cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 424 results. Next

A080403 Numbers n such that both A000203(n) and A001157(n) are squarefree: sum of divisors and squares of divisors of n are squarefree.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 13, 16, 18, 20, 25, 29, 37, 49, 50, 61, 64, 72, 73, 80, 101, 109, 113, 116, 117, 121, 122, 128, 137, 144, 148, 169, 173, 181, 200, 208, 218, 229, 242, 244, 261, 277, 281, 289, 292, 313, 317, 320, 325, 333, 353, 362, 373, 389, 397, 401, 404, 409
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s1=MoebiusMu[DivisorSigma[1, n]]; s2=MoebiusMu[DivisorSigma[2, n]]; If[ !Equal[s1, 0]&&!Equal[s2, 0], Print[n]], {n, 1, 1000}]

A082100 a(n) = A001157(A002110(n)), sum of squares of divisors of primorial numbers.

Original entry on oeis.org

5, 50, 1300, 65000, 7930000, 1348100000, 390949000000, 141523538000000, 75007475140000000, 63156294067880000000, 60756354893300560000000, 83236206203821767200000000, 140003298834828212430400000000
Offset: 1

Views

Author

Labos Elemer, Apr 14 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s={}; p=1; prod=1; Do[prod *= (p = NextPrime@p); AppendTo[s, DivisorSigma[2, prod]], {13}]; s (* Amiram Eldar, Jul 31 2019 *)
    Table[DivisorSigma[2,p],{p,FoldList[Times,Prime[Range[20]]]}] (* Harvey P. Dale, Mar 11 2023 *)

A296306 a(n) = A001157(n)/A050999(n).

Original entry on oeis.org

1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 1365, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 5461, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 341, 1, 5, 1, 21, 1, 5, 1, 85, 1, 5, 1, 21, 1, 5, 1, 1365
Offset: 1

Views

Author

Ivan N. Ianakiev, Dec 10 2017

Keywords

Comments

a(n) is the sum of the second powers of the divisors of n divided by the sum of the second powers of the odd divisors of n.
Conjecture 1: For any nonnegative integer k and positive integer n, the sum of the k-th powers of the divisors of n is divisible by the sum of the k-th powers of the odd divisors of n.
Conjecture 2: Distinct terms form A002450 without A002450(0). In other words, a(2^(n-1)) = A002450(n), for n > 0.
Conjecture 3: For n > 0, the list of the first 2^n - 1 terms is palindromic.
Conjecture 4: For n > 0, the sum of the first 2^n - 1 terms equals A006095(n+1).
To prove Conjecture 1 all one needs to do is to prove that the sum of the k-th powers of the divisors of n divided by the sum of the k-th powers of the odd divisors of n equals: a) A001511(n), for k = 0, and b) ((2^k)^A001511(n) - 1)/(2^k - 1), for k > 0. - Ivan N. Ianakiev, Jan 29 2020
Conjecture 1 indeed follows from multiplicativity of sigma_k, in particular sigma_k(2^j (2m+1)) = sigma_k(2^j) sigma_k(2m+1). Conjecture 3 follows from Radcliffe's formula, since A007814 has this property. - M. F. Hasler, Jan 31 2020
a(n) is the sum of squares of powers of 2 that divide n. - Amiram Eldar, Nov 12 2020

Examples

			A001157(4) = 21 and A050999(4) = 1, therefore a(4) = A001157(4)/A050999(4) = 21.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(2,n)/&+[d^2:d in Divisors(n)|IsOdd(d)]:n in [1..100]]; // Marius A. Burtea, Jan 29 2020
    
  • Mathematica
    f[n_]:=DivisorSigma[2,n]/Total[Select[Divisors[n],OddQ]^2]; f/@Range[100]
    Table[(4^(IntegerExponent[n, 2] + 1) - 1)/3, {n, 1, 100}] (* Amiram Eldar, Nov 12 2020 *)
  • PARI
    a(n) = sigma(n, 2)/sumdiv(n, d, d^2*(d % 2)); \\ Michel Marcus, Dec 11 2017
    
  • Python
    def A296306(n): return ((1<<((n&-n).bit_length()<<1))-1)//3 # Chai Wah Wu, Jul 16 2022

Formula

a(n) = (4^(A007814(n) + 1) - 1)/3. - David Radcliffe, Dec 11 2017
Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = 1 for odd primes p. - Amiram Eldar, Nov 12 2020
G.f.: Sum_{k>=0} 4^k * x^(2^k) / (1 - x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Dirichlet g.f.: zeta(s)/(1-4/2^s). - Amiram Eldar, Dec 31 2022

A307242 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1)*sigma_2(k+1)*a(n-k), where sigma_2() is the sum of squares of divisors (A001157).

Original entry on oeis.org

1, 5, 15, 46, 159, 570, 2036, 7208, 25400, 89456, 315335, 1112286, 3923867, 13841052, 48818892, 172186234, 607314043, 2142064478, 7555322206, 26648517536, 93992371863, 331521717928, 1169314641890, 4124305724658, 14546896171716, 51308559972146, 180971133233105, 638305788168090
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) DivisorSigma[2, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 27}]
    nmax = 27; CoefficientList[Series[-x/Sum[k^2 (-x)^k/(1 - (-x)^k), {k, 1, nmax + 1}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[1/D[Log[Product[(1 - (-x)^k)^k, {k, 1, nmax + 1}]], x], {x, 0, nmax}], x]

Formula

G.f.: -x / Sum_{k>=1} k^2*(-x)^k/(1 - (-x)^k).
G.f.: 1 / (d/dx) log(Product_{k>=1} (1 - (-x)^k)^k).

A326826 a(n) = (1/2) * Sum_{d|n} (sigma_1(d) + sigma_2(d)), where sigma_1 = A000203 and sigma_2 = A001157.

Original entry on oeis.org

1, 5, 8, 19, 17, 43, 30, 69, 60, 95, 68, 176, 93, 171, 166, 255, 155, 342, 192, 403, 303, 395, 278, 681, 358, 543, 490, 738, 437, 961, 498, 969, 709, 911, 720, 1476, 705, 1131, 978, 1603, 863, 1773, 948, 1732, 1440, 1643, 1130, 2634, 1284, 2110, 1648, 2391, 1433, 2882, 1706
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Inverse Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Magma
    [(1/2)*&+[DivisorSigma(1,d)+DivisorSigma(2,d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 20 2019
  • Maple
    with(numtheory):
    a:= n-> add(d*(d+1)*tau(n/d), d=divisors(n))/2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[DivisorSigma[1, d] + DivisorSigma[2, d], {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, sigma(d)+sigma(d, 2))/2; \\ Michel Marcus, Oct 20 2019
    

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j) / (1 - x^(i*j))^3.
G.f.: (1/2) * Sum_{i>=1} Sum_{j>=1} j * (j + 1) * x^(i*j) / (1 - x^(i*j)).
G.f.: (1/2) * Sum_{k>=1} (sigma_1(k) + sigma_2(k)) * x^k / (1 - x^k).
Dirichlet g.f.: zeta(s)^2 * (zeta(s-1) + zeta(s-2)) / 2.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * tau(n/d), where tau = A000005.
a(n) = Sum_{d|n} A007437(d).
Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Dec 11 2021

A379723 Possible values of the sum of squares of divisors function (A001157).

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 85, 91, 122, 130, 170, 210, 250, 260, 290, 341, 362, 455, 500, 530, 546, 610, 651, 820, 842, 850, 962, 1050, 1220, 1300, 1365, 1370, 1450, 1682, 1700, 1810, 1850, 1911, 2210, 2366, 2451, 2500, 2562, 2650, 2810, 2900, 3172, 3255, 3410, 3482
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

The distinct values of the sigma_2(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951).
5460 = sigma_2(60) and 5461 = sigma_2(64) are two consecutive integers in this sequence. Are there any other such pairs? There are none below 10^10.

Crossrefs

A066872 is a subsequence.
Subsequence of A211347.

Programs

  • Mathematica
    seq[lim_] := Select[Union[DivisorSigma[2, Range[lim]]], # <= lim &]; seq[3500]
  • PARI
    is(n) = invsigmaNum(n, 2) > 0; \\ Amiram Eldar, Jan 03 2025, using Max Alekseyev's invphi.gp

A002800 Erroneous version of A001157.

Original entry on oeis.org

1, 5, 10, 21, 26, 53, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290, 455
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. See Table I. The entry 53 should be 50.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A066089 Smallest m such that A066088(m) = A001221(A001157(m)) = n.

Original entry on oeis.org

2, 3, 10, 12, 52, 188, 1175, 4840, 25168, 90992, 896368, 8164112, 30997008, 233151408, 2111839632
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Examples

			n = 5: a(5) = 52, sigma_2(52) = 2704+676+169+16+4+1 = 3570 = 2*3*5*7*17.
		

Crossrefs

Programs

  • PARI
    { for (n=1, 100, m=1; while(omega(sigma(m, 2)) != n, m++); write("b066089.txt", n, " ", m) ) } \\ Harry J. Smith, Nov 12 2009

Extensions

Terms a(11) - a(13) from Harry J. Smith, Nov 12 2009
a(14)-a(15) from Donovan Johnson, Apr 16 2013

A318169 Composite numbers k such that sigma_2(k) - 1 is a square, where sigma_2(k) = A001157(k) is the sum of squares of divisors of k.

Original entry on oeis.org

6, 40, 136, 2696, 3352, 46976, 223736, 5509736, 1915798072
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

This property is shared with all the primes since sigma_2(p) = 1 + p^2.
The values of sqrt(sigma_2(a(n))-1) are 7, 47, 157, 3107, 3863, 54243, 257843, 6349657, 2207848187.
Are there terms not of the form 2^k * p where p is prime? - David A. Corneth, Aug 20 2018
2*10^12 < a(10) <= 44463118771144. The terms 21687324345660824, 14524130539077100050485512, 287674439504279743204606472 (and others) of the form 2^k * p can be found by solving the quadratic Diophantine equation sigma_2(2^k) * (p^2 + 1) = x^2 + 1 for appropriate values of k. - Giovanni Resta, Aug 20 2018

Crossrefs

Programs

  • Magma
    [n: n in [2..6*10^6] |not IsPrime(n) and IsSquare(DivisorSigma(2, n)-1)]; // Vincenzo Librandi, Aug 22 2018
  • Mathematica
    sQ[n_] := IntegerQ[Sqrt[n]]; aQ[n_] := CompositeQ[n] && sQ[DivisorSigma[2,n]-1]; Select[Range[10000],aQ]
  • PARI
    forcomposite(n=2, 1e15, if( issquare(sigma(n,2)-1), print1(n, ", ")))
    

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025
Previous Showing 31-40 of 424 results. Next