cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 361 results. Next

A133686 Number of labeled n-node graphs with at most one cycle in each connected component.

Original entry on oeis.org

1, 1, 2, 8, 57, 608, 8524, 145800, 2918123, 66617234, 1704913434, 48300128696, 1499864341015, 50648006463048, 1847622972848648, 72406232075624192, 3033607843748296089, 135313823447621913500, 6402077421524339766058, 320237988317922139148736
Offset: 0

Views

Author

Washington Bomfim, May 12 2008

Keywords

Comments

The total number of those graphs of order 5 is 608. The number of forests of trees on n labeled nodes of order 5 is 291, so the majority of the graphs of that kind have one or more unicycles.
Also the number of labeled graphs with n vertices satisfying a strict version of the axiom of choice. The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. The connected case is A129271, complement A140638. The unlabeled version is A134964. - Gus Wiseman, Dec 22 2023

Examples

			Below we see the 7 partitions of n=5 in the form c_1 + 2c_2 + ... + nc_n followed by the corresponding number of graphs. We consider the values of A129271(j) given by the table
   j|1|2|3| 4|  5|
----+-+-+-+--+---+
a(j)|1|1|4|31|347|
1*5 -> 5!1^5 / (1!^5 * 5!) = 1
2*1 + 1*3 -> 5!1^1 * 1^3 / (2!^1 * 1! * 1!^3 * 3!) = 10
2*2 + 1*1 -> 5!1^2 * 1^1 / (2!^2 * 2! * 1!^1 * 1!) = 15
3*1 + 1*2 -> 5!4^1 * 1^2 / (3!^1 * 1! * 1!^2 * 2!) = 40
3*1 + 2*1 -> 5!4^1 * 1^1 / (3!^1 * 1! * 2!^1 * 1!) = 40
4*1 + 1*1 -> 5!31^1 * 1^1 / (4!^1 * 1! * 1!^1 * 1!) = 155
5*1 -> 5!347^1 / (5!^1 * 1!) = 347
Total 608
		

Crossrefs

Row sums of triangle A144228. - Alois P. Heinz, Sep 15 2008
Cf. A137352. - Vladeta Jovovic, Sep 16 2008
The unlabeled version is A134964.
The complement is counted by A367867, covering A367868, connected A140638.
The covering case is A367869, connected A129271.
For set-systems we have A367902, ranks A367906.
The complement for set-systems is A367903, ranks A367907.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A143543 counts graphs by number of connected components.

Programs

  • Maple
    cy:= proc(n) option remember; binomial(n-1, 2)*
            add((n-3)!/(n-2-t)! *n^(n-2-t), t=1..n-2)
         end:
    T:= proc(n,k) option remember;
          if k=0 then 1
        elif k<0 or n add(T(n,k), k=0..n):
    seq(a(n), n=0..20); # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[ Exp[t/2-3t^2/4]/(1-t)^(1/2),{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(sqrt(-lambertw(-x)/(x*(1+ lambertw(-x))))*exp(-(3/4)*lambertw(-x)^2))) \\ G. C. Greubel, Nov 16 2017

Formula

a(0) = 1; for n >=1, a(n) = Sum of n!prod_{j=1}^n\{ frac{ A129271(j)^{c_j} } { j!^{c_j}c_j! } } over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0.
a(n) = Sum_{k=0..n} A144228(n,k). - Alois P. Heinz, Sep 15 2008
E.g.f.: sqrt(-LambertW(-x)/(x*(1+LambertW(-x))))*exp(-3/4 * LambertW(-x)^2). - Vladeta Jovovic, Sep 16 2008
E.g.f.: A(x)*B(x) where A(x) is the e.g.f. for A137916 and B(x) is the e.g.f. for A001858. - Geoffrey Critzer, Mar 23 2013
a(n) ~ 2^(-1/4) * Gamma(3/4) * exp(-1/4) * n^(n-1/4) / sqrt(Pi) * (1-7*Pi/(12*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Oct 08 2013
E.g.f.: exp(B(x) - 1) where B(x) is the e.g.f. of A129271. - Andrew Howroyd, Dec 30 2023

Extensions

Corrected and extended by Alois P. Heinz and Vladeta Jovovic, Sep 15 2008

A005329 a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.

Original entry on oeis.org

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0

Views

Author

Keywords

Comments

Conjecture: this sequence is the inverse binomial transform of A075272 or, equivalently, the inverse binomial transform of the BinomialMean transform of A075271. - John W. Layman, Sep 12 2002
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
Number of upper triangular n X n (0,1)-matrices with no zero rows. - Vladeta Jovovic, Mar 10 2008
Equals the q-Fibonacci series for q = (-2), and the series prefaced with a 1: (1, 1, 1, 3, 21, ...) dot (1, -2, 4, -8, ...) if n is even, and (-1, 2, -4, 8, ...) if n is odd. For example, a(3) = 21 = (1, 1, 1, 3) dot (-1, 2, -4, 8) = (-1, 2, -4, 24) and a(4) = 315 = (1, 1, 1, 3, 21) dot (1, -2, 4, -8 16) = (1, -2, 4, -24, 336). - Gary W. Adamson, Apr 17 2009
Number of chambers in an A_n(K) building where K=GF(2) is the field of two elements. This is also the number of maximal flags in an n-dimensional vector space over a field of two elements. - Marcos Spreafico, Mar 22 2012
Given probability p = 1/2^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, A114604(n)/A006125(n+2) = 1-a(n)/A006125(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A048651 ~ 0.7112119. These observations are a more formal and generalized statement of Joshua Zucker's Dec 14, 2005 comment. - Bob Selcoe, Mar 02 2016
Also the number of dominating sets in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Empirical: Letting Q denote the Hall-Littlewood Q basis of the symmetric functions over the field of fractions of the univariate polynomial ring in t over the field of rational numbers, and letting h denote the complete homogeneous basis, a(n) is equal to the absolute value of 2^A000292(n) times the coefficient of h_{1^(n*(n+1)/2)} in Q_{(n, n-1, ..., 1)} with t evaluated at 1/2. - John M. Campbell, Apr 30 2018
The series f(x) = Sum_{n>=0} x^(2^n-1)/a(n) satisfies f'(x) = f(x^2), f(0) = 1. - Lucas Larsen, Jan 05 2022

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
		

References

  • Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
  • Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048651, A079555, A152476 (inverse binomial transform).
Column q=2 of A069777.

Programs

  • GAP
    List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
  • Magma
    [1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
    FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
    Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
    QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
    a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
  • PARI
    a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
    
  • PARI
    Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
    
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
    

Formula

a(n)/2^(n*(n+1)/2) -> c = 0.2887880950866024212788997219294585937270... (see A048651, A048652).
From Paul D. Hanna, Sep 17 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n / (Product_{k=0..n} (1+2^k*x)).
Compare to: 1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/(Product_{k=1..n+1} (1+2^k*x)). (End)
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x). - Paul D. Hanna, Apr 21 2012
a(n) = 2^(binomial(n+1,2))*(1/2; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A000225(i). - Michel Marcus, Dec 27 2015
From Peter Bala, Nov 10 2017: (Start)
O.g.f. as a continued fraction of Stieltjes' type: A(x) = 1/(1 - x/(1 - 2*x/(1 - 6*x/(1 - 12*x/(1 - 28*x/(1 - 56*x/(1 - ... -(2^n - 2^floor(n/2))*x/(1 - ... )))))))) (follows from Heine's continued fraction for the ratio of two q-hypergeometric series at q = 2. See Cuyt et al. 19.2.1).
A(x) = 1/(1 + x - 2*x/(1 - (2 - 1)^2*x/(1 + x - 2^3*x/(1 - (2^2 - 1)^2*x/(1 + x - 2^5*x/(1 - (2^3 - 1)^2*x/(1 + x - 2^7*x/(1 - (2^4 - 1)^2*x/(1 + x - ... ))))))))). (End)
0 = a(n)*(a(n+1) - a(n+2)) + 2*a(n+1)^2 for all n>=0. - Michael Somos, Feb 23 2019
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A079555.
Sum_{n>=0} (-1)^n/a(n) = A048651. (End)

Extensions

Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999

A053763 a(n) = 2^(n^2 - n).

Original entry on oeis.org

1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0

Views

Author

Stephen G Penrice, Mar 29 2000

Keywords

Comments

Nilpotent n X n matrices over GF(2). Also number of simple digraphs (without self-loops) on n labeled nodes (see also A002416).
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(4) (sequence A053291). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
(-1)^ceiling(n/2) * resultant of the Chebyshev polynomial of first kind of degree n and Chebyshev polynomial of first kind of degree (n+1) (cf. A039991). - Benoit Cloitre, Jan 26 2003
The number of reflexive binary relations on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
From Rick L. Shepherd, Dec 24 2008: (Start)
Number of gift exchange scenarios where, for each person k of n people,
i) k gives gifts to g(k) of the others, where 0 <= g(k) <= n-1,
ii) k gives no more than one gift to any specific person,
iii) k gives no single gift to two or more people and
iv) there is no other person j such that j and k jointly give a single gift.
(In other words -- but less precisely -- each person k either gives no gifts or gives exactly one gift per person to 1 <= g(k) <= n-1 others.) (End)
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 4 types of edge. To clarify the comment from Benoit Cloitre, dated Jan 26 2003, in this context: simple digraphs (without self-loops) have four types of edge. These types of edges are as follows: the absent edge, the directed edge from A -> B, the directed edge from B -> A and the bidirectional edge, A <-> B. - Mark Stander, Apr 11 2019

Examples

			a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
		

References

  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).

Crossrefs

Programs

Formula

Sequence given by the Hankel transform (see A001906 for definition) of A059231 = {1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, ...}; example: det([1, 1, 5, 29; 1, 5, 29, 185; 5, 29, 185, 1257; 29, 185, 1257, 8925]) = 4^6 = 4096. - Philippe Deléham, Aug 20 2005
a(n) = 4^binomial(n, n-2). - Zerinvary Lajos, Jun 16 2007
a(n) = Sum_{i=0..n^2-n} binomial(n^2-n, i). - Rick L. Shepherd, Dec 24 2008
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x). - Ilya Gutkovskiy, Jun 04 2020
Sum_{n>=1} 1/a(n) = A319016. - Amiram Eldar, Oct 27 2020
Sum_{n>=0} a(n)*u^n/A002884(n) = Product_{r>=1} 1/(1-u/q^r). - Geoffrey Critzer, Oct 28 2021

A322661 Number of graphs with loops spanning n labeled vertices.

Original entry on oeis.org

1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

The span of a graph is the union of its edges.

Examples

			The a(2) = 5 edge-sets:
  {{1,2}}
  {{1,1},{1,2}}
  {{1,1},{2,2}}
  {{1,2},{2,2}}
  {{1,1},{1,2},{2,2}}
		

Crossrefs

Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
    (* second program *)
    Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024

Formula

Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).

A057500 Number of connected labeled graphs with n edges and n nodes.

Original entry on oeis.org

0, 0, 1, 15, 222, 3660, 68295, 1436568, 33779340, 880107840, 25201854045, 787368574080, 26667815195274, 973672928417280, 38132879409281475, 1594927540549217280, 70964911709203684440, 3347306760024413356032, 166855112441313024389625, 8765006377126199463936000
Offset: 1

Views

Author

Qing-Hu Hou and David C. Torney (dct(AT)lanl.gov), Sep 01 2000

Keywords

Comments

Equivalently, number of connected unicyclic (i.e., containing one cycle) graphs on n labeled nodes. - Vladeta Jovovic, Oct 26 2004
a(n) is the number of trees on vertex set [n] = {1,2,...,n} rooted at 1 with one marked inversion (an inversion is a pair (i,j) with i > j and j a descendant of i in the tree). Here is a bijection from the title graphs (on [n]) to these marked trees. A title graph has exactly one cycle. There is a unique path from vertex 1 to this cycle, first meeting it at k, say (k may equal 1). Let i and j be the two neighbors of k in the cycle, with i the larger of the two. Delete the edge k<->j thereby forming a tree (in which j is a descendant of i) and take (i,j) as the marked inversion. To reverse this map, create a cycle by joining the smaller element of the marked inversion to the parent of the larger element. a(n) = binomial(n-1,2)*A129137(n). This is because, on the above marked trees, the marked inversion is uniformly distributed over 2-element subsets of {2,3,...,n} and so a(n)/binomial(n-1,2) is the number of trees on [n] (rooted at 1) for which (3,2) is an inversion. - David Callan, Mar 30 2007

Examples

			E.g., a(4)=15 because there are three different (labeled) 4-cycles and 12 different labeled graphs with a 3-cycle and an attached, external vertex.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
  • C. L. Mallows, Letter to N. J. A. Sloane, 1980.
  • R. J. Riddell, Contributions to the theory of condensation, Dissertation, Univ. of Michigan, Ann Arbor, 1951.

Crossrefs

A diagonal of A343088.
Cf. A000272 = labeled trees on n nodes; connected labeled graphs with n nodes and n+k edges for k=0..8: this sequence, A061540, A061541, A061542, A061543, A096117, A061544, A096150, A096224.
Cf. A001429 (unlabeled case), A052121.
For any number of edges we have A001187, unlabeled A001349.
This is the connected and covering case of A116508.
For #edges <= #nodes we have A129271, covering A367869.
For #edges > #nodes we have A140638, covering A367868.
This is the connected case of A367862 and A367863, unlabeled A006649.
The version with loops is A368951, unlabeled A368983.
This is the covering case of A370317.
Counting only covering vertices gives A370318.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.

Programs

  • Maple
    egf:= -1/2*ln(1+LambertW(-x)) +1/2*LambertW(-x) -1/4*LambertW(-x)^2:
    a:= n-> n!*coeff(series(egf, x, n+3), x, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 27 2013
  • Mathematica
    nn=20; t=Sum[n^(n-1) x^n/n!, {n,1,nn}]; Drop[Range[0,nn]! CoefficientList[Series[Log[1/(1-t)]/2-t^2/4-t/2, {x,0,nn}], x], 1]  (* Geoffrey Critzer, Oct 07 2012 *)
    a[n_] := (n-1)!*n^n/2*Sum[1/(n^k*(n-k)!), {k, 3, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 15 2014, after Vladeta Jovovic *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[#]==n&&Length[csm[#]]<=1&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
  • Sage
    # Warning: Floating point calculation. Adjust precision as needed!
    from mpmath import mp, chop, gammainc
    mp.dps = 200; mp.pretty = True
    for n in (1..100):
        print(chop((n^(n-2)*(1-3*n)+exp(n)*gammainc(n+1, n)/n)/2))
    # Peter Luschny, Jan 27 2016

Formula

The number of labeled connected graphs with n nodes and m edges is Sum_{k=1..n} (-1)^(k+1)/k*Sum_{n_1+n_2+..n_k=n, n_i>0} n!/(Product_{i=1..k} (n_i)!)* binomial(s, m), s=Sum_{i..k} binomial(n_i, 2). - Vladeta Jovovic, Apr 10 2001
E.g.f.: (1/2) Sum_{k>=3} T(x)^k/k, with T(x) = Sum_{n>=1} n^(n-1)/n! x^n. R. J. Riddell's thesis contains a closed-form expression for the number of connected graphs with m nodes and n edges. The present series applies to the special case m=n.
E.g.f.: -1/2*log(1+LambertW(-x))+1/2*LambertW(-x)-1/4*LambertW(-x)^2. - Vladeta Jovovic, Jul 09 2001
Asymptotic expansion (with xi=sqrt(2*Pi)): n^(n-1/2)*[xi/4-7/6*n^(-1/2)+xi/48* n^(-1)+131/270*n^(-3/2)+xi/1152*n^(-2)+4/2835*n^(-5/2)+O(n^(-3))]. - Keith Briggs, Aug 16 2004
Row sums of A098909: a(n) = (n-1)!*n^n/2*Sum_{k=3..n} 1/(n^k*(n-k)!). - Vladeta Jovovic, Oct 26 2004
a(n) = Sum_{k=0..C(n-1,2)} k*A052121(n,k). - Alois P. Heinz, Nov 29 2015
a(n) = (n^(n-2)*(1-3*n)+exp(n)*Gamma(n+1,n)/n)/2. - Peter Luschny, Jan 27 2016
a(n) = A062734(n,n+1) = A123527(n,n). - Gus Wiseman, Feb 19 2024

Extensions

More terms from Vladeta Jovovic, Jul 09 2001

A082582 Expansion of (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0

Views

Author

Emanuele Munarini, May 07 2003

Keywords

Comments

a(n) is the number of Dyck paths of semilength n with no UUDD. See A025242 for a bijection between paths avoiding DDUU versus UUDD.
Also number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=1. - Alois P. Heinz, Oct 07 2015
a(n) is the number of bargraphs of semiperimeter n (n>=2). Example: a(4) = 5; the 5 bargraphs correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]. - Emeric Deutsch, May 20 2016 [a(n) are the row sums of A271942 for n >= 2. Peter Luschny, Oct 18 2020]
a(n) is the number of skew Motzkin paths of length n. A skew Motzkin path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down), F=(1,0) (flat) and A=(-1,1) (anti-down) so that down and anti-down steps do not overlap. - Sergey Kirgizov, Oct 03 2018
From Gus Wiseman, Jul 04 2019: (Start)
Conjecture: Also the number of maximal simple graphs with vertices {1..n} and no weakly nesting edges. Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. For example, the a(1) = 1 through a(5) = 13 edge-sets are:
{} {12} {13} {14} {15}
{12,23} {12,24} {12,25}
{13,24} {13,25}
{13,34} {14,25}
{12,23,34} {14,35}
{14,45}
{12,23,35}
{12,24,35}
{12,24,45}
{13,24,35}
{13,24,45}
{13,34,45}
{12,23,34,45}
(End)
a(n) is the number of Dyck n-paths in which no nonterminal descent has the same length as the preceding ascent. Example: a(3) = 2 counts UUDUDD and UUUDDD where the latter path qualifies because DDD is the terminal descent. - David Callan, Dec 14 2021

Examples

			1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 275*x^8 + ...
a(3)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003
		

Crossrefs

Apart from initial term, same as A025242.
See A086581 for Dyck paths avoiding DDUU.
Cf. A000108, A218321, A263316, A271942 (refinement).
Column k=0 of A098978.

Programs

  • Haskell
    a082582 n = a082582_list !! n
    a082582_list = 1 : 1 : f [1,1] where
       f xs'@(x:_:xs) = y : f (y : xs') where
         y = x + sum (zipWith (*) xs' $ reverse xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Maple
    f:= gfun:-rectoproc({(n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2},a(n),remember):
    map(f,[$0..100]); # Robert Israel, May 20 2016
  • Mathematica
    a[0]=1;a[n_Integer]:=a[n]=a[n-1]+Sum[a[k]*a[n-1-k],{k,2,n-1}];Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    a[ n_] := SeriesCoefficient[ 2 / (1 + x^2 + Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, n}] (* Michael Somos, Jul 01 2011 *)
    a[n_] := Sum[HypergeometricPFQ[{-k, 3 + k, k - n}, {1, 2}, 1], {k, 0, n}];
    Join[{1, 1}, Table[a[n], {n, 0, 26}]] (* Peter Luschny, Oct 18 2020 *)
  • Maxima
    a(n):=sum(sum((binomial(n-k-2,j)*binomial(k,j)*binomial(k+j+2,j))/(j+1),j,0,n-k-1),k,0,n-2); /* Vladimir Kruchinin, Oct 18 2020 */
  • PARI
    {a(n) = polcoeff( (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4 + x^2 * O(x^n))) / 2, n+1)} /* Michael Somos, Jul 22 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4 + x * O(x^n))),n))} /* Michael Somos, Jul 01 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = O(x); for( k = 0, n, A = 1 / (1 + x^2 - x * A)); polcoeff( A, n))} /* Michael Somos, Mar 28 2011 */
    

Formula

G.f.: (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) = 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4)).
G.f. A(x) satisfies the equation 0 = 1 - (1 + x^2) * A(x) + x * A(x)^2. - Michael Somos, Jul 22 2003
G.f. A(x) satisfies A(x) = 1 / (1 + x^2 - x * A(x)). - Michael Somos, Mar 28 2011
G.f. A(x) = 1 / (1 + x^2 - x / (1 + x^2 - x / (1 + x^2 - ... ))) continued fraction. - Michael Somos, Jul 01 2011
Series reversion of x * A(x) is x * A007477(-x). - Michael Somos, Jul 22 2003
a(n+1) = a(n) + Sum(a(k)*a(n-k): k=2..n), a(0) = a(1) = 1. - Reinhard Zumkeller, Nov 13 2012
G.f.: 1 + x - x*G(0), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
D-finite with recurrence: (n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4) = 0. - Robert Israel, May 20 2016
a(n) = Sum_{k=0..n-2} Sum_{j=0..n-k-1} C(n-k-2,j)*C(k,j)*C(k+j+2,j)/(j+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Oct 18 2020
a(n) = Sum_{k=0..n-2} HypergeometricPFQ[{-k, 3 +k, k - n + 2}, {1, 2}, 1] for n >= 2. - Peter Luschny, Oct 18 2020
a(n) ~ sqrt(2+r) / (2 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.295597742522084... is the real root of the equation r^3 + r^2 + 3*r - 1 = 0. - Vaclav Kotesovec, Jun 05 2022
G.f.: 1/G(x), with G(x) = 1 - (x-x^2)/(1-x/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 11 2023

A367867 Number of labeled simple graphs with n vertices contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 7, 416, 24244, 1951352, 265517333, 68652859502, 35182667175398, 36028748718835272, 73786974794973865449, 302231454853009287213496, 2475880078568912926825399800, 40564819207303268441662426947840, 1329227995784915869870199216532048487
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
In the connected case, these are just graphs with more than one cycle.

Examples

			Non-isomorphic representatives of the a(4) = 7 graphs:
  {{1,2},{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

The complement is A133686, connected A129271, covering A367869.
The connected case is A140638 (graphs with more than one cycle).
The covering case is A367868.
For set-systems we have A367903, ranks A367907.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

a(n) = A006125(n) - A133686(n). - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A005195 Number of forests with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, 20514, 49905, 122963, 307199, 775529, 1977878, 5086638, 13184156, 34402932, 90328674, 238474986, 632775648, 1686705630, 4514955632, 12132227370, 32717113805, 88519867048, 240235675303
Offset: 0

Views

Author

Keywords

Comments

Same as "Number of forests with n nodes that are perfect graphs" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
Number of unlabeled acyclic graphs on n vertices. The labeled version is A001858. The covering case is A144958, connected A000055. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 10 forests:
  {}  {}  {}    {}       {}          {}
          {12}  {12}     {12}        {12}
                {13,23}  {12,34}     {12,34}
                         {13,23}     {13,23}
                         {13,24,34}  {12,35,45}
                         {14,24,34}  {13,24,34}
                                     {14,24,34}
                                     {13,24,35,45}
                                     {14,25,35,45}
                                     {15,25,35,45}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095133 (by number of trees), A136605 (by number of edges).
A diagonal of A144215.
The connected case is A000055.
The labeled version is A001858.
The covering case is A144958, labeled A105784.
For triangles instead of cycles we have A006785, covering A372169.
Unique cycle: A236570 (labeled A372193), covering A372191 (labeled A372195).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]];
    b[n_] := b[n] = If[n <= 1, n, Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
    a55[n_] := a55[n] = If[n == 0, 1, b[n] - (Sum[ b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; A000055 = Table[ a55[n], {n, 1, 31}]; EulerTransform[ A000055 ] (* Jean-François Alcover, Mar 15 2012 *)

Formula

Euler transform of A000055: Product_{n>0} (1-x^n)^(-A000055(n)). a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*A000055(d). - Vladeta Jovovic, Sep 05 2002
G.f.: exp(sum_{k>0} B(x^k)/k ), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = 1.023158422... . - Vaclav Kotesovec, Nov 16 2014
First differences are A144958. - Gus Wiseman, Apr 29 2024

Extensions

More terms from Vladeta Jovovic, Sep 05 2002

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011
Previous Showing 11-20 of 361 results. Next