cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 195 results. Next

A325026 Multi-perfect numbers from A007691 that are not harmonic (A001599).

Original entry on oeis.org

120, 523776, 1476304896, 31998395520, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760, 1940351499647188992000
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2019

Keywords

Comments

Multi-perfect numbers m such that m*tau(m)/sigma(m) is not an integer, where tau(k) is the number of the divisors of k (A000005) and sigma(k) is the sum of the divisors of k (A000203).
Supersequence of A046987.
Complement of A325025 with respect to A007691.

Examples

			120 is a term because 120*tau(120)/sigma(120) = 120*16/360 = 16/3.
		

Crossrefs

Cf. A140798 (harmonic numbers that are not multi-perfect).

Programs

  • Magma
    [n: n in [1..1000000] | not IsIntegral((NumberOfDivisors(n)) * n / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
    
  • PARI
    isok(n) = my(s=sigma(n)); !frac(s/n) && frac(n*numdiv(n)/s); \\ Michel Marcus, Mar 24 2019

A374198 After initial 1, numbers k such that at least one of their divisors is a multiply-perfect number (A007691) larger than one.

Original entry on oeis.org

1, 6, 12, 18, 24, 28, 30, 36, 42, 48, 54, 56, 60, 66, 72, 78, 84, 90, 96, 102, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 162, 168, 174, 180, 186, 192, 196, 198, 204, 210, 216, 222, 224, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280, 282, 288, 294, 300, 306, 308, 312, 318, 324, 330, 336, 342, 348, 354, 360
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2024

Keywords

Comments

A multiplicative semigroup: if m and n are in the sequence, then so is m*n.
The asymptotic density of this sequence is Sum_{s subset of A007691 \ {1}} (-1)^(card(s)+1)/LCM(s) = 0.1916963... . - Amiram Eldar, Apr 16 2025

Crossrefs

Indices of 1's in A374196.
Cf. A007691, A097603 (essentially the same), A374197 (characteristic function).

Programs

  • Mathematica
    q[n_] := n == 1 || AnyTrue[Rest[Divisors[n]], IntegerQ[DivisorSigma[-1, #]] &]; Select[Range[360], q] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isA374198 = A374197;

A331724 Multiply-perfect numbers (A007691) that are arithmetic (A003601).

Original entry on oeis.org

1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480
Offset: 1

Views

Author

Jaroslav Krizek, Jan 25 2020

Keywords

Comments

Multiply-perfect numbers m such that values A(m) = sigma(m)/tau(m) = A000203(m)/A000005(m) are any integers.
Corresponding values of A(m): 1, 3, 84, 1260, 1365, 294624, 474300, 36933435, 318757376, 637514752, 1199497728, ...
Complement of A330533 with respect to A007691. Supersequence of A046985.
Has many terms in common with B = {multiply perfect numbers n divisible by bigomega(n)}: only {1, 45532800, 403031236608, 212517062615531520, ...} are in {a(n)} \ B, while {120, 523776, 2178540, ...} are in B \ {a(n)}. - M. F. Hasler, Jan 31 2020

Examples

			sigma(672)/tau(672) = 2016/24 = 84 (integers).
		

Crossrefs

Cf. A325025 (multiply-perfect numbers that are harmonic).

Programs

  • Magma
    [m: m in [1..10^7] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(SumOfDivisors(m) / m)];
    
  • Mathematica
    seqQ[n_] := And @@ (Divisible[DivisorSigma[1, n], #] & /@ {n, DivisorSigma[0, n]}); Select[Range[5*10^7], seqQ] (* Amiram Eldar, Jan 25 2020 *)
  • PARI
    is_A331724(n)={my(f=factor(n),s=sigma(f));!(s%n||s%numdiv(f))} \\ M. F. Hasler, Jan 31 2020

A134666 Number of multiply perfect numbers (A007691) having 2^n as the highest power of 2.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 5, 4, 4, 3, 6, 1, 3, 4, 5, 1, 9, 1, 19, 8, 9, 3, 5, 6, 7, 16, 13, 26, 20, 1, 6, 8, 6, 13, 23, 20, 6, 9, 33, 10, 11, 14, 18, 15, 13, 32, 23, 23, 18, 12, 20, 26, 21, 16, 17, 7, 11, 20, 15, 1, 10, 17, 14, 13, 26, 21, 16, 24, 13, 21, 27, 18, 14, 16, 21, 38, 19, 12, 26, 13, 23
Offset: 0

Views

Author

T. D. Noe, Nov 05 2007

Keywords

Comments

It appears that a(n)>0 for all n. With the exception of n=2, a(n)=1 when n is p-1, where p is a Mersenne prime (A000043). Flammenkamp has an attractive graph of this sequence, including n for which there is incomplete data.

Examples

			a(2)=2 because only 28 and 2178540 have 2^2 as their highest power of 2.
		

Crossrefs

Cf. A134665 (highest power of 2 for each MPN).

A000396 Perfect numbers k: k is equal to the sum of the proper divisors of k.

Original entry on oeis.org

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (this sequence), or deficient if sigma(k) < 2k (cf. A005100), where sigma(k) is the sum of the divisors of k (A000203).
The numbers 2^(p-1)*(2^p - 1) are perfect, where p is a prime such that 2^p - 1 is also prime (for the list of p's see A000043). There are no other even perfect numbers and it is believed that there are no odd perfect numbers.
Numbers k such that Sum_{d|k} 1/d = 2. - Benoit Cloitre, Apr 07 2002
For number of divisors of a(n) see A061645(n). Number of digits in a(n) is A061193(n). - Lekraj Beedassy, Jun 04 2004
All terms other than the first have digital root 1 (since 4^2 == 4 (mod 6), we have, by induction, 4^k == 4 (mod 6), or 2*2^(2*k) = 8 == 2 (mod 6), implying that Mersenne primes M = 2^p - 1, for odd p, are of the form 6*t+1). Thus perfect numbers N, being M-th triangular, have the form (6*t+1)*(3*t+1), whence the property N mod 9 = 1 for all N after the first. - Lekraj Beedassy, Aug 21 2004
The earliest recorded mention of this sequence is in Euclid's Elements, IX 36, about 300 BC. - Artur Jasinski, Jan 25 2006
Theorem (Euclid, Euler). An even number m is a perfect number if and only if m = 2^(k-1)*(2^k-1), where 2^k-1 is prime. Euler's idea came from Euclid's Proposition 36 of Book IX (see Weil). It follows that every even perfect number is also a triangular number. - Mohammad K. Azarian, Apr 16 2008
Triangular numbers (also generalized hexagonal numbers) A000217 whose indices are Mersenne primes A000668, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008, Sep 15 2013
If a(n) is even, then 2*a(n) is in A181595. - Vladimir Shevelev, Nov 07 2010
Except for a(1) = 6, all even terms are of the form 30*k - 2 or 45*k + 1. - Arkadiusz Wesolowski, Mar 11 2012
a(4) = A229381(1) = 8128 is the "Simpsons's perfect number". - Jonathan Sondow, Jan 02 2015
Theorem (Farideh Firoozbakht): If m is an integer and both p and p^k-m-1 are prime numbers then x = p^(k-1)*(p^k-m-1) is a solution to the equation sigma(x) = (p*x+m)/(p-1). For example, if we take m=0 and p=2 we get Euclid's result about perfect numbers. - Farideh Firoozbakht, Mar 01 2015
The cototient of the even perfect numbers is a square; in particular, if 2^p - 1 is a Mersenne prime, cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2 (see A152921). So, this sequence is a subsequence of A063752. - Bernard Schott, Jan 11 2019
Euler's (1747) proof that all the even perfect number are of the form 2^(p-1)*(2^p-1) implies that their asymptotic density is 0. Kanold (1954) proved that the asymptotic density of odd perfect numbers is 0. - Amiram Eldar, Feb 13 2021
If k is perfect and semiprime, then k = 6. - Alexandra Hercilia Pereira Silva, Aug 30 2021
This sequence lists the fixed points of A001065. - Alois P. Heinz, Mar 10 2024

Examples

			6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
  • Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
  • Euclid, Elements, Book IX, Section 36, about 300 BC.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
  • T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
  • Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
  • József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
  • Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.

Crossrefs

See A000043 for the current state of knowledge about Mersenne primes.
Cf. A228058 for Euler's criterion for odd terms.
Positions of 0's in A033879 and in A033880.
Cf. A001065.

Programs

  • Haskell
    a000396 n = a000396_list !! (n-1)
    a000396_list = [x | x <- [1..], a000203 x == 2 * x]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *)
    PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
  • PARI
    isA000396(n) = (sigma(n) == 2*n);
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return n > 0 and divisor_sigma(n) == 2*n
    print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

The perfect number N = 2^(p-1)*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N) = N^p), since tau(N) = 2*p. - Lekraj Beedassy, Sep 21 2004
a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 28 2008
a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 23 2008
a(n) = A000217(A000668(n)), assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = Sum of the first A000668(n) positive integers, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n) = A000384(A061652(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 17 2008
a(n) = A006516(A000043(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 30 2008
From Reikku Kulon, Oct 14 2008: (Start)
A144912(2, a(n)) = 1;
A144912(4, a(n)) = -1 for n > 1;
A144912(8, a(n)) = 5 or -5 for all n except 2;
A144912(16, a(n)) = -4 or -13 for n > 1. (End)
a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 09 2009
a(n) = A007691(A153800(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 14 2009
Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - Lekraj Beedassy, May 02 2009
a(n) = A060286(A016027(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Dec 13 2012
For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - Derek Orr, Sep 28 2013
a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - Daniel Poveda Parrilla, Aug 16 2016
a(n) = A156552(A324201(n)), assuming there are no odd perfect numbers. - Antti Karttunen, Mar 28 2019
a(n) = ((2^(A000043(n)))^3 - (2^(A000043(n)) - 1)^3 - 1)/6, assuming there are no odd perfect numbers. - Jules Beauchamp, Jun 06 2025

Extensions

I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. - N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by Harvey P. Dale, Jan 13 2025

A083207 Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum.

Original entry on oeis.org

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

The 229026 Zumkeller numbers less than 10^6 have a maximum difference of 12. This leads to the conjecture that any 12 consecutive numbers include at least one Zumkeller number. There are 1989 odd Zumkeller numbers less than 10^6; they are exactly the odd abundant numbers that have even abundance, A174865. - T. D. Noe, Mar 31 2010
For k >= 0, numbers of the form 18k + 6 and 18k + 12 are terms (see Remark 2.3. in Somu et al., 2023). Corollary: The maximum difference between any two consecutive terms is at most 12. - Ivan N. Ianakiev, Jan 02 2024
All 205283 odd abundant numbers less than 10^8 that have even abundance (see A174865) are Zumkeller numbers. - T. D. Noe, Nov 14 2010
Except for 1 and 2, all primorials (A002110) are Zumkeller numbers (follows from Fact 6 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 23 2016
Supersequence of A111592 (follows from Fact 3 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 20 2017
Conjecture: Any 4 consecutive terms include at least one number k such that sigma(k)/2 is also a Zumkeller number (verified for the first 10^5 Zumkeller numbers). - Ivan N. Ianakiev, Apr 03 2017
LeVan studied these numbers using the equivalent definition of numbers n such that n = Sum_{d|n, dA180332) "minimal integer-perfect numbers". - Amiram Eldar, Dec 20 2018
The numbers 3 * 2^k for k > 0 are all Zumkeller numbers: half of one such partition is {3*2^k, 3*2^(k-2), ...}, replacing 3 with 2 if it appears. With this and the lemma that the product of a Zumkeller number and a number coprime to it is again a Zumkeller number (see A179527), we have that all numbers divisible by 6 but not 9 (or numbers congruent to 6 or 12 modulo 18) are Zumkeller numbers, proving that the difference between consecutive Zumkeller numbers is at most 12. - Charlie Neder, Jan 15 2019
Improvements on the previous comment: 1) For every integer q > 0, every odd integer r > 0 and every integer s > 0 relatively prime to 6, the integer 2^q*3^r*s is a Zumkeller number, and therefore 2) there exist Zumkeller numbers divisible by 9 (such as 54, 90, 108, 126, etc.). - Ivan N. Ianakiev, Jan 16 2020
Conjecture: If d > 1, d|k and tau(d)*sigma(d) = k, then k is a Zumkeller number (cf. A331668). - Ivan N. Ianakiev, Apr 24 2020
This sequence contains A378541, the intersection of the practical numbers (A005153) with numbers with even sum of divisors (A028983). - David A. Corneth, Nov 03 2024
Sequence gives the positions of even terms in A119347, and correspondingly, of odd terms in A308605. - Antti Karttunen, Nov 29 2024
If s = sigma(m) is odd and p > s then m*p is not in the sequence. - David A. Corneth, Dec 07 2024

Examples

			Given n = 48, we can partition the divisors thus: 1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48, therefore 48 is a term (A083206(48) = 5).
From _David A. Corneth_, Dec 04 2024: (Start)
30 is in the sequence. sigma(30) = 72. So we look for distinct divisors of 30 that sum to 72/2 = 36. That set or its complement contains 30. The other divisors in that set containing 30 sum to 36 - 30 = 6. So we look for some distinct proper divisors of 30 that sum to 6. That is from the divisors of {1, 2, 3, 5, 6, 10, 15}. It turns out that both 1+2+3 and 6 satisfy this condition. So 36 is in the sequence.
25 is not in the sequence as sigma(25) = 31 which is odd so the sum of two equal integers cannot be the sum of divisors of 25.
33 is not in the sequence as sigma(33) = 48 < 2*33. So is impossible to have a partition of the set of divisors into two disjoint set the sum of each of them sums to 48/2 = 24 as one of them contains 33 > 24 and any other divisors are nonnegative. (End)
		

References

  • Marijo O. LeVan, Integer-perfect numbers, Journal of Natural Sciences and Mathematics, Vol. 27, No. 2 (1987), pp. 33-50.
  • Marijo O. LeVan, On the order of nu(n), Journal of Natural Sciences and Mathematics, Vol. 28, No. 1 (1988), pp. 165-173.
  • J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 1.10, pp. 53-54.

Crossrefs

Positions of nonzero terms in A083206, positions of 0's in A103977 and in A378600.
Positions of even terms in A119347, of odd terms in A308605.
Complement of A083210.
Subsequence of A023196 and of A028983.
Union of A353061 and A378541.
Conjectured subsequences: A007691, A331668 (after their initial 1's), A351548 (apart from 0-terms).
Cf. A174865 (Odd abundant numbers whose abundance is even).
Cf. A204830, A204831 (equal sums of 3 or 4 disjoint subsets).
Cf. A000203, A005101, A005153 (practical numbers), A005835, A027750, A048055, A083206, A083208, A083211, A171641, A175592, A179527 (characteristic function), A221054.

Programs

  • Haskell
    a083207 n = a083207_list !! (n-1)
    a083207_list = filter (z 0 0 . a027750_row) $ [1..] where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Maple
    with(numtheory): with(combstruct):
    is_A083207 := proc(n) local S, R, Found, Comb, a, s; s := sigma(n);
    if not(modp(s, 2) = 0 and n * 2 <= s) then return false fi;
    S := s / 2 - n; R := select(m -> m <= S, divisors(n)); Found := false;
    Comb := iterstructs(Combination(R)):
    while not finished(Comb) and not Found do
       Found := add(a, a = nextstruct(Comb)) = S
    od; Found end:
    A083207_list := upto -> select(is_A083207, [$1..upto]):
    A083207_list(272); # Peter Luschny, Dec 14 2009, updated Aug 15 2014
  • Mathematica
    ZumkellerQ[n_] := Module[{d=Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[1000], ZumkellerQ] (* T. D. Noe, Mar 31 2010 *)
    znQ[n_]:=Length[Select[{#,Complement[Divisors[n],#]}&/@Most[Rest[ Subsets[ Divisors[ n]]]],Total[#[[1]]]==Total[#[[2]]]&]]>0; Select[Range[300],znQ] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    part(n,v)=if(n<1, return(n==0)); forstep(i=#v,2,-1,if(part(n-v[i],v[1..i-1]), return(1))); n==v[1]
    is(n)=my(d=divisors(n),s=sum(i=1,#d,d[i])); s%2==0 && part(s/2-n,d[1..#d-1]) \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import divisors
    from sympy.combinatorics.subsets import Subset
    for n in range(1,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and max(d) <= s/2:
            for x in range(1,2**len(d)):
                if sum(Subset.unrank_binary(x,d).subset) == s/2:
                    print(n,end=', ')
                    break
    # Chai Wah Wu, Aug 13 2014
    
  • Python
    from sympy import divisors
    import numpy as np
    A083207 = []
    for n in range(2,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and 2*n <= s:
            d.remove(n)
            s2, ld = int(s/2-n), len(d)
            z = np.zeros((ld+1,s2+1),dtype=int)
            for i in range(1,ld+1):
                y = min(d[i-1],s2+1)
                z[i,range(y)] = z[i-1,range(y)]
                z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y)
                if z[i,s2] == s2:
                    A083207.append(n)
                    break
    # Chai Wah Wu, Aug 19 2014
    
  • Sage
    def is_Zumkeller(n):
        s = sigma(n)
        if not (2.divides(s) and n*2 <= s): return False
        S = s // 2 - n
        R = (m for m in divisors(n) if m <= S)
        return any(sum(c) == S for c in Combinations(R))
    A083207_list = lambda lim: [n for n in (1..lim) if is_Zumkeller(n)]
    print(A083207_list(272)) # Peter Luschny, Sep 03 2018

Formula

A083206(a(n)) > 0.
A083208(n) = A083206(a(n)).
A179529(a(n)) = 1. - Reinhard Zumkeller, Jul 19 2010

Extensions

Name improved by T. D. Noe, Mar 31 2010
Name "Zumkeller numbers" added by N. J. A. Sloane, Jul 08 2010

A017666 Denominator of sum of reciprocals of divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 6, 19, 10, 21, 11, 23, 2, 25, 13, 27, 1, 29, 5, 31, 32, 11, 17, 35, 36, 37, 19, 39, 4, 41, 7, 43, 11, 15, 23, 47, 12, 49, 50, 17, 26, 53, 9, 55, 7, 57, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23, 35, 71, 24, 73, 37, 75, 19
Offset: 1

Views

Author

Keywords

Comments

Sum_{ d divides n } 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Denominators of coefficients in expansion of Sum_{n >= 1} x^n/(n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).
Also n/gcd(n, sigma(n)) = n/A009194(n); also n/lcm(all common divisors of n and sigma(n)). Equals 1 if 6,28,120,496,672,8128,..., i.e., if n is from A007691. - Labos Elemer, Aug 14 2002
a(A007691(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Denominator of sigma(n)/n = A000203(n)/n. a(n) = 1 for numbers n in A007691 (multiply-perfect numbers), a(n) = 2 for numbers n in A159907 (numbers n with half-integral abundancy index), a(n) = 3 for numbers n in A245775, a(n) = n for numbers n in A014567 (numbers n such that n and sigma(n) are relatively prime). See A162657 (n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014
For all n, a(n) <= n, and thus records are obtained for terms of A014567. - Michel Marcus, Sep 25 2014
Conjecture: If a(n) is in A005153, then n is in A005153. In particular, if n has dyadic rational abundancy index, i.e., a(n) is in A000079 (such as A007691 and A159907), then n is in A005153. Since every term of A005153 greater than 1 is even, any odd n such that a(n) in A005153 must be in A007691. It is natural to ask if there exists a generalization of the indicator function for A005153, call it m(n), such that m(n) = 1 for n in A005153, 0 < m(n) < 1 otherwise, and m(a(n)) <= m(n) for all n. See also A050972. - Jaycob Coleman, Sep 27 2014

Examples

			1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a017666 = denominator . sum . map (1 %) . a027750_row
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [Denominator(DivisorSigma(1,n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018
    
  • Maple
    with(numtheory): seq(denom(sigma(n)/n), n=1..76) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[Denominator[DivisorSigma[-1, n]], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = denominator(sigma(n)/n); \\ Michel Marcus, Sep 23 2014
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def A017666(n): return n//gcd(divisor_sigma(n),n) # Chai Wah Wu, Mar 21 2023

Extensions

More terms from Labos Elemer, Aug 14 2002

A001599 Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.

Original entry on oeis.org

1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1

Views

Author

Keywords

Comments

Note that the harmonic mean of the divisors of k = k*tau(k)/sigma(k).
Equivalently, k*tau(k)/sigma(k) is an integer, where tau(k) (A000005) is the number of divisors of k and sigma(k) is the sum of the divisors of k (A000203).
Equivalently, the average of the divisors of k divides k.
Note that the average of the divisors of k is not necessarily an integer, so the above wording should be clarified as follows: k divided by the average is an integer. See A007340. - Thomas Ordowski, Oct 26 2014
Ore showed that every perfect number (A000396) is harmonic. The converse does not hold: 140 is harmonic but not perfect. Ore conjectured that 1 is the only odd harmonic number.
Other examples of power mean numbers k such that some power mean of the divisors of k is an integer are the RMS numbers A140480. - Ctibor O. Zizka, Sep 20 2008
Conjecture: Every harmonic number is practical (A005153). I've verified this refinement of Ore's conjecture for all terms less than 10^14. - Jaycob Coleman, Oct 12 2013
Conjecture: All terms > 1 are Zumkeller numbers (A083207). Verified for all n <= 50. - Ivan N. Ianakiev, Nov 22 2017
Verified for n <= 937. - David A. Corneth, Jun 07 2020
Kanold (1957) proved that the asymptotic density of the harmonic numbers is 0. - Amiram Eldar, Jun 01 2020
Zachariou and Zachariou (1972) called these numbers "Ore numbers", after the Norwegian mathematician Øystein Ore (1899 - 1968), who was the first to study them. Ore (1948) and Garcia (1954) referred to them as "numbers with integral harmonic mean of divisors". The term "harmonic numbers" was used by Pomerance (1973). They are sometimes called "harmonic divisor numbers", or "Ore's harmonic numbers", to differentiate them from the partial sums of the harmonic series. - Amiram Eldar, Dec 04 2020
Conjecture: all terms > 1 have a Mersenne prime as a factor. - Ivan Borysiuk, Jan 28 2024

Examples

			k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence.
k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
		

References

  • G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

See A003601 for analogs referring to arithmetic mean and A000290 for geometric mean of divisors.
See A001600 and A090240 for the integer values obtained.
sigma_0(n) (or tau(n)) is the number of divisors of n (A000005).
sigma_1(n) (or sigma(n)) is the sum of the divisors of n (A000203).
Cf. A007340, A090945, A035527, A007691, A074247, A053783. Not a subset of A003601.
Cf. A027750.

Programs

  • GAP
    Concatenation([1],Filtered([2,4..2000000],n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
    
  • Haskell
    import Data.Ratio (denominator)
    import Data.List (genericLength)
    a001599 n = a001599_list !! (n-1)
    a001599_list = filter ((== 1) . denominator . hm) [1..] where
       hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds)
              where ds = a027750_row x
    -- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
    
  • Maple
    q:= (p,k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1):
    filter:= proc(n) local t; mul(q(op(t)),t=ifactors(n)[2])::integer end proc:
    select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
  • Mathematica
    Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}]
    Select[Range[1600000],IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    a(n)=if(n<0,0,n=a(n-1);until(0==(sigma(n,0)*n)%sigma(n,1),n++);n) /* Michael Somos, Feb 06 2004 */
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
    
  • Python
    from itertools import count, islice
    from functools import reduce
    from math import prod
    from sympy import factorint
    def A001599_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A001599_list = list(islice(A001599_gen(),20)) # Chai Wah Wu, Feb 14 2023

Formula

{ k : A106315(k) = 0 }. - R. J. Mathar, Jan 25 2017

Extensions

More terms from Klaus Brockhaus, Sep 18 2001

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.
Previous Showing 11-20 of 195 results. Next