 1,
          add(b(n-1, i, t+`if`(l=0, (-1)^i, 0)), i=0..1)))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..36);  # Alois P. Heinz, Mar 20 2024
  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[2*k - 1, k]*Binomial[n - 2*k, k] + Binomial[2*k, k]*Binomial[n - 2*k - 1, k], {k, 0, n/3}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 28 2017, after Joel B. Lewis *)
    Table[Length[Select[Tuples[{0,1},n],Count[Partition[#,2,1],{0,0}]==Count[Partition[#,2,1],{0,1}]&]],{n,0,10}] (* Gus Wiseman, Jul 27 2021 *)
    a[0]:=1; a[n_]:=(1 + 3*HypergeometricPFQ[{1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3},{1, (1-n)/2, 1-n/2, -3*n/8}, -27])/2; Array[a,37,0] (* Stefano Spezia, Apr 26 2024 *)
  • Python
    from math import comb
    def A163493(n): return 2+sum((x:=comb((k:=m<<1)-1,m)*comb(n-k,m))+(x*(n-3*m)<<1)//(n-k) for m in range(1,n//3+1)) if n else 1 # Chai Wah Wu, May 01 2024

Formula

G.f.: 1/2/(1-x) + (1+2*x)/2/sqrt((1-x)*(1-2*x)*(1+x+2*x^2)). - Richard Stanley, corrected Apr 29 2011
G.f.: (1 + sqrt( 1 + 4*x / ((1 - x) * (1 - 2*x) * (1 + x + 2*x^2)))) / (2*(1 - x)). - Michael Somos, Jan 30 2012
a(n) = sum( binomial(2*k-1, k)*binomial(n-2*k,k) + binomial(2*k, k)*binomial(n-2*k-1, k), k=0..floor(n/3)). - Joel B. Lewis, May 21 2011
Conjecture: -n*a(n) +(2+n)*a(n-1) +(3n-12)*a(n-2) +(12-n)*a(n-3) +(2n-18)*a(n-4)+(56-12n)*a(n-5) +(8n-40)*a(n-6)=0. - R. J. Mathar, Nov 28 2011
G.f. y = A(x) satisfies x = (1 - x) * (1 - 2*x) * (1 + x + 2*x^2) * y * (y * (1 - x) - 1). - Michael Somos, Jan 30 2012
Sequence a(n) satisfies 0 = a(n) * (n^2-2*n) + a(n-1) * (-3*n^2+8*n-2) + a(n-2) * (3*n^2-10*n+2) + a(n-3) * (-5*n^2+18*n-6) + a(n-4) * (8*n^2-34*n+22) + a(n-5) * (-4*n^2+20*n-16) except if n=1 or n=2. - Michael Somos, Jan 30 2012
a(n) = (1 + 3*hypergeom([1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3],[1, (1-n)/2, 1-n/2, -3*n/8],-27))/2 for n > 0. - Stefano Spezia, Apr 26 2024
a(n) ~ 2^n / sqrt(Pi*n). - Vaclav Kotesovec, Apr 26 2024

A147875 Second heptagonal numbers: a(n) = n*(5*n+3)/2.

Original entry on oeis.org

0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
Offset: 0

Views

Author

Keywords

Comments

Zero followed by partial sums of A016897.
Apparently = every 2nd term of A111710 and A085787.
Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13, ... and the line from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

Examples

			G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - _Michael Somos_, Jan 25 2019
		

Crossrefs

Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).
Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.
Cf. A000566.

Programs

  • GAP
    List([0..50], n-> n*(5*n+3)/2); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
  • PARI
    a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

G.f.: x*(4+x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} A016897(k).
a(n) - a(n-1) = 5*n -1. - Vincenzo Librandi, Nov 26 2010
G.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
E.g.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013
a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=13. - Harvey P. Dale, May 15 2013
Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: x*(8 + 5*x)*exp(x)/2.
Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)
a(n) = A000566(-n) for all n in Z. - Michael Somos, Jan 25 2019
From Leo Tavares, Feb 14 2022: (Start)
a(n) = A003215(n) - A000217(n+1). See Sliced Hexagons illustration in links.
a(n) = A000096(n) + 2*A000290(n). (End)

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008
New name from Bruno Berselli, Jan 13 2011

A214292 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 12 2012

Keywords

Examples

			The triangle begins:
    0:                              0
    1:                            1   -1
    2:                          2   0   -2
    3:                       3    2   -2   -3
    4:                     4    5   0   -5   -4
    5:                  5    9    5   -5   -9   -5
    6:                6   14   14   0  -14  -14   -6
    7:             7   20   28   14  -14  -28  -20   -7
    8:           8   27   48   42   0  -42  -48  -27   -8
    9:        9   35   75   90   42  -42  -90  -75  -35   -9
   10:     10   44  110  165  132   0 -132 -165 -110  -44  -10
   11:  11   54  154  275  297  132 -132 -297 -275 -154  -54  -11  .
		

Crossrefs

Programs

  • Haskell
    a214292 n k = a214292_tabl !! n !! k
    a214292_row n = a214292_tabl !! n
    a214292_tabl = map diff $ tail a007318_tabl
       where diff row = zipWith (-) (tail row) row
  • Mathematica
    row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
    T[n_, k_] := row[n + 1][[k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)

Formula

T(n,k) = A007318(n+1,k+1) - A007318(n+1,k), 0<=k<=n, i.e. first differences of rows in Pascal's triangle;
T(n,k) = -T(n,k);
row sums and central terms equal 0, cf. A000004;
sum of positive elements of n-th row = A014495(n+1);
T(n,0) = n;
T(n,1) = A000096(n-2) for n > 1; T(n,1) = - A080956(n) for n > 0;
T(n,2) = A005586(n-4) for n > 3; T(n,2) = A129936(n-2);
T(n,3) = A005587(n-6) for n > 5;
T(n,4) = A005557(n-9) for n > 8;
T(n,5) = A064059(n-11) for n > 10;
T(n,6) = A064061(n-13) for n > 12;
T(n,7) = A124087(n) for n > 14;
T(n,8) = A124088(n) for n > 16;
T(2*n+1,n) = T(2*n+2,n) = A000108(n+1), Catalan numbers;
T(2*n+3,n) = A000245(n+2);
T(2*n+4,n) = A002057(n+1);
T(2*n+5,n) = A000344(n+3);
T(2*n+6,n) = A003517(n+3);
T(2*n+7,n) = A000588(n+4);
T(2*n+8,n) = A003518(n+4);
T(2*n+9,n) = A001392(n+5);
T(2*n+10,n) = A003519(n+5);
T(2*n+11,n) = A000589(n+6);
T(2*n+12,n) = A090749(n+6);
T(2*n+13,n) = A000590(n+7).

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)

A055999 a(n) = n*(n + 7)/2.

Original entry on oeis.org

0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, 1479
Offset: 0

Views

Author

Barry E. Williams, Jun 16 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-4)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Numbers m >= 0 such that 8m+49 is a square. - Bruce J. Nicholson, Jul 28 2017

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

Equals A000217(n+3) - 6.
Third column (m=2) of (1, 4)-Pascal triangle A095666.
Cf. A000290.

Programs

Formula

G.f.: x*(4-3*x)/(1-x)^3.
a(n) = A126890(n,3) for n>2. - Reinhard Zumkeller, Dec 30 2006
a(n) = A028563(n)/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,4), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 3 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+3). - Gary Detlefs, Aug 10 2010
Sum_{n>=1} 1/a(n) = 363/490. - R. J. Mathar, Jul 14 2012
a(n) = 4n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=4..n+3} i. - Wesley Ivan Hurt, Jun 28 2013
E.g.f.: (1/2)*x*(x+8)*exp(x). - G. C. Greubel, Jul 13 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/7 - 319/1470. - Amiram Eldar, Jan 10 2021
a(n) = A000290(n+1) - A000217(n-2). - Leo Tavares, Jan 28 2023
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 15*cos(sqrt(57)*Pi/2)/(8*Pi).
Product_{n>=1} (1 + 1/a(n)) = -63*cos(sqrt(41)*Pi/2)/(8*Pi). (End)

Extensions

More terms from James Sellers, Jul 04 2000
Previous Showing 31-40 of 263 results. Next