cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 245 results. Next

A099884 XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006

Examples

			The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
  1;
  2, 3;
  4, 6, 5;
  8, 12, 10, 15;
  16, 24, 20, 30, 17;
  32, 48, 40, 60, 34, 51;
  64, 96, 80, 120, 68, 102, 85;
  128, 192, 160, 240, 136, 204, 170, 255;
  256, 384, 320, 480, 272, 408, 340, 510, 257;
  512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
  1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
  2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
  ...
From _Antti Karttunen_, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
     1,    2,     4,     8,    16,     32,     64,    128
     3,    6,    12,    24,    48,     96,    192,    384
     5,   10,    20,    40,    80,    160,    320,    640
    15,   30,    60,   120,   240,    480,    960,   1920
    17,   34,    68,   136,   272,    544,   1088,   2176
    51,  102,   204,   408,   816,   1632,   3264,   6528
    85,  170,   340,   680,  1360,   2720,   5440,  10880
   255,  510,  1020,  2040,  4080,   8160,  16320,  32640
   257,  514,  1028,  2056,  4112,   8224,  16448,  32896
   771, 1542,  3084,  6168, 12336,  24672,  49344,  98688
  1285, 2570,  5140, 10280, 20560,  41120,  82240, 164480
  3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
  4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
  ...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - _Peter Munn_, Jan 13 2020
		

Crossrefs

Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.

Programs

  • Mathematica
    a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*2^(n-i)));B}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Python
    from sympy import binomial
    def a(n):
        return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
    def T(n, k): return 2**(n - k)*a(k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
    ;; Then use either this recurrence:
    (define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
    ;; or this one:
    (define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
    ;; Antti Karttunen, Sep 19 2016
    

Formula

T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020

Extensions

Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016

A141232 Overpseudoprimes to base 2: composite k such that k = A137576((k-1)/2).

Original entry on oeis.org

2047, 3277, 4033, 8321, 65281, 80581, 85489, 88357, 104653, 130561, 220729, 253241, 256999, 280601, 390937, 458989, 486737, 514447, 580337, 818201, 838861, 877099, 916327, 976873, 1016801, 1082401, 1145257, 1194649, 1207361, 1251949, 1252697, 1325843
Offset: 1

Views

Author

Vladimir Shevelev, Jun 16 2008

Keywords

Comments

Numbers are found by prime factorization of numbers from A001262 and a simple testing of the conditions indicated in comment to A141216.
All composite Mersenne numbers (A001348), Fermat numbers (A000215) and squares of Wieferich primes (A001220) are in this sequence. - Vladimir Shevelev, Jul 15 2008
C. Pomerance proved that this sequence is infinite (see Theorem 4 in the third reference). - Vladimir Shevelev, Oct 29 2011
Odd composite numbers k such that ord(2,k) * ((Sum_{d|k} phi(d)/ord(2,d)) - 1) = k-1, where phi = A000010 and ord(2,d) is the multiplicative order of 2 modulo d. - Jianing Song, Nov 13 2021

Crossrefs

Programs

  • Mathematica
    A137576[n_] := Module[{t}, (t = MultiplicativeOrder[2, 2 n + 1])* DivisorSum[2 n + 1, EulerPhi[#]/MultiplicativeOrder[2, #]&] - t + 1];
    okQ[n_] := n > 1 && CompositeQ[n] && n == A137576[(n-1)/2];
    Reap[For[k = 2, k < 2*10^6, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jan 11 2019, from PARI *)
  • PARI
    f(n)=my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isok(n) = (n>1) && !isprime(n) && (n == f((n-1)/2)); \\ Michel Marcus, Oct 05 2018

Formula

Sum_{n:a(n)<=x} 1 <= x^(3/4)(1+o(1)).

Extensions

Name edited by Michel Marcus, Oct 05 2018

A005054 a(0) = 1; a(n) = 4*5^(n-1) for n >= 1.

Original entry on oeis.org

1, 4, 20, 100, 500, 2500, 12500, 62500, 312500, 1562500, 7812500, 39062500, 195312500, 976562500, 4882812500, 24414062500, 122070312500, 610351562500, 3051757812500, 15258789062500, 76293945312500, 381469726562500, 1907348632812500, 9536743164062500
Offset: 0

Views

Author

Keywords

Comments

Consider the sequence formed by the final n decimal digits of {2^k: k >= 0}. For n=1 this is 1, 2, 4, 8, 6, 2, 4, ... (A000689) with period 4. For any n this is periodic with period a(n). Cf. A000855 (n=2), A126605 (n=3, also n=4). - N. J. A. Sloane, Jul 08 2022
First differences of A000351.
Length of repeating cycle of the final n+1 digits in Fermat numbers. - Lekraj Beedassy, Robert G. Wilson v and Eric W. Weisstein, Jul 05 2004
Number of n-digit endings for a power of 2 whose exponent is greater than or equal to n. - J. Lowell
For n>=1, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Equals INVERT transform of A033887: (1, 3, 13, 55, 233, ...) and INVERTi transform of A001653: (1, 5, 29, 169, 985, 5741, ...). - Gary W. Adamson, Jul 22 2010
a(n) = (n+1) terms in the sequence (1, 3, 4, 4, 4, ...) dot (n+1) terms in the sequence (1, 1, 4, 20, 100, ...). Example: a(4) = 500 = (1, 3, 4, 4, 4) dot (1, 1, 4, 20, 100) = (1 + 3 + 16, + 80 + 400), where (1, 3, 16, 80, 400, ...) = A055842, finite differences of A005054 terms. - Gary W. Adamson, Aug 03 2010
a(n) is the number of compositions of n when there are 4 types of each natural number. - Milan Janjic, Aug 13 2010
Apart from the first term, number of monic squarefree polynomials over F_5 of degree n. - Charles R Greathouse IV, Feb 07 2012
For positive integers that can be either of two colors (designated by ' or ''), a(n) is the number of compositions of 2n that are cardinal palindromes; that is, palindromes that only take into account the cardinality of the numbers and not their colors. Example: 3', 2'', 1', 1, 2', 3'' would count as a cardinal palindrome. - Gregory L. Simay, Mar 01 2020
a(n) is the length of the period of the sequence Fibonacci(k) (mod 5^(n-1)) (for n>1) and the length of the period of the sequence Lucas(k) (mod 5^n) (Kramer and Hoggatt, 1972). - Amiram Eldar, Feb 02 2022

References

  • T. Koshy, "The Ends Of A Fermat Number", pp. 183-4 Journal Recreational Mathematics, vol. 31(3) 2002-3 Baywood NY.

Crossrefs

Programs

  • Magma
    [(4*5^n+0^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2013
    
  • Maple
    a:= n-> ceil(4*5^(n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 08 2022
  • Mathematica
    CoefficientList[Series[(1 - x) / (1 - 5 x), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    Vec((1-x)/(1-5*x) + O(x^100)) \\ Altug Alkan, Dec 07 2015

Formula

a(n) = (4*5^n + 0^n) / 5. - R. J. Mathar, May 13 2008
G.f.: (1-x)/(1-5*x). - Philippe Deléham, Nov 02 2009
G.f.: 1/(1 - 4*Sum_{k>=1} x^k).
a(n) = 5*a(n-1) for n>=2. - Vincenzo Librandi, Dec 31 2010
a(n) = phi(5^n) = A000010(A000351(n)).
E.g.f.: (4*exp(5*x)+1)/5. - Paul Barry, Apr 20 2003
a(n + 1) = (((1 + sqrt(-19))/2)^n + ((1 - sqrt(-19))/2)^n)^2 - (((1 + sqrt(-19))/2)^n - ((1 - sqrt(-19))/2)^n)^2. - Raphie Frank, Dec 07 2015

Extensions

Better definition from R. J. Mathar, May 13 2008
Edited by N. J. A. Sloane, Jul 08 2022

A038183 One-dimensional cellular automaton 'sigma-minus' (Rule 90): 000,001,010,011,100,101,110,111 -> 0,1,0,1,1,0,1,0.

Original entry on oeis.org

1, 5, 17, 85, 257, 1285, 4369, 21845, 65537, 327685, 1114129, 5570645, 16843009, 84215045, 286331153, 1431655765, 4294967297, 21474836485, 73014444049, 365072220245, 1103806595329, 5519032976645, 18764712120593, 93823560602965, 281479271743489, 1407396358717445
Offset: 0

Views

Author

Antti Karttunen, Feb 09 1999

Keywords

Comments

Generation n (starting from the generation 0: 1) interpreted as a binary number.
Observation: for n <= 15, a(n) = smallest number whose Euler totient is divisible by 4^n. This is not true for n = 16. - Arkadiusz Wesolowski, Jul 29 2012
Orbit of 1 under iteration of Rule 90 = A048725 = (n -> n XOR 4n). - M. F. Hasler, Oct 09 2017

Examples

			Successive states are:
          1
         101
        10001
       1010101
      100000001
     10100000101
    1000100010001
   101010101010101
  10000000000000001
  ...
which when converted from binary to decimal give the sequence. - _N. J. A. Sloane_, Jul 21 2014
		

Crossrefs

Cf. A006977, A006978, A038184, A038185 (other cellular automata), A000215 (Fermat numbers).
Also alternate terms of A001317. Cf. A048710, A048720, A048757 (same 0/1-patterns interpreted in Fibonacci number system).
Equals 4*A089893(n)+1.
For right half of triangle (excluding the middle bit) see A245191.
Cf. Sierpiński's gasket, A047999.

Programs

  • Maple
    bit_n := (x,n) -> `mod`(floor(x/(2^n)),2);
    # A recursive, cellular automaton rule version:
    sigmaminus := proc(n) option remember: if (0 = n) then (1)
    else sum('((bit_n(sigmaminus(n-1),i)+bit_n(sigmaminus(n-1),i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
  • Mathematica
    r = 24; c = CellularAutomaton[90, {{1}, 0}, r - 1]; Table[FromDigits[c[[k, r - k + 1 ;; r + k - 1]], 2], {k, r}] (* Arkadiusz Wesolowski, Jun 09 2013 *)
    a[ n_] := Sum[ 4^(n - k) Mod[Binomial[2 n, 2 k], 2], {k, 0, n}]; (* Michael Somos, Jun 30 2018 *)
    a[ n_] := If[ n < 0, 0, Product[ BitGet[n, k] (2^(2^(k + 1))) + 1, {k, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
  • PARI
    vector(100,i,a=if(i>1,bitxor(a<<2,a),1)) \\ M. F. Hasler, Oct 09 2017
    
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)%2 * 4^(n-k))}; /* Michael Somos, Jun 30 2018 */
  • Python
    a=1
    for n in range(55):
        print(a, end=",")
        a ^= a*4
    # Alex Ratushnyak, May 04 2012
    
  • Python
    def A038183(n): return sum((bool(~(m:=n<<1)&m-k)^1)<Chai Wah Wu, May 02 2023
    

Formula

a(n) = Product_{i>=0} bit_n(n, i)*(2^(2^(i+1)))+1: A direct algebraic formula!
a(n) = Sum_{k=0..n} (C(2*n, 2*k) mod 2)*4^(n-k). - Paul Barry, Jan 03 2005
a(2*n+1) = 5*a(2n); a(n+1) = a(n) XOR 4*a(n) where XOR is binary exclusive OR operator. - Philippe Deléham, Jun 18 2005
a(n) = A001317(2n). - Alex Ratushnyak, May 04 2012

A052944 a(n) = 2^n + n - 1.

Original entry on oeis.org

0, 2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, 2058, 4107, 8204, 16397, 32782, 65551, 131088, 262161, 524306, 1048595, 2097172, 4194325, 8388630, 16777239, 33554456, 67108889, 134217754, 268435483, 536870940, 1073741853, 2147483678
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Shortest length of bit-string containing all bit-strings of given length n. - Rainer Rosenthal, Apr 30 2003
Such a bitstring can be obtained by taking a length-2^n binary de Bruijn sequence and repeating the n-1 initial symbols at the end. - Joerg Arndt, Mar 16 2015
Bit string definition is equivalent to minimum number of tosses of a coin to achieve all possible outcomes of n tosses. - Maurizio De Leo, Mar 01 2015
Also the indices of Fermat numbers that can be represented as cyclotomic numbers. Specifically, F(a(n)) = cyclotomic(2^2^n,2^2^n). - T. D. Noe, Oct 17 2003
a(n) = A006127(n) - 1. - Reinhard Zumkeller, Apr 13 2011
Randomly select (with uniform distribution) a length n binary word w. a(n) is apparently the expected wait time for the first occurrence of w over all infinite binary sequences. For example: a(4)=19. We consider A005434(4)=4 distinct classes of length 4 binary words that share the same autocorrelation. There are A003000(4)=6 words that have waiting time = 16; 2 words with waiting time =20; 6 words with waiting time = 18; and 2 words with waiting time =30. 1/16*(6*16 + 2*20 + 6*18 + 2*30) = 19. - Geoffrey Critzer, Feb 27 2014

Examples

			a(3) = 10 because "0001110100" has length 10 and contains all possible patterns of 3 bits:
  0001110100
  ----------
  000.......
  .001......
  ......010.
  ..011.....
  .......100
  .....101..
  ....110...
  ...111....
		

References

  • Discussed in newsgroup de.rec.denksport in Apr 2003
  • N. G. de Bruijn: A combinatorial problem. Indagationes Math. 8 (1946), pp. 461-467.

Crossrefs

Programs

Formula

G.f.: (2-3*x)/((1-2*x)*(1-x)^2).
a(n+1) = 2*a(n) - n + 2 with a(0)=0. - Pieter Moree, Mar 06 2004
For n>=1: partial sums of A000051. - Emeric Deutsch, Mar 04 2004
a(0)=0, a(1)=2, a(2)=5, a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n). - Hermann Kremer (Hermann.Kremer(AT)online.de), Mar 16 2004
a(n) = A000225(n) + n. - Zerinvary Lajos, May 29 2009
E.g.f.: U(0), where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1) )));(continued fraction, 3rd kind, 4-step ). - Sergei N. Gladkovskii, Dec 01 2012
G.f.: G(0)*x/(1-x) where G(k) = 1 + 2^k/(1 - x/(x + 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: Q(0)*x/(1-x), where Q(k)= 1 + 1/(2^k - 2*x*4^k/(2*x*2^k + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: exp(2*x) - (1-x)*exp(x). - G. C. Greubel, Oct 18 2019

A000435 Normalized total height of all nodes in all rooted trees with n labeled nodes.

Original entry on oeis.org

0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1

Views

Author

Keywords

Comments

This is the sequence that started it all: the first sequence in the database!
The height h(V) of a node V in a rooted tree is its distance from the root. a(n) = Sum_{all nodes V in all n^(n-1) rooted trees on n nodes} h(V)/n.
In the trees which have [0, n-1] = (0, 1, ..., n-1) as their ordered set of nodes, the number of nodes at distance i from node 0 is f(n,i) = (n-1)...(n-i)(i+1)n^(j-1), 0 <= i < n-1, i+j = n-1 (and f(n,n-1) = (n-1)!): (n-1)...(n-i) counts the words coding the paths of length i from any node to 0, n^(j-1) counts the Pruefer codes of the rest, words build by iterated deletion of the greater node of degree 1 ... except the last one, (i+1), necessary pointing at the path. If g(n,i) = (n-1)...(n-i)n^j, i+j = n-1, f(n,i) = g(n,i) - g(n,i+1), g(n,i) = Sum_{k>=i} f(n,k), the sequence is Sum_{i=1..n-1} g(n,i). - Claude Lenormand (claude.lenormand(AT)free.fr), Jan 26 2001
If one randomly selects one ball from an urn containing n different balls, with replacement, until exactly one ball has been selected twice, the probability that this ball was also the second ball to be selected once is a(n)/n^n. See also A001865. - Matthew Vandermast, Jun 15 2004
a(n) is the number of connected endofunctions with no fixed points. - Geoffrey Critzer, Dec 13 2011
a(n) is the number of weakly connected simple digraphs on n labeled nodes where every node has out-degree 1. A digraph where all out-degrees are 1 can be called a functional digraph due to the correspondence with endofunctions. - Andrew Howroyd, Feb 06 2024

Examples

			For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o   o
   |      \ /
   O       O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o        o   o
   |     |         \ /
   o     o   o      o     o o o
   |      \ /       |      \|/
   O       O        O       O
  (1)     (2)      (3)     (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001863, A001864, A001854, A002862 (unlabeled version), A234953, A259334.
Column k=1 of A350452.

Programs

  • Maple
    A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
    seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
    nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
  • PARI
    x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
    
  • PARI
    A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
    
  • Python
    from math import comb
    def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023

Formula

a(n) = (n-1)! * Sum_{k=0..n-2} n^k/k!.
a(n) = A001864(n)/n.
E.g.f.: LambertW(-x) - log(1+LambertW(-x)). - Vladeta Jovovic, Apr 10 2001
a(n) = A001865(n) - n^(n-1).
a(n) = A001865(n) - A000169(n). - Geoffrey Critzer, Dec 13 2011
a(n) ~ sqrt(Pi/2)*n^(n-1/2). - Vaclav Kotesovec, Aug 07 2013
a(n)/A001854(n) ~ 1/2 [See Renyi-Szekeres, (4.7)]. Also a(n) = Sum_{k=0..n-1} k*A259334(n,k). - David desJardins, Jan 20 2017
a(n) = (n-1)*A001863(n). - M. F. Hasler, Dec 10 2018

Extensions

Additional references from Valery A. Liskovets
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by M. F. Hasler, Dec 10 2018

A004249 a(n) = (2^2^...^2) (with n 2's) + 1.

Original entry on oeis.org

2, 3, 5, 17, 65537
Offset: 0

Views

Author

Keywords

Comments

a(0) could equally well be taken to be 1 rather than 2, which gives A007516. - N. J. A. Sloane, Sep 14 2009
A subsequence of the Fermat numbers 2^2^n + 1 = A000215.
a(0) through a(4) are primes; a(5) = 2^65536 + 1 is divisible by 825753601.
a(5) = 20035299...19156737 has 19729 decimal digits. - Alois P. Heinz, Jun 15 2022
It is unknown if a(6) = A000215(65536) is composite. - Jeppe Stig Nielsen, Jun 15 2022

References

  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 73.

Crossrefs

Cf. Fermat numbers 2^2^n + 1 = A000215. A007516 is another version.

Formula

a(0) = 2, a(n) = 2^a(n-1)/2 + 1 for n >= 1.
a(n) = A014221(n) + 1. - Leroy Quet, Jun 10 2009, updated by Jeppe Stig Nielsen, Jun 15 2022

A035050 a(n) is the smallest k such that k*2^n + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 2, 1, 15, 12, 6, 3, 5, 4, 2, 1, 6, 3, 11, 7, 11, 25, 20, 10, 5, 7, 15, 12, 6, 3, 35, 18, 9, 12, 6, 3, 15, 10, 5, 6, 3, 9, 9, 15, 35, 19, 27, 15, 14, 7, 14, 7, 20, 10, 5, 27, 29, 54, 27, 31, 36, 18, 9, 12, 6, 3, 9, 31, 23, 39, 39, 40, 20, 10, 5, 58, 29, 15, 36, 18, 9, 13
Offset: 0

Views

Author

Keywords

Comments

From Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 05 2010: (Start)
If a(i) = 2 * m then a(i+1) = m.
Proof: (I) a(i) = 2*m, 2*m * 2^i + 1 = m*2^(i+1) + 1 prime, so a(i+1) <= m;
(II) if a(i+1) = m-d for an integer d > 0, (m-d) * 2^(i+1) + 1 = (2*m-2*d) * 2^i + 1 prime;
(2m-2d) < 2m contradiction to a(i) = 2 * m, d = 0.
(End)
Conjecture: for n > 0, a(n) = k < 2^n, so k*2^n + 1 is a Proth prime A080076. - Thomas Ordowski, Apr 13 2019

Examples

			a(3)=2 because 1*2^3 + 1 = 9 is composite, 2*2^3 + 1 = 17 is prime.
a(99)=219 because 2^99k + 1 is not prime for k=1,2,...,218. The first term which is not a composite number of this arithmetic progression is 2^99*219 + 1.
		

Crossrefs

Analogous case is A034693. Special subscripts (n's for a(n)=1) are the exponents of known Fermat primes: A000215. See also Fermat numbers A000051.

Programs

  • Magma
    sol:=[];m:=1; for n in [0..82] do k:=0; while not IsPrime(k*2^n+1) do k:=k+1; end while; sol[m]:=k; m:=m+1; end for; sol; // Marius A. Burtea, Jun 05 2019
  • Mathematica
    a = {}; Do[k = 0; While[ ! PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k], {n, 0, 100}]; a (* Artur Jasinski *)
    Table[Module[{k=1,n2=2^n},While[!PrimeQ[k*n2+1],k++];k],{n,0,90}] (* Harvey P. Dale, May 25 2024 *)
  • PARI
    a(n) = {my(k = 1); while (! isprime(2^n*k+1), k++); k;}
    

Formula

a(n) << 19^n by Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

A081091 Primes of the form 2^i + 2^j + 1, i > j > 0.

Original entry on oeis.org

7, 11, 13, 19, 37, 41, 67, 73, 97, 131, 137, 193, 521, 577, 641, 769, 1033, 1153, 2053, 2081, 2113, 4099, 4129, 8209, 12289, 16417, 18433, 32771, 32801, 32833, 40961, 65539, 133121, 147457, 163841, 262147, 262153, 262657, 270337, 524353, 524801
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2003

Keywords

Comments

This is sequence A070739 without the Fermat primes, A000215. Sequence A081504 lists the i for which there are no primes. - T. D. Noe, Jun 22 2007
Primes in A014311. - Reinhard Zumkeller, May 03 2012

Examples

			    7 = 2^2 + 2^1 + 1
   11 = 2^3 + 2^1 + 1
   13 = 2^3 + 2^2 + 1
   19 = 2^4 + 2^1 + 1
   37 = 2^5 + 2^2 + 1
   41 = 2^5 + 2^3 + 1
   67 = 2^6 + 2^1 + 1
   73 = 2^6 + 2^3 + 1
   97 = 2^6 + 2^5 + 1
  131 = 2^7 + 2^1 + 1
  137 = 2^7 + 2^3 + 1
  193 = 2^7 + 2^6 + 1
  521 = 2^9 + 2^3 + 1
		

Crossrefs

Essentially the same as A070739.
Cf. A095077 (primes with four bits set).
A057733 = 2^A057732 + 3 and A039687 = 3*2^A002253 + 1 are subsequences.

Programs

  • Haskell
    a081091 n = a081091_list !! (n-1)
    a081091_list = filter ((== 1) . a010051') a014311_list
    -- Reinhard Zumkeller, May 03 2012
    
  • Maple
    N:= 20: # to get all terms < 2^N
    select(isprime, [seq(seq(2^i+2^j+1,j=1..i-1),i=1..N-1)]); # Robert Israel, May 17 2016
  • Mathematica
    Select[Flatten[Table[2^i + 2^j + 1, {i, 21}, {j, i-1}]], PrimeQ] (* Alonso del Arte, Jan 11 2011 *)
  • PARI
    do(mx)=my(v=List(),t); for(i=2,mx,for(j=1,i-1,if(ispseudoprime(t=2^i+2^j+1), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • PARI
    is(n)=hammingweight(n)==3 && isprime(n) \\ Charles R Greathouse IV, Aug 28 2017
    
  • PARI
    A81091=[7]; next_A081091(p, i=exponent(p), j=exponent(p-2^i))=!until(isprime(2^i+2^j+1), j++>=i && i++ && j=1)+2^i+2^j
    A081091(n)={for(k=#A81091, n-1, A81091=concat(A81091, next_A081091(A81091[k]))); A81091[n]} \\ M. F. Hasler, Mar 03 2023
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A081091_gen(): # generator of terms
        return filter(isprime,map(lambda s:int('1'+''.join(s)+'1',2),(s for l in count(1) for s in multiset_permutations('0'*(l-1)+'1'))))
    A081091_list = list(islice(A081091_gen(),30)) # Chai Wah Wu, Jul 19 2022

Formula

A000120(a(n)) = 3.

A204620 Numbers k such that 3*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

41, 209, 157169, 213321, 303093, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 17 2012

Keywords

Comments

Terms are odd: by Morehead's theorem, 3*2^(2*n) + 1 can never divide a Fermat number.
No other terms below 7516000.
Is this sequence the same as "Numbers k such that 3*2^k + 1 is a factor of a Fermat number 2^(2^m) + 1 for some m"? - Arkadiusz Wesolowski, Nov 13 2018
The last sentence of Morehead's paper is: "It is easy to show that composite numbers of the forms 2^kappa * 3 + 1, 2^kappa * 5 + 1 can not be factors of Fermat's numbers." [a proof is needed]. - Jeppe Stig Nielsen, Jul 23 2019
Any factor of a Fermat number 2^(2^m) + 1 of the form 3*2^k + 1 is prime if k < 2*m + 6. - Arkadiusz Wesolowski, Jun 12 2021
If, for any m >= 0, F(m) = 2^(2^m) + 1 has a prime factor p of the form 3*2^k + 1, then F(m)/p is congruent to 11 mod 30. - Arkadiusz Wesolowski, Jun 13 2021
A number k belongs to this sequence if and only if the order of 2 modulo p is not divisible by 3, where p is a prime of the form 3*2^k + 1 (see Golomb paper). - Arkadiusz Wesolowski, Jun 14 2021

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 209, 2}]; lst
  • PARI
    isok(n) = my(p = 3*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018
Previous Showing 31-40 of 245 results. Next