A052182
Determinant of n X n matrix whose rows are cyclic permutations of 1..n.
Original entry on oeis.org
1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410
Offset: 1
Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000
a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ].
-
1,seq(LinearAlgebra:-Determinant(Matrix(n,shape=Circulant[$1..n])),n=2..30); # Robert Israel, Aug 31 2014
-
f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *)
f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19]
(* Robert G. Wilson v, Aug 31 2014 *)
Table[Det[Table[RotateRight[Range[k],n],{n,0,k-1}]],{k,30}] (* Harvey P. Dale, Jun 20 2024 *)
-
(1+n)^(n-1)*binomial(n+2,n)*(-1)^(n) $ n=0..16 // Zerinvary Lajos, Apr 01 2007
-
a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017
A167010
a(n) = Sum_{k=0..n} C(n,k)^n.
Original entry on oeis.org
1, 2, 6, 56, 1810, 206252, 86874564, 132282417920, 770670360699138, 16425660314368351892, 1367610300690018553312276, 419460465362069257397304825200, 509571049488109525160616367158261124, 2290638298071684282149128235413262383804352
Offset: 0
The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1; ...
in which the row sums form this sequence.
-
[(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2012 *)
-
a(n)=sum(k=0,n,binomial(n,k)^n)
-
[sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
A177885
a(n) = (1-n)^(n-1).
Original entry on oeis.org
1, 1, -1, 4, -27, 256, -3125, 46656, -823543, 16777216, -387420489, 10000000000, -285311670611, 8916100448256, -302875106592253, 11112006825558016, -437893890380859375, 18446744073709551616, -827240261886336764177
Offset: 0
From _Paul D. Hanna_, Aug 24 2016: (Start)
E.g.f.: A(x) = 1 + x - x^2/2! + 4*x^3/3! - 27*x^4/4! + 256*x^5/5! - 3125*x^6/6! + 46656*x^7/7! - 823543*x^8/8! +...+ (1-n)^(n-1)*x^n/n! +...
Related series.
Series_Reversion(A(x) - 1) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 +...+ (-x)^n/(n*(n-1)) +... (End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..140
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See pp. 32, 34.
- Vladimir Kruchinin and Dmitry V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
- André LeClair, An electrostatic depiction of the validity of the Riemann Hypothesis and a formula for the N-th zero at large N, arXiv:1305.2613 [math-ph], 2013.
-
[(1-n)^(n-1): n in [0..30]]; // Vincenzo Librandi, May 15 2011
-
Join[{1,1}, Table[(1-n)^(n-1), {n, 2, 20}]] (* Harvey P. Dale, Aug 10 2012 *)
nn = 18; Range[0, nn]! CoefficientList[ Series[ Exp[ ProductLog[ x]], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 23 2012 *)
-
a(n)=(1-n)^(n-1) \\ Charles R Greathouse IV, May 15 2013
-
{a(n) = my(A = 1 + serreverse( x + sum(m=2,n+2, (-x)^m/(m*(m-1)) +x^2*O(x^n)))); n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 24 2016
A060281
Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.
Original entry on oeis.org
1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1
Triangle T(n,k) begins:
1;
3, 1;
17, 9, 1;
142, 95, 18, 1;
1569, 1220, 305, 30, 1;
21576, 18694, 5595, 745, 45, 1;
355081, 334369, 113974, 18515, 1540, 63, 1;
6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
Tree polynomials (with offset 0):
t_0(y) = 1;
t_1(y) = y;
t_2(y) = 3*y + y^2;
t_3(y) = 17*y + 9*y^2 + y^3; (End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
- W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009
- Alois P. Heinz, Rows n = 1..141, flattened
- Julia Handl and Joshua Knowles, An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag. [From _N. J. A. Sloane_, Jul 09 2009]
- D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- D. E. Knuth and B. Pittel, A recurrence related to trees, Proceedings of the American Mathematical Society, 105(2):335-349, 1989. [From _Peter Luschny_, Mar 03 2009]
- J. Riordan, Enumeration of Linear Graphs for Mappings of Finite Sets, Ann. Math. Stat., 33, No. 1, Mar. 1962, pp. 178-185.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
-
A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
[A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
-
with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
From Peter Luschny, Mar 03 2009: (Start)
T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
seq(print(coeff(p,z,i)*i!),i=0..8); (End)
-
t=Sum[n^(n-1) x^n/n!,{n,1,10}];
Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
-
@CachedFunction
def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024
A089072
Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1
Triangle begins:
1;
1, 4;
1, 8, 27;
1, 16, 81, 256;
1, 32, 243, 1024, 3125;
1, 64, 729, 4096, 15625, 46656;
...
Related to triangle of Eulerian numbers
A008292.
-
a089072 = flip (^)
a089072_row n = map (a089072 n) [1..n]
a089072_tabl = map a089072_row [1..] -- Reinhard Zumkeller, Mar 18 2013
-
[k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
-
Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
-
flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022
More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
A245732
Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0
Triangle T(n,k) begins:
0 : 1;
1 : 1, 1;
2 : 4, 3, 1;
3 : 27, 13, 1, 1;
4 : 256, 75, 7, 1, 1;
5 : 3125, 541, 21, 1, 1, 1;
6 : 46656, 4683, 141, 21, 1, 1, 1;
7 : 823543, 47293, 743, 71, 1, 1, 1, 1;
8 : 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)
A000435
Normalized total height of all nodes in all rooted trees with n labeled nodes.
Original entry on oeis.org
0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1
For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
o
|
o o o
| \ /
O O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
o
|
o o o o
| | \ /
o o o o o o o
| \ / | \|/
O O O O
(1) (2) (3) (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)
- Vijayakumar Ambat, Article in the Malayalam newspaper Ayala Manorama - Padhippura, 12 June 2015, that mentions the OEIS, and in particular this sequence.
- V. I. Arnold, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with the same number of edges and vertices, Functional Anal. Appl., 30 (1996), 1-17.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, arXiv:1607.05776 [math.CO], 2016.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, Version on DZ's home page with more links; Local copy, pdf file only, no active links
- I. P. Goulden and D. M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, arXiv:math/9902009 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, arXiv:math/9902125 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera Ann. Comb. 4 (2000), no. 1, 27-46. (See Theorem 1.1.)
- Brady Haran, The Number Collector (with Neil Sloane), Numberphile Podcast (2019)
- Andrew Lohr and Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32.
- T. Kyle Petersen, Exponential generating functions and Bell numbers, Inquiry-Based Enumerative Combinatorics (2019) Chapter 7, Undergraduate Texts in Mathematics, Springer, Cham, 98-99.
- A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- Marko Riedel et al., Connected endofunctions with no fixed points, Mathematics Stack Exchange, Dec 2014.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Page from 1964 notebook showing start of OEIS [includes A000027, A000217, A000292, A000332, A000389, A000579, A000110, A007318, A000058, A000215, A000289, A000324, A234953 (= A001854(n)/n), A000435, A000169, A000142, A000272, A000312, A000111]
- N. J. A. Sloane, Cover of same notebook
- N. J. A. Sloane, Lengths of Cycle Times in Random Neural Networks, Ph. D. Dissertation, Cornell University, February 1967; also Report No. 10, Cognitive Systems Research Program, Cornell University, 1967. This sequence appears on page 119.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Illustration of a(3) and a(4)
- Yukun Yao and Doron Zeilberger, An Experimental Mathematics Approach to the Area Statistic of Parking Functions, arXiv:1806.02680 [math.CO], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
-
x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
-
A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
-
from math import comb
def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023
A007830
a(n) = (n+3)^n.
Original entry on oeis.org
1, 4, 25, 216, 2401, 32768, 531441, 10000000, 214358881, 5159780352, 137858491849, 4049565169664, 129746337890625, 4503599627370496, 168377826559400929, 6746640616477458432, 288441413567621167681, 13107200000000000000000, 630880792396715529789561
Offset: 0
- M. Shapiro, B. Shapiro and A. Vainshtein - Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.27.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
- P. J. Cameron, Two-graphs and Trees, Discrete Math. 127 (1994) 63-74.
- P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
- Oleg Pikhurko, Generating Edge-Labeled Trees, American Math. Monthly, 112 (2005) 919-921.
- M. Shapiro, B. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, 1996.
- Index entries for sequences related to trees
-
[(n+3)^n: n in [0..20]]; // G. C. Greubel, Mar 06 2020
-
A007830:=n->(n+3)^n; seq(A007830(n), n=0..20);
T := -LambertW(-x): ser := series(exp(3*T)/(1-T), x, 20):
seq(n!*coeff(ser, x, n), n = 0..18); # Peter Luschny, Jan 20 2023
-
Table[(n+3)^n, {n, 0, 18}]
-
a(n)=(n+3)^n \\ Charles R Greathouse IV, Feb 06 2017
-
[(n+3)^n for n in (0..20)] # G. C. Greubel, Mar 06 2020
A069856
E.g.f.: exp(x)/(1+LambertW(x)).
Original entry on oeis.org
1, 0, 3, -17, 169, -2079, 31261, -554483, 11336753, -262517615, 6791005621, -194103134499, 6074821125385, -206616861429575, 7588549099814957, -299320105069298459, 12619329503201165281, -566312032570838608863, 26952678355224681891685
Offset: 0
Joe Keane (jgk(AT)jgk.org), May 03 2002
- sci.math article 3CBC2B66.224E(AT)olympus.mons
-
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Exp[-x]/(1 - t), {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)
Range[0, 18]! CoefficientList[ Series[ Exp[x]/(1 + LambertW[x]), {x, 0, 18}], x] (* Robert G. Wilson v, Nov 28 2012 *)
-
my(x='x+O('x^20)); Vec(serlaplace(exp(x)/(1+lambertw(x)))) \\ G. C. Greubel, Jun 11 2017
A174824
a(n) = period of the sequence {m^m, m >= 1} modulo n.
Original entry on oeis.org
1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 60, 16, 272, 18, 342, 20, 42, 110, 506, 24, 100, 156, 54, 84, 812, 60, 930, 32, 330, 272, 420, 36, 1332, 342, 156, 40, 1640, 42, 1806, 220, 180, 506, 2162, 48, 294, 100, 816, 156, 2756, 54, 220, 168, 342
Offset: 1
For n=3, 1^1 == 1 (mod 3), 2^2 == 1 (mod 3), 3^3 == 0 (mod 3), etc. The sequence of residues 1, 1, 0, 1, 2, 0, 1, 1, 0, ... has period 6, so a(3) = 6. - _Michael B. Porter_, Mar 13 2018
-
Table[LCM[n, CarmichaelLambda[n]], {n, 100}] (* T. D. Noe, Feb 20 2014 *)
-
a(n)=local(ps);ps=factor(n)[,1]~;for(k=1,#ps,n=lcm(n,ps[k]-1));n
-
a(n) = lcm(n, lcm(znstar(n)[2])); \\ Michel Marcus, Mar 18 2016; corrected by Michel Marcus, Nov 13 2019
-
apply( {A174824(n)=lcm(lcm([p-1|p<-factor(n)[,1]]),n)}, [1..99]) \\ [...] = znstar(n)[2], but 3x faster. - M. F. Hasler, Nov 13 2019
Comments