cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 107 results. Next

A016885 a(n) = 5*n + 3.

Original entry on oeis.org

3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 233, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 0

Views

Author

Keywords

Comments

Numbers ending in 3 or 8. - Lekraj Beedassy, Jul 08 2006
Number of moves in game of Brussels Sprouts with n+1 crosses. - Charles R Greathouse IV, Mar 09 2014

References

  • Elwyn R. Berlekamp, John Conway, and Richard K. Guy, Winning Ways for your Mathematical Plays, A K Peters, 2001.

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

a(n) = floor((15*n+10)/3). - Gary Detlefs, Mar 07 2010
G.f.: (3+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012
E.g.f.: (3 + 5*x)*exp(x). - G. C. Greubel, Jul 05 2019
a(n) = 2*a(n-1)-a(n-2). - Wesley Ivan Hurt, Apr 22 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2-2/sqrt(5))*Pi/10 - log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
a(n)^2 + (a(n)+1)^2 - n^2 = A017041(n)^2. - Charlie Marion, Apr 30 2023

Extensions

More terms from James Sellers, Jul 06 2000

A047201 Numbers not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Original name was: Numbers that are congruent to {1, 2, 3, 4} mod 5.
More generally the sequence of numbers not divisible by some fixed integer m>=2 is given by a(n,m) = n-1+floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008587. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

Formula

G.f.: (x+2*x^2+3*x^3+4*x^4+4*x^5+3*x^6+2*x^7+x^8)/(1-x^4)^2 (not reduced). - Len Smiley
a(n) = 5+a(n-4).
G.f.: x*(1+x+x^2+x^3+x^4)/((1-x)*(1-x^4)).
a(n) = n-1+floor((n+3)/4). - Benoit Cloitre, Jul 11 2009
A011558(a(n))=1; A079998(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor((15*n-1)/12). - Gary Detlefs, Mar 07 2010
a(n) = A225496(n) for n <= 42. - Reinhard Zumkeller, May 09 2013
From Wesley Ivan Hurt, Jun 22 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5), n>5.
a(n) = (10*n-5-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8. (End)
E.g.f.: 1 + (1/4)*(-cos(x) + (-3 + 5*x)*cosh(x) + sin(x) + (-2 + 5*x)*sinh(x)). - Stefano Spezia, Dec 01 2019
a(n) = floor((5*n-1)/4). - Wolfdieter Lang, Sep 30 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2-2/sqrt(5))*Pi/5 = A179290 * A019692 / 10. - Amiram Eldar, Dec 07 2021

Extensions

Comment from Lekraj Beedassy, Dec 17 2006 is now the current name. - Wesley Ivan Hurt, Jun 25 2015

A016897 a(n) = 5*n + 4.

Original entry on oeis.org

4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 244, 249, 254, 259, 264, 269, 274, 279, 284
Offset: 0

Views

Author

Keywords

Comments

Except for 1, 2, n such that Sum_{k=1..n} (k mod 5)*C(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
Numbers ending in 4 or 9. - Lekraj Beedassy, Jul 08 2006
The set of numbers congruent to 4 mod 5. - Gary Detlefs, Mar 07 2010
Also the number of (not necessarily maximal) cliques in the n-book graph and (n+1)-ladder graph. - Eric W. Weisstein, Nov 29 2017

Crossrefs

Programs

Formula

G.f.: (4+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2), n>1. - Philippe Deléham, Nov 03 2008
a(n) = A131098(n+2) + n + 1. - Jaroslav Krizek, Aug 15 2009
a(n) = 10*n - a(n-1) + 3, n>0. - Vincenzo Librandi, Nov 20 2010
A000041(a(n)) == 0 mod 5 is the first of Ramanujan's congruences. - Ivan N. Ianakiev, Dec 29 2014
a(n) = (n+2)^2 - 2*A000217(n-1). See Mirror Triangles illustration. - Leo Tavares, Aug 18 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(10*(5+sqrt(5)))*Pi/50 - log(2)/5 - sqrt(5)*log(phi)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: exp(x)*(4 + 5*x). - Elmo R. Oliveira, Mar 08 2024

A016873 a(n) = 5*n + 2.

Original entry on oeis.org

2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277
Offset: 0

Views

Author

Keywords

Comments

Numbers ending in 2 or 7. - Lekraj Beedassy, Jul 08 2006
For n > 2, also the number of (not necessarily maximal) cliques in the n-gear graph. - Eric W. Weisstein, Nov 29 2017
Also, positive integers k such that 10*k+5 is equal to the product of two integers ending with 5. Proof: if 10*k+5 = (10*a+5) * (10*b+5), then k = 10*a*b + 5*(a+b) + 2 = 5 * (a + b + 2*a*b) + 2, of the form 5m + 2. So, 262 is a term because 2625 = 35 * 75. - Bernard Schott, May 15 2019
Numbers k such that 2^x + 3^x == 0 mod 31 and 2^x + 3^x == 0 mod 11 with x = 6*k+3. - Pedro Caceres, May 18 2022

Crossrefs

Cf. A053742 (product of two integers ending with 5).
Cf. A324298 (product of two integers ending with 6).

Programs

Formula

a(n) = 10*n - a(n-1) - 1 (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: (2+3*x)/(1-x)^2. - Colin Barker, Jan 08 2012
E.g.f.: exp(x)*(2 + 5*x). - Stefano Spezia, Mar 21 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2-2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A033429 a(n) = 5*n^2.

Original entry on oeis.org

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, 12500
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete bipartite graph of order 6n, K_n,5n. - Roberto E. Martinez II, Jan 07 2002
Number of edges of the complete tripartite graph of order 4n, K_n,n,2n. - Roberto E. Martinez II, Jan 07 2002
a(n+1)-a(n) : 5, 15, 25, 35, 45, ... (see A017329). - Philippe Deléham, Dec 08 2011
From Larry J Zimmermann, Feb 21 2013: (Start)
The sum of the areas of 2 squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y)), where the substitution y=2*x obtains the whole number sides of the rectangle. So x^2+(2*x)^2=5x(x).
x squares sum rectangle (l,w) area
1 1,4 5 5,1 5
2 4,16 20 10,2 20 (End)

Crossrefs

Central column of A055096.
Cf. A000290.
Cf. A185019.
Similar sequences are listed in A316466.

Programs

  • Mathematica
    5*Range[50]^2 (* Alonso del Arte, May 23 2012 *)
  • PARI
    a(n)=5*n^2

Formula

a(n) = 5*A000290(n). - Omar E. Pol, Dec 11 2008
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: 5*x*(1+x)/(1-x)^3.
a(n) = 4*A000217(n) + A000567(n). (End)
a(n) = a(n-1)+5*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(n) = A131242(10*n+4). - Philippe Deléham, Mar 27 2013
a(n) = a(n-1) + 10*n - 5, with a(0)=0. - Jean-Bernard François, Oct 04 2013
a(n) = A001105(n) + A033428(n). - Altug Alkan, Sep 28 2015
E.g.f.: 5*x*(x+1)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = Sum_{i = 2..6} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/30.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/60.
Product_{n>=1} (1 + 1/a(n)) = sqrt(5)*sinh(Pi/sqrt(5))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(5)*sin(Pi/sqrt(5))/Pi. (End)

Extensions

Better description from N. J. A. Sloane, May 15 1998

A121025 Multiples of 5 containing a 5 in their decimal representation.

Original entry on oeis.org

5, 15, 25, 35, 45, 50, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 150, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 250, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 350, 355, 365, 375, 385, 395, 405, 415, 425, 435, 445, 450, 455, 465, 475, 485
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

  • GAP
    Filtered([1..500],n-> n mod 5 = 0 and 5 in ListOfDigits(n)); # Muniru A Asiru, Feb 23 2019
  • Mathematica
    Select[5*Range[200], MemberQ[IntegerDigits[#], 5] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is(n)=n%5==0 && setsearch(Set(digits(n)), 5) \\ Charles R Greathouse IV, Feb 12 2017
    

Formula

a(n) ~ 5n. - Charles R Greathouse IV, Feb 12 2017

Extensions

Typo in comment fixed by Reinhard Zumkeller, May 01 2011

A140090 a(n) = n*(3*n + 7)/2.

Original entry on oeis.org

0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011
Number of cards needed to build an n-tier house of cards with a flat, one-card-wide roof. - Tyler Busby, Dec 28 2022

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, this sequence, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

Programs

Formula

G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011
a(n) = (3*n^2 + 7*n)/2.
a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)

A008597 Multiples of 15.

Original entry on oeis.org

0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, 615, 630, 645, 660, 675, 690, 705, 720, 735, 750, 765, 780
Offset: 0

Views

Author

Keywords

Comments

n such that the last decimal digit of F(n) is zero, where F(n) is the n-th Fibonacci number (F(45) = 1134903170). - Benoit Cloitre, Aug 07 2002

Crossrefs

Programs

Formula

G.f.: 15*x/(1-x)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 15*x*exp(x).
a(n) = A008585(A008587(n)) = A008587(A008585(n)) = A249674(n)/2. (End)

A079998 The characteristic function of the multiples of five.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Vladimir Baltic, Feb 10 2003

Keywords

Comments

Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 2, r = 3, I = {-1, 0, 1, 2}.
a(n) = 1 if n = 5k, a(n) = 0 otherwise. Also, number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 1, r = 4, I = {0, 1, 2, 3}.
a(n) is also the number of partitions of n with each part being five (a(0) = 1 because the empty partition has no parts to test equality with five). Hence a(n) is also the number of 2-regular graphs on n vertices with each component having girth exactly five. - Jason Kimberley, Oct 02 2011
This sequence is the Euler transformation of A185015. - Jason Kimberley, Oct 02 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Characteristic function of multiples of g: A000007 (g = 0), A000012 (g = 1), A059841 (g = 2), A079978 (g = 3), A121262 (g = 4), this sequence (g = 5), A079979 (g = 6), A082784 (g = 7). - Jason Kimberley, Oct 14 2011

Programs

Formula

Recurrence: a(n) = a(n-5). G.f.: -1/(x^5 - 1).
a(n) = 1 - A011558(n); a(A008587(n)) = 1; a(A047201(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(1/2*cos(2*n*Pi/5) + 1/2). - Gary Detlefs, May 16 2011
a(n) = floor(n/5) - floor((n-1)/5). - Tani Akinari, Oct 21 2012
a(n) = binomial(n - 1, 4) mod 5. - Wesley Ivan Hurt, Oct 06 2014

Extensions

More terms from Antti Karttunen, Dec 21 2017

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023
Previous Showing 11-20 of 107 results. Next