cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 137 results. Next

A007947 Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Multiplicative with a(p^e) = p.
Product of the distinct prime factors of n.
a(k)=k for k=squarefree numbers A005117. - Lekraj Beedassy, Sep 05 2006
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), b*c = A019554(n) = "outer square root" of n, and a(n) = lcm(a(b),c). Unless n is biquadrateful (A046101), a(n) = lcm(b,c). [Edited by Jeppe Stig Nielsen, Oct 10 2021, and Andrey Zabolotskiy, Feb 12 2025]
a(n) = A128651(A129132(n-1) + 2) for n > 1. - Reinhard Zumkeller, Mar 30 2007
Also the least common multiple of the prime factors of n. - Peter Luschny, Mar 22 2011
The Mobius transform of the sequence generates the sequence of absolute values of A097945. - R. J. Mathar, Apr 04 2011
Appears to be the period length of k^n mod n. For example, n^12 mod 12 has period 6, repeating 1,4,9,4,1,0, so a(12)= 6. - Gary Detlefs, Apr 14 2013
a(n) differs from A014963(n) when n is a term of A024619. - Eric Desbiaux, Mar 24 2014
a(n) is also the smallest base (also termed radix) for which the representation of 1/n is of finite length. For example a(12) = 6 and 1/12 in base 6 is 0.03, which is of finite length. - Lee A. Newberg, Jul 27 2016
a(n) is also the divisor k of n such that d(k) = 2^omega(n). a(n) is also the smallest divisor u of n such that n divides u^n. - Juri-Stepan Gerasimov, Apr 06 2017

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

See A007913, A062953, A000188, A019554, A003557, A066503, A087207 for other properties related to square and squarefree divisors of n.
More general factorization-related properties, specific to n: A020639, A028234, A020500, A010051, A284318, A000005, A001221, A005361, A034444, A014963, A128651, A267116.
Range of values is A005117.
Bisections: A099984, A099985.
Sequences about numbers that have the same squarefree kernel: A065642, array A284311 (A284457).
A003961, A059896 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a007947 = product . a027748_row  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
    
  • Maple
    with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
    A007947 := n -> ilcm(op(numtheory[factorset](n))):
    seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
    A:= n -> convert(numtheory:-factorset(n),`*`):
    seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
    seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
    Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
    Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from sympy import primefactors, prod
    def a(n): return 1 if n < 2 else prod(primefactors(n))
    [a(n) for n in range(1, 51)]  # Indranil Ghosh, Apr 16 2017
    
  • Sage
    def A007947(n): return mul(p for p in prime_divisors(n))
    [A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
    
  • Scheme
    (define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017

Formula

If n = Product_j (p_j^k_j) where p_j are distinct primes, then a(n) = Product_j (p_j).
a(n) = Product_{k=1..A001221(n)} A027748(n,k). - Reinhard Zumkeller, Aug 27 2011
Dirichlet g.f.: zeta(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jan 21 2012
a(n) = Sum_{d|n} phi(d) * mu(d)^2 = Sum_{d|n} |A097945(d)|. - Enrique Pérez Herrero, Apr 23 2012
a(n) = Product_{d|n} d^moebius(n/d) (see Billal link). - Michel Marcus, Jan 06 2015
a(n) = n/( Sum_{k=1..n} (floor(k^n/n)-floor((k^n - 1)/n)) ) = e^(Sum_{k=2..n} (floor(n/k) - floor((n-1)/k))*A010051(k)*M(k)) where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
a(n) = n/A003557(n). - Juri-Stepan Gerasimov, Apr 07 2017
G.f.: Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
From Antti Karttunen, Jun 18 2017: (Start)
a(1) = 1; for n > 1, a(n) = A020639(n) * a(A028234(n)).
a(n) = A019565(A087207(n)). (End)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)). - Vaclav Kotesovec, Dec 18 2019
From Peter Munn, Jan 01 2020: (Start)
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A003961(n)) = A003961(a(n)).
a(n^2) = a(n).
a(A225546(n)) = A019565(A267116(n)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463/2. - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)).
For n>1, Sum_{k=1..n} a(gcd(n,k))*mu(a(gcd(n,k)))*phi(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*mu(a(n/gcd(n,k)))*phi(gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*psi(d), where omega = A001221 and psi = A001615. - Ridouane Oudra, Aug 01 2025

Extensions

More terms from several people including David W. Wilson
Definition expanded by Jonathan Sondow, Apr 26 2013

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A246655 Prime powers: numbers of the form p^k where p is a prime and k >= 1.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211
Offset: 1

Views

Author

Keywords

Comments

The elements are called prime powers in contrast to the powers of primes which are the numbers of the same form but with k >= 0, cf. A000961.
Every nonzero integer is the product of elements of this sequence which are relatively prime and an element of {-1, 1}. This product is up to a rearrangement of the factors unique. (This statement is the fundamental theorem of arithmetic.)
These numbers are the numbers such that the von Mangoldt function is nonzero.
These numbers are the numbers of elements in finite fields. - Franz Vrabec, Aug 11 2004
A positive integer n is a prime power if and only if nZ is a primary ideal of Z. - John Cremona, Sep 02 2014
Also, numbers n divisible by their cototients A051953(n). - Ivan Neretin, May 29 2016
Numbers n such that (theta_3(q) - theta_3(q^n)) / 2 is the g.f. of a multiplicative sequence. - Michael Somos, Oct 17 2016
Numbers that are evenly divisible by exactly one prime number. - Lee A. Newberg, May 07 2018
Ram proved that these are precisely the numbers n such that the binomial coefficients n!/(m!(n-m)!) for m = 1..n-1 have a common factor greater than 1 (which is the unique prime dividing n). See Joris, Oestreicher & Steinig for a generalization. - Charles R Greathouse IV, Apr 24 2019
Blagojević & Ziegler prove that for these n and for any convex polygon in the plane, the polygon can be partitioned into n polygons with equal area and equal perimeter. The result is conjectured (by Nandakumar & Rao, who proved the case n = 2) to hold for all n. - Charles R Greathouse IV, Apr 24 2019
Numbers n such that A367064(n) < 0. - Chai Wah Wu, Nov 06 2023
This sequence represents all positive high amplitude peaks of the inverse Riemann spectrum R(x)= Sum_{k=1..oo} -cos(log(x)*Im(z_k)) going over the imaginary part of the nontrivial zeros "Im(z_k)" in the Riemann zeta function. - Marc Morgenegg, Jul 29 2025

Crossrefs

There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Partial sums of A275120.

Programs

  • Maple
    select(t -> nops(numtheory:-factorset(t))=1, [$1..1000]); # Robert Israel, Sep 01 2014
    A246655 := proc(n) A000961(n+1) end proc: # R. J. Mathar, Jan 09 2017
    isprimepower := n -> nops(NumberTheory:-PrimeFactors(n)) = 1: # Peter Luschny, Oct 09 2022
  • Mathematica
    Select[Range[222], PrimePowerQ]
  • PARI
    [p| p <- [1..222], isprimepower(p)]
    
  • PARI
    list(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
    
  • Python
    from sympy import primerange
    m = 10**5
    A246655 = []
    for p in primerange(1,m):
        pe = p
        while pe < m:
            A246655.append(pe)
            pe *= p
    A246655 = sorted(A246655) # Chai Wah Wu, Sep 04 2014
    
  • Python
    from sympy import primepi, integer_nthroot
    def A246655(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 20 2024
  • Sage
    [n for n in (1..222) if sloane.A001221(n) == 1]
    

Formula

a(n) is characterized by A001221(a(n)) = 1.
a(n) is characterized by A014963(a(n)) != 1.
Euler's A000010(a(n)) = a(n)*(1 - 1/A014963(a(n))).
All three relations above are not true for A000961(n) instead of a(n).
Sum_{k=1..n} 1/a(k) ~ log(log(a(n))) + A077761 + A136141. - François Huppé, Jul 31 2024

A024619 Numbers that are not powers of primes p^k (k >= 0); complement of A000961.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1

Views

Author

Keywords

Comments

The sequence of numbers divisible by a prime number of primes coincides with this up to 210, which has 4 prime factors. - Lior Manor, Aug 23 2001
A085970(n) = Max{k: a(k)<=n}.
Numbers n such that LCM of proper divisors of n equals neither 1 nor n. - Labos Elemer, Dec 01 2004
a(n) provides bases b in which automorphic numbers m^2 ending with m in base b exist. In the complement there aren't any automorphic numbers. - Martin Renner, Dec 07 2011
Numbers with at least 2 distinct prime factors. - Jonathan Sondow, Oct 17 2013
There exists an equiangular n-gon whose edge lengths form a permutation of 1, 2, ..., n if and only if n is in the sequence (see Woeginger's survey and Munteanu & Munteanu). - Jonathan Sondow, Oct 17 2013
Numbers that are the product of two relatively prime factors. These numbers are used in testing a sequence for multiplicativity. - Michael Somos, Jun 02 2015
A theorem from Donald McCarthy: Let d be any positive integer which is not a prime power; then there exists a finite group whose order is divisible by d but which contains no subgroup of order d (see link and A340511). - Bernard Schott, Dec 04 2021

Crossrefs

Cf. A000040, A000961 (complement), A001221, A014963, A020500, A085970.
Cf. A340511.
Subsequence of A080257.

Programs

  • Haskell
    a024619 n = a024619_list !! (n-1)
    a024619_list = filter ((== 0) . a010055) [1..]
    -- Reinhard Zumkeller, Nov 17 2011
    
  • Magma
    IsA024619:=func< n | not IsPrime(n) and not (t and IsPrime(b) where t, b, A024619(n)%20%5D;%20//%20_Klaus%20Brockhaus">:=IsPower(n)) >; [ n: n in [2..200] | IsA024619(n) ]; // _Klaus Brockhaus, Feb 25 2011
    
  • Maple
    a := proc(n) numtheory[factorset](n); if 1 < nops(%) then n else NULL fi end:
    seq(a(i), i=1..110); # Peter Luschny, Aug 11 2009
  • Mathematica
    Select[Range@111, Length@FactorInteger@# > 1 &] (* Robert G. Wilson v, Dec 07 2005 *)
  • PARI
    is(n)=n>5 && !isprimepower(n) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    from sympy import primepi
    from sympy.ntheory.primetest import integer_nthroot
    def A024619(n):
        def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024
  • Sage
    def A024619_list(n) :
        return [k for k in (2..n) if not k.is_prime() and not k.is_prime_power()]
    A024619_list(112)  # Peter Luschny, Feb 03 2012 [corrected by Terry D. Grant, Sep 16 2020]
    

Formula

A001221(a(n)) > 1.
A014963(a(n)) = 1.
A020500(a(n)) = 1. - Benoit Cloitre, Aug 26 2003
A010055(a(n)) = 0. - Reinhard Zumkeller, Nov 17 2011
a(n) ~ n. - Charles R Greathouse IV, Mar 21 2013
a(n) ~ n - pi(n) [See Panaitopol]. - N. J. A. Sloane, Sep 27 2020
A118887(a(n)) > 0. - Jonathan Sondow, Oct 17 2013

A025475 1 and the prime powers p^m where m >= 2, thus excluding the primes.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192
Offset: 1

Views

Author

Keywords

Comments

Also nonprime n such that sigma(n)*phi(n) > (n-1)^2. - Benoit Cloitre, Apr 12 2002
If p is a term of the sequence, then the index n for which a(n) = p is given by n := b(p) := 1 + Sum_{k>=2} PrimePi(p^(1/k)). Here, the sum has floor(log_2(p)) positive terms. For any m > 0, the greatest number n such that a(n) <= m is also given by b(m), thus, b(m) is the number of such prime powers <= m. - Hieronymus Fischer, May 31 2013
That 8 and 9 are the only two consecutive integers in this sequence is known as Catalan's Conjecture and was proved in 2002 by Preda Mihăilescu. - Geoffrey Critzer, Nov 15 2015

Crossrefs

Subsequence of A000961. - Reinhard Zumkeller, Jun 22 2011
Differences give A053707.
Cf. A076048 (number of terms < 10^n).
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018

Programs

  • Haskell
    a025475 n = a025475_list !! (n-1)
    a025475_list = filter ((== 0) . a010051) a000961_list
    -- Reinhard Zumkeller, Jun 22 2011
    
  • Maple
    isA025475 := proc(n)
        if n < 1 then
            false;
        elif n = 1 then
            true;
        elif isprime(n) then
            false;
        elif nops(numtheory[factorset](n)) = 1 then
            true;
        else
            false;
        end if;
    end proc:
    A025475 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA025475(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    # R. J. Mathar, Jun 06 2013
    # alternative:
    N:= 10^5: # to get all terms <= N
    Primes:= select(isprime, [2,(2*i+1 $ i = 1 .. floor((sqrt(N)-1)/2))]):
    sort([1,seq(seq(p^i, i=2..floor(log[p](N))),p=Primes)]); # Robert Israel, Jul 27 2015
  • Mathematica
    A025475 = Select[ Range[ 2, 10000 ], ! PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ] ] == 0 & ]
    A025475 = Sort[ Flatten[ Table[ Prime[n]^i, {n, 1, PrimePi[ Sqrt[10^4]]}, {i, 2, Log[ Prime[n], 10^4]}]]]
    {1}~Join~Select[Range[10^4], And[! PrimeQ@ #, PrimePowerQ@ #] &] (* Michael De Vlieger, Jul 04 2016 *)
    Join[{1},Select[Range[100000],PrimePowerQ[#]&&!PrimeQ[#]&]] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    for(n=1,10000,if(sigma(n)*eulerphi(n)*(1-isprime(n))>(n-1)^2,print1(n,",")))
    
  • PARI
    is_A025475(n)={ ispower(n,,&p) && isprime(p) || n==1 }  \\ M. F. Hasler, Sep 25 2011
    
  • PARI
    list(lim)=my(v=List([1]),L=log(lim+.5));forprime(p=2,(lim+.5)^(1/3),for(e=3,L\log(p),listput(v,p^e))); vecsort(concat(Vec(v), apply(n->n^2,primes(primepi(sqrtint(lim\1)))))) \\ Charles R Greathouse IV, Nov 12 2012
    
  • PARI
    list(lim)=my(v=List([1])); for(m=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim,m), listput(v, p^m))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015
    
  • Python
    from sympy import primerange
    A025475_list, m = [1], 10*2
    m2 = m**2
    for p in primerange(1,m):
        a = p**2
        while a < m2:
            A025475_list.append(a)
            a *= p
    A025475_list = sorted(A025475_list) # Chai Wah Wu, Sep 08 2014
    
  • Python
    from sympy import primepi, integer_nthroot
    def A025475(n):
        if n==1: return 1
        def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024

Formula

The number of terms <= N is O(sqrt(N)*log N). [See Weisstein link] - N. J. A. Sloane, May 27 2022
A005171(a(n))*A010055(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
A192280(a(n)) = 0 for n > 1. - Reinhard Zumkeller, Aug 26 2011
A014963(a(n)) - A089026(a(n)) = A014963(a(n)) - 1. - Eric Desbiaux, May 18 2013
From Hieronymus Fischer, May 31 2013: (Start)
The greatest number n such that a(n) <= m is given by 1 + Sum_{k>=2} A000720(floor(m^(1/k))).
Example 1: m = 10^10 ==> n = 10085;
Example 2: m = 10^11 ==> n = 28157;
Example 3: m = 10^12 ==> n = 80071;
Example 4: m = 10^15 ==> n = 1962690. (End)
Sum_{n>=2} 1/a(n) = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Oct 11 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=2} (1 + 1/a(n)) = Product_{k>=2} zeta(k)/zeta(2*k) = 2.0729553047...
Product_{n>=2} (1 - 1/a(n)) = A068982. (End)

Extensions

Edited by Daniel Forgues, Aug 18 2009

A057820 First differences of sequence of consecutive prime powers (A000961).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024

Examples

			Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
		

Crossrefs

For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Haskell
    a057820_list = zipWith (-) (tail a000961_list) a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    A057820 := proc(n)
            A000961(n+1)-A000961(n) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
    Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
    
  • Python
    from sympy import primepi, integer_nthroot
    def A057820(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r, k = m, f(m)+1
        while r != k: r, k = k, f(k)+1
        return r-m # Chai Wah Wu, Sep 12 2024

Formula

a(n) = A000961(n+1) - A000961(n).

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

A057889 Bijective bit-reverse of n: keep the trailing zeros in the binary expansion of n fixed, but reverse all the digits up to that point.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 12, 11, 14, 15, 16, 17, 18, 25, 20, 21, 26, 29, 24, 19, 22, 27, 28, 23, 30, 31, 32, 33, 34, 49, 36, 41, 50, 57, 40, 37, 42, 53, 52, 45, 58, 61, 48, 35, 38, 51, 44, 43, 54, 59, 56, 39, 46, 55, 60, 47, 62, 63, 64, 65, 66, 97, 68, 81, 98, 113
Offset: 0

Views

Author

Marc LeBrun, Sep 25 2000

Keywords

Comments

The original name was "Bit-reverse of n, including as many leading as trailing zeros." - Antti Karttunen, Dec 25 2024
A permutation of integers consisting only of fixed points and pairs. a(n)=n when n is a binary palindrome (including as many leading as trailing zeros), otherwise a(n)=A003010(n) (i.e. n has no axis of symmetry). A057890 gives the palindromes (fixed points, akin to A006995) while A057891 gives the "antidromes" (pairs). See also A280505.
This is multiplicative in domain GF(2)[X], i.e. with carryless binary arithmetic. A193231 is another such permutation of natural numbers. - Antti Karttunen, Dec 25 2024

Examples

			a(6)=6 because 0110 is a palindrome, but a(11)=13 because 1011 reverses into 1101.
		

Crossrefs

Cf. A030101, A000265, A006519, A006995, A057890, A057891, A280505, A280508, A331166 [= min(n,a(n))], A366378 [k for which a(k) = k (mod 3)], A369044 [= A014963(a(n))].
Similar permutations for other bases: A263273 (base-3), A264994 (base-4), A264995 (base-5), A264979 (base-9).
Other related (binary) permutations: A056539, A193231.
Compositions of this permutation with other binary (or other base-related) permutations: A264965, A264966, A265329, A265369, A379471, A379472.
Compositions with permutations involving prime factorization: A245450, A245453, A266402, A266404, A293448, A366275, A366276.
Other derived permutations: A246200 [= a(3*n)/3], A266351, A302027, A302028, A345201, A356331, A356332, A356759, A366389.
See also A235027 (which is not a permutation).

Programs

  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n, 2]], 2]*2^IntegerExponent[n, 2], {n, 71}] (* Ivan Neretin, Jul 09 2015 *)
  • PARI
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); \\ Antti Karttunen, Dec 25 2024
  • Python
    def a(n):
        x = bin(n)[2:]
        y = x[::-1]
        return int(str(int(y))+(len(x) - len(str(int(y))))*'0', 2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 11 2017
    
  • Python
    def A057889(n): return int(bin(n>>(m:=(~n&n-1).bit_length()))[-1:1:-1],2)<Chai Wah Wu, Dec 25 2024
    

Formula

a(n) = A030101(A000265(n)) * A006519(n), with a(0)=0.

Extensions

Clarified the name with May 30 2016 comment from N. J. A. Sloane, and moved the old name to the comments - Antti Karttunen, Dec 25 2024

A006549 Numbers k such that k and k+1 are prime powers.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 16, 31, 127, 256, 8191, 65536, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k + (0, 1) is a prime power pair.
Consecutive prime powers.
k + (0, 2m), m >= 1, being an admissible pattern for prime pairs, since (0, 2m) == (0, 0) (mod 2), has high density.
k + (0, 2m-1), m >= 1, being a non-admissible pattern for prime pairs, since (0, 2m-1) == (0, 1) (mod 2), has low density [the only possible pairs are (2^a - 2m-1, 2^a) or (2^a, 2^a + 2m-1), a >= 0].
Numbers k such that k and k+1 are primes would give only 2, for the prime pair (2, 3).
This sequence corresponds to the least member of each one of the following prime power pairs, ordered by increasing value of least member: (1, 2), (2^3, 3^2), (Fermat primes - 1, Fermat primes), (Mersenne primes, Mersenne primes + 1).
It is not known whether this sequence is infinite, but is conjectured to be since:
(*) 2^3, 3^2 are the only consecutive prime powers with exponents >= 2
(as a consequence of Mihailescu's theorem -- Mihailescu proved Catalan's conjecture in 2002);
(*) Only the first 5 Fermat numbers f_0 to f_4 are known to be prime
(it is conjectured that there might be no others, f_5 to f_32 are all composite);
(*) It has been conjectured that there exist an infinite number of Mersenne primes.
Numbers k such that A003418(k) appears only once in the sequence A003418. This may suggest that k is also characterized by the pairs formed by a 2 whose direct neighbor is a prime number in the sequence A014963. - Eric Desbiaux, Feb 11 2015
The power graph and enhanced power graph of the groups PGL(2,q) have the same clique number iff q>1 is a term of this sequence (Peter Cameron's link). - Bernard Schott, Dec 14 2021

References

  • R. K. Guy, Unsolved Problems in Number Theory, D9.
  • P. Ribenboim, 13 Lect. on Fermat's Last Theorem, p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David W. Wilson and Eric Rains (rains(AT)caltech.edu) found a simple proof that in this case of Catalan's conjecture either n or n+1 must be a power of 2 and the other number must be a prime, except for n=8. Using this the sequence is easy to extend.

Crossrefs

Cf. A019434 Fermat primes: primes of form 2^(2^n) + 1, n >= 0.
Cf. A000668 Mersenne primes (of form 2^p - 1 where p is a prime).
Cf. A120431 Numbers n such that n and n+2 are prime powers.
Cf. A164571 Numbers n such that n and n+3 are prime powers.
Cf. A164572 Numbers n such that n and n+4 are prime powers.
Cf. A164573 Numbers n such that n and n+5 are prime powers.
Cf. A164574 Numbers n such that n and n+6 are prime powers.

Programs

  • Haskell
    a006549 n = a006549_list !! (n-1)
    a006549_list = [1,2,3,4,7,8] ++ f (drop 4 a000040_list) where
       f (p:ps) | a010055 (p - 1) == 1 = (p - 1) : f ps
                | a010055 (p + 1) == 1 = p : f ps
                | otherwise            = f ps
    -- Reinhard Zumkeller, Jan 03 2013
    
  • Mathematica
    Do[ a = Length[ FactorInteger[ 2^n - 1 ] ]; b = Length[ FactorInteger[ 2^n ] ]; c = Length[ FactorInteger[ 2^n + 1 ] ]; If[ a == b, Print[ 2^n - 1 ] ]; If[ b == c, Print[ 2^n ] ], {n, 0, 127} ]
    Join[{1},SequencePosition[Boole[PrimePowerQ[Range[600000]]],{1,1}][[All,1]]] (* Requires Mathematica version 10 or later *) (* Generates the first 14 terms of the sequence. Increase Range constant to generate more. *) (* Harvey P. Dale, Apr 12 2020 *)
  • PARI
    is(n)=if(n<5,return(n>0)); isprimepower(n) && isprimepower(n+1) \\ Charles R Greathouse IV, Apr 24 2015

Extensions

More terms from David W. Wilson
Additional comments from Daniel Forgues, Aug 17 2009

A180000 a(n) = lcm{1,2,...,n} / swinging_factorial(n) = A003418(n) / A056040(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 12, 4, 10, 10, 30, 30, 105, 7, 56, 56, 252, 252, 1260, 60, 330, 330, 1980, 396, 2574, 286, 2002, 2002, 15015, 15015, 240240, 7280, 61880, 1768, 15912, 15912, 151164, 3876, 38760, 38760, 406980, 406980, 4476780, 99484, 1144066
Offset: 0

Views

Author

Peter Luschny, Aug 17 2010

Keywords

Comments

Characterization: Let e_{p}(m) denote the exponent of the prime p in the prime factorization of m and [.] denote the Iverson bracket, then
e_{p}(a(n)) = Sum_{k>=1} [floor(n/p^k) is even].
This implies, among other things, that no prime > floor(n/2) can divide a(n). The prime exponents e_{2}(a(2n)) give Guy Steele's sequence GS(5,3) A080100.
Asymptotics: log a(n) ~ n(1 - log 2). It is conjectured that log a(n) ~ n(1 - log 2) + O(n^{1/2+eps}) for all eps > 0.
Bounds: A056040(floor(n/3)) <= a(n) <= A056040(floor(n/2)) if n >= 285.

Crossrefs

Programs

  • Maple
    a := proc(n) local A014963, k;
    A014963 := proc(n) if n < 2 then 1 else numtheory[factorset](n);
    if 1 < nops(%) then 1 else op(%) fi fi end;
    mul(A014963(k)*(k/2)^((-1)^k), k=1..n)/2^n end;
    # Also:
    A180000 := proc(n) local lcm, sf;
    lcm := ilcm(seq(i,i=1..n));
    sf := n!/iquo(n,2)!^2;
    lcm/sf end;
  • Mathematica
    a[0] = 1; a[n_] := LCM @@ Range[n] / (n! / Floor[n/2]!^2); Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 23 2013 *)
  • PARI
    L=1; X(n)={ ispower(n, , &n);if(isprime(n),n,1); }
    Y(n)={ a=X(n); b=if(bitand(1,n),a,a*(n/2)^2); L=(b*L)/n; }
    A180000_list(n)={ L=1; vector(n,m,Y(m)); }  \\ for n>0
    
  • Sage
    def Exp(m,n) :
        s = 0; p = m; q = n//p
        while q > 0 :
            if is_even(q) :
                s = s + 1
            p = p * m
            q = n//p
        return s
    def A180000(n) :
        A = [1,1,1,1,2,2,3,3,12]
        if n < 9 : return A[n]
        R = []; r = isqrt(n)
        P = Primes(); p = P.first()
        while p <= n//2 :
            if p <= r : R.append(p^Exp(p,n))
            elif p <= n//3 :
                if is_even(n//p) : R.append(p)
            else : R.append(p)
            p = P.next(p)
        return mul(x for x in R)

Formula

a(n) = 2^(-n)*Product_{1<=k<=n} A014963(k)*(k/2)^((-1)^k).

A191898 Symmetric square array read by antidiagonals: T(n,1)=1, T(1,k)=1, T(n,k) = -Sum_{i=1..k-1} T(n-i,k) for n >= k, -Sum_{i=1..n-1} T(k-i,n) for n < k.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, -1, 1, -1, -4, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -6, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Mats Granvik, Jun 19 2011

Keywords

Comments

Rows equal columns and are periodic. No zero elements are found (conjecture). The recurrence is related to the recurrence for the Mahonian numbers. The main diagonal is the Dirichlet inverse of the Euler totient function A023900 (conjecture). [The 2nd and 3rd formulas state that the conjecture is correct. R. J. Mathar, Sep 16 2017]
The sums from n=1 to infinity of T(n,k)/n converge to the Mangoldt function for column k (conjecture).
If gcd(n,k)=1 then T(n,k)=1 and if T(n,k)=1 then gcd(n,k)=1 (conjecture).
The Dirichlet generating functions for s > 1 for the columns appear to be (see A054535):
Zeta(s)*(1 + (Sum over all possible combinations of products of negative distinct prime factors of k, up to rearrangement, 1/((-1* first distinct prime factor)*(-1*second distinct prime factor)*(-1*third distinct prime factor * ...))^(s-1))).
Examples:
k=1: Zeta(s)
k=2: Zeta(s)*(1 - 1/2^(s-1))
k=3: Zeta(s)*(1 - 1/3^(s-1))
k=4: Zeta(s)*(1 - 1/2^(s-1))
k=5: Zeta(s)*(1 - 1/5^(s-1))
k=6: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) + 1/6^(s-1))
k=7: Zeta(s)*(1 - 1/7^(s-1))
...
k=30: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) - 1/5^(s-1) + 1/6^(s-1) + 1/10^(s-1) + 1/15^(s-1) - 1/30^(s-1))
...
(conjecture)
See triangle A142971 for negative distinct prime factors.
This could probably be checked by matrix multiplication.
The signs of the eigenvalues of this matrix are a rearrangement of the Mobius function A008683 (conjecture). The first few eigenvalues are:
{1.0000}
{-1.4142, 1.4142}
{-2.6554, 1.8662, -1.2108}
{-3.4393, 2.1004, -1.6611, 0}
{-4.7711, -3.3867, 2.5910, -1.4332, 0}
{-5.2439, -3.4641, 3.4641, 2.5169, -2.2730, 0}
The relation to Dirichlet characters for the entries in this matrix appears appears to be formulated in terms of the sequence A089026 which is equal to n if n is a prime, otherwise equal to 1. See Mathematica program below. [Mats Granvik, Nov 23 2013]
From Mats Granvik, Jun 19 2016: (Start)
Remark about the Dirichlet generating function for the whole matrix: Subtracting the first column (in the form of zeta(c)) of the matrix gives us the limit: lim_{c->1} zeta(s)*zeta(c)/zeta(c+s-1)-zeta(c) = -zeta'(s)/zeta(s) which is the classical Dirichlet generating function for the von Mangoldt function.
For n >= k, see A231425, this matrix has row sums equal to zero except for the first row:
1=1
1-1=0
1+1-2=0
1-1+1-1=0
1+1+1+1-4=0
...
log(A014963(n)) = Sum_{k>=1} A191898(n,k)/k, for n>1.
log(A014963(k)) = Sum_{n>=1} A191898(n,k)/n, for k>1.
log(A014963(n)) = limit of zeta(s)*(Sum_{d divides n} A008683(d)/d^(s-1)) as s->1, for n>1.
A008683(n) = Sum_{k=1..n} A191898(n,k)*exp(-i*2*Pi*k/n)/n.
A008683(n) = Sum_{n=1..k} A191898(n,k)*exp(-i*2*Pi*n/k)/k.
(End)
From Mats Granvik, Aug 09 2016: (Start)
The Dirichlet generating function for the matrix is zero for any pair c and s = 2 - c and any pair s and c = 2 - s except at the pole c = 1 and s = 1 where it is indeterminate.
In the Mathematica program section, in the expression for the matrix as Dirichlets characters, the variables s and c can apparently be any pair of positive integers.
Limits related to the Dirichlet generating function for the matrix: Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s-1) = ZetaZero(n). Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s*c-1) = ZetaZero(n)/(1+ZetaZero(n)).
(End)

Examples

			Array starts:
n\k | 1    2    3    4    5    6    7    8    9   10
----+-----------------------------------------------------
1   | 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
2   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
3   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
4   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
5   | 1,   1,   1,   1,  -4,   1,   1,   1,   1,  -4, ...
6   | 1,  -1,  -2,  -1,   1,   2,   1,  -1,  -2,  -1, ...
7   | 1,   1,   1,   1,   1,   1,  -6,   1,   1,   1, ...
8   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
9   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
10  | 1,  -1,   1,  -1,  -4,  -1,   1,  -1,   1,   4, ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := T[ n, k] = Which[ n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k,T[k, Mod[n, k, 1]], True, -Sum[ T[n, i], {i, n - 1}]]; (* Michael Somos, Jul 18 2011 *)
    (* Conjectured expression for the matrix as Dirichlet characters *) s = RandomInteger[{1, 3}]; c = RandomInteger[{1, 3}]; nn = 12; b = Table[Exp[MangoldtLambda[Divisors[n]]]^-MoebiusMu[Divisors[n]], {n, 1, nn^Max[s, c]}]; j = 1; MatrixForm[Table[Table[Product[(b[[n^s]][[m]]*DirichletCharacter[b[[n^s]][[m]], j, k^c] - (b[[n^s]][[m]] - 1)), {m, 1, Length[Divisors[n]]}], {n, 1, nn}], {k, 1, nn}]] (* Mats Granvik, Nov 23 2013 and Aug 09 2016 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n==1 || k==1, 1, k>n, T(k, n), kMichael Somos, Jul 18 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def T(n, k): return 0 if n<1 or k<1 else 1 if n==1 or k==1 else T(k, n) if k>n else T(k, (n - 1)%k + 1) if n>k else -sum([T(n, i) for i in range(1, n)])
    for n in range(1, 21): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Oct 23 2017

Formula

T(n,1)=1, T(1,k)=1, n>=k: -Sum_{i=1..k-1} T(n-i,k), n
T(n, n) = A023900(n). - Michael Somos, Jul 18 2011
T(n, k) = A023900(gcd(n,k)). - Mats Granvik, Jun 18 2012
Dirichlet generating function for sequence in the n-th row: zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1). - Mats Granvik, Jun 18 2012 & Jun 19 2016
From Mats Granvik, Jun 19 2016: (Start)
Dirichlet generating function for the whole matrix: Sum_{k>=1} (Sum_{n>=1} T(n,k)/(n^c*k^s)) = Sum_{n>=1} (zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1))/n^c = zeta(s)*zeta(c)/zeta( c + s - 1 ).
T(n,k) = A127093(n,k)^(1/2-i*a(k))*transpose(A008683(k)*(A127093(n,k)^(1/2+i*a(n)))) where a(x) is some real number. An example would be T(n,k) = A127093(n,k)^(zetazero(k))*transpose(A008683(k)*(A127093(n,k)^(zetazero(-k)))) but this is of course not special for only the zeta zeros.
Recurrence for a subset of A191898 that is a cross-directional variant of the recurrence in A051731: T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..k-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..n-1} T(k-i,n) - T(k-i,n-1). Notice that the identity matrix in linear algebra satisfies a similar recurrence:
T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..n-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..k-1} T(k-i,n) - T(k-i,n-1).
(End)
This array equals A051731*transpose(A143256). - Mats Granvik, Jul 22 2016
T(n,k) = sqrt(A143256(n,k))*transpose(sqrt(A143256(n,k))). - Mats Granvik, Aug 10 2018
Dirichlet generating function for absolute values: Sum_{k>=1} (Sum_{n>=1} abs(T(n,k))/(n^c*k^s)) = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(2*(s + c - 1))*Product_{k>=1} (1 - 2/(prime(k) + prime(k)^(s + c))). After Vaclav Kotesovec in A173557. - Mats Granvik, Apr 25 2021
Previous Showing 31-40 of 137 results. Next