cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 190 results. Next

A028347 a(n) = n^2 - 4.

Original entry on oeis.org

0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 2

Views

Author

Keywords

Comments

Nonnegative X values of solutions to the equation X^3 + 4*X^2 = Y^2. The respective Y values are n*(n^2 - 4). - Mohamed Bouhamida, Nov 06 2007
Discriminants of binary forms x^2 + n*x*y + y^2 (for n > 1). - Artur Jasinski, Apr 28 2008
a(n)*a(n-1) + 4 = (a(n)-n)^2. This is the case d = 4 in the general (n^2-d)*((n-1)^2-d) + d = (n^2-n-d)^2. - Bruno Berselli, Dec 07 2011
Interleaving of A134582 and A078371. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 5*x^3 + 12*x^4 + 21*x^5 + 32*x^6 + 45*x^7 + 60*x^8 + 77*x^9 + 96*x^10 + ...
		

References

  • Alain Connes, Noncommutative Geometry, Academic Press, 1994, p. 35.

Crossrefs

a(n), n>=3, second column (used for the Balmer series of the hydrogen atom) of triangle A120070.

Programs

Formula

Except for initial term, denominators of energies of hydrogen lines.
a(n+2) = n*(n+4). G.f.: x^3*(5-3*x)/(1-x)^3. - Barry E. Williams, Jun 16 2000, R. J. Mathar, Aug 06 2009
a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Aug 02 2010
Sum_{n >= 3} 1/a(n) = 25/48 = 0.52083333... = 100*A021196. - R. J. Mathar, Mar 22 2011
a(n) = x, the solution of k = (sqrt(x)+n)/2 and k + (1/k) = n (also valid for a(0) = -4 and a(1) = -3). - Charles L. Hohn, Apr 16 2011
E.g.f.: (x^2 + x - 4)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = 7/48. - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=3} (1 - 1/a(n)) = 6*sin(sqrt(5)*Pi)/(sqrt(5)*Pi).
Product_{n>=3} (1 + 1/a(n)) = -4*sqrt(3)*sin(sqrt(3)*Pi)/Pi. (End)

A002943 a(n) = 2*n*(2*n+1).

Original entry on oeis.org

0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and diagonal segments filled in. - Asher Auel, Jan 12 2000
In other words, the edge count of the (n+1) X (n+1) king graph. - Eric W. Weisstein, Jun 20 2017
Write 0,1,2,... in clockwise spiral; sequence gives numbers on one of 4 diagonals. (See Example section.)
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as A016813(n)^2 - a(n)*2^2 = 1. - Vincenzo Librandi, Jul 20 2010 - Nov 25 2012
Starting with "6" = binomial transform of [6, 14, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 27 2010
The hyper-Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1 <= i,j <= n, i != j} (= the complete bipartite graph K(n,n) with horizontal edges removed). The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
Sum of the numbers from n to 3n. - Wesley Ivan Hurt, Oct 27 2014

Examples

			64--65--66--67--68--69--70--71--72
|
63  36--37--38--39--40--41--42
|   |                       |
62  35  16--17--18--19--20  43
|   |   |               |   |
61  34  15   4---5---6  21  44
|   |   |    |       |  |   |
60  33  14   3   0   7  22  45
|   |   |    |   |   |  |   |
59  32  13   2---1   8  23  46
|   |   |            |  |   |
58  31  12--11--10---9  24  47
|   |                   |   |
57  30--29--28--27--26--25  48
|                           |
56--55--54--53--52--51--50--49
		

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Same as A033951 except start at 0.
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, this sequence, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, this sequence = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 4*n^2 + 2*n.
a(n) = 2*A014105(n). - Omar E. Pol, May 21 2008
a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A007494(n) + A173511(n) = A007742(n) + n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n+a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 11 2011
a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011
G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012
From R. J. Mathar, Jan 15 2013: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2).
Sum_{n>=1} 1/a(n)^2 = 2*log(2) + Pi^2/6 - 3. (End)
a(n) = A118729(8*n+5). - Philippe Deléham, Mar 26 2013
a(n) = 1*A001477(n) + 2*A000217(n) + 3*A000290(n). - J. M. Bergot, Apr 23 2014
a(n) = 2 * A000217(2*n) = 2 * A014105(n). - Jon Perry, Oct 27 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 + log(2)/2 - 1. - Amiram Eldar, Feb 22 2022
a(n) = A003154(n+1) - A056220(n+1). - Leo Tavares, Mar 31 2022
E.g.f.: 2*exp(x)*x*(3 + 2*x). - Stefano Spezia, Apr 24 2024
a(n) = A002939(-n) for all n in Z. - Charles Kusniec, Aug 12 2025

Extensions

Formula fixed by Reinhard Zumkeller, Apr 09 2010

A053755 a(n) = 4*n^2 + 1.

Original entry on oeis.org

1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, 1025, 1157, 1297, 1445, 1601, 1765, 1937, 2117, 2305, 2501, 2705, 2917, 3137, 3365, 3601, 3845, 4097, 4357, 4625, 4901, 5185, 5477, 5777, 6085, 6401, 6725, 7057
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 06 2000

Keywords

Comments

Subsequence of A004613: all numbers in this sequence have all prime factors of the form 4k+1. E.g., 40001 = 13*17*181, 13 = 4*3 + 1, 17 = 4*4 + 1, 181 = 4*45 + 1. - Cino Hilliard, Aug 26 2006, corrected by Franklin T. Adams-Watters, Mar 22 2011
A000466(n), A008586(n) and a(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
Solutions x of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0, 1, 2, ... - Michel Lagneau, Feb 12 2010
Ulam's spiral (NW spoke). - Robert G. Wilson v, Oct 31 2011
For n >= 1, a(n) is numerator of radius r(n) of circle with sagitta = n and cord length = 1. The denominator is A008590(n). - Kival Ngaokrajang, Jun 13 2014
a(n)+6 is prime for n = 0..6 and for n = 15..20. - Altug Alkan, Sep 28 2015

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1 Nr. 11, p. 19.

Crossrefs

Column 2 of array A188647.
Cf. A016742, A256970 (smallest prime factors), A214345.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • GAP
    List([0..45],n->4*n^2+1); # Muniru A Asiru, Nov 01 2018
  • Haskell
    a053755 = (+ 1) . (* 4) . (^ 2)  -- Reinhard Zumkeller, Apr 20 2015
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+5*x^2)/((1-x)^3))); /* or */ I:=[1,5]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+8: n in [1..50]]; // Vincenzo Librandi, Jun 26 2013
    
  • Maple
    with (combinat):seq(fibonacci(3,2*n), n=0..42); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    f[n_] := 4n^2 +1; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
    CoefficientList[Series[(1 + 2 x + 5 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,5,17},50] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    for(x=0,100,print1(4*x^2+1",")) \\ Cino Hilliard, Aug 26 2006
    
  • Python
    for n in range(0,50): print(4*n**2+1, end=', ') # Stefano Spezia, Nov 01 2018
    

Formula

a(n) = A000466(n) + 2. - Zak Seidov, Jan 16 2007
From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3a(n-1) - 3a(n-2) + a(n-3). (End)
Equals binomial transform of [1, 4, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = A156701(n)/A087475(n). - Reinhard Zumkeller, Feb 13 2009
For n>0: a(n) = A176271(2*n,n+1); cf. A016754, A000466. - Reinhard Zumkeller, Apr 13 2010
a(n+1) = denominator of Sum_{k=0..n} (-1)^n*(2*n + 1)^3/((2*n + 1)^4 + 4), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = 8*n + a(n-1) - 4. with a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n) = ((2*n - 1)^2 + (2*n + 1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = 2*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jun 26 2013
a(n+1) = a(n) + A017113(n), a(0) = 1. - Altug Alkan, Sep 26 2015
a(n) = A001844(n) + A046092(n-1) = A001844(n-1) + A046092(n). - Bruce J. Nicholson, Aug 07 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/2)*coth(Pi/2))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/2)*csch(Pi/2))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/2)*sinh(Pi/sqrt(2)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/2)*csch(Pi/2). (End)
E.g.f.: exp(x)*(1 + 2*x)^2. - Stefano Spezia, Jun 10 2021

Extensions

Equation corrected, and examples that were based on a different offset removed, by R. J. Mathar, Mar 18 2010

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A006331 a(n) = n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0

Views

Author

Keywords

Comments

Triangles in rhombic matchstick arrangement of side n.
Maximum accumulated number of electrons at energy level n. - Scott A. Brown, Feb 28 2000
Let M_n denote the n X n matrix M_n(i,j)=i^2+j^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Convolution of odds (A005408) and evens (A005843). - Graeme McRae, Jun 06 2006
a(n) is the number of non-monotonic functions with domain {0,1,2} and codomain {0,1,...,n}. - Dennis P. Walsh, Apr 25 2011
For any odd number 2n+1, find Sum_{aJ. M. Bergot, Jul 16 2011
a(n) gives the number of (n+1) X (n+1) symmetric (0,1)-matrices containing three ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and |w - x| < y. - Clark Kimberling, Jun 02 2012
Partial sums of A001105. - Omar E. Pol, Jan 12 2013
Total number of square diagonals (of any size) in an n X n square grid. - Wesley Ivan Hurt, Mar 24 2015
Number of diagonal attacks of two queens on (n+1) X (n+1) chessboard. - Antal Pinter, Sep 20 2015
a(n) is the minimum value obtainable by partitioning either the set {x in the natural numbers | 1 <= x <= 2n} or the set {x in the natural numbers | 0 <= x <= 2n+1} into pairs, taking the product of all such pairs, and taking the sum of all such products. - Thomas Anton, Oct 21 2020
a(n) is the irregularity of the n-th power of a path of length at least 3*n. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 16 2023
a(n) is the maximum possible total number of inversions in all rows and all columns of a Latin square of order n+1. - Ivaylo Kortezov, Jun 28 2025

Examples

			For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of A132339.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

  • Haskell
    a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
    -- Reinhard Zumkeller, Feb 11 2012
  • Magma
    [n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    A006331 := proc(n)
        n*(n+1)*(2*n+1)/3 ;
    end proc:
    seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
  • Mathematica
    Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
    

Formula

G.f.: 2*x*(1 + x)/(1 - x)^4. - Simon Plouffe (in his 1992 dissertation)
a(n) = 2*binomial(n+1,3) + 2*binomial(n+2,3).
a(n) = 2*A000330(n) = A002492(n)/2.
a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048147. - N. J. A. Sloane, Dec 11 1999
From the formula for the sum of squares of positive integers 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n+1)(2*n+1)/6, if we multiply both sides by 2 we get Sum_{k=0..n} 2*k^2 = n*(n+1)*(2*n+1)/3, which is an alternative formula for this sequence. - Mike Warburton, Sep 08 2007
10*a(n) = A016755(n) - A001845(n); since A016755 are odd cubes and A001845 centered octahedral numbers, 10*a(n) are the "odd cubes without their octahedral contents." - Damien Pras, Mar 19 2011
a(n) = sum(a*b), where the summing is over all unordered partitions 2*n+1=a+b. - Vladimir Shevelev, May 11 2012
a(n) = binomial(2*n+2, 3)/2. - Ronan Flatley, Dec 13 2012
a(n) = A000292(n) + A002411(n). - Omar E. Pol, Jan 11 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3, with a(0)=0, a(1)=2, a(2)=10, a(3)=28. - Harvey P. Dale, Apr 12 2013
a(n) = A208532(n+1,2). - Philippe Deléham, Dec 05 2013
Sum_{n>0} 1/a(n) = 9 - 12*log(2). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A000292(n-1) + (n+1)*A000217(n). - J. M. Bergot, Sep 02 2015
a(n) = 2*(A000332(n+3) - A000332(n+1)). - Antal Pinter, Sep 20 2015
From Bruno Berselli, May 17 2018: (Start)
a(n) = n*A002378(n) - Sum_{k=0..n-1} A002378(k) for n>0, a(0)=0. Also:
A163102(n) = n*a(n) - Sum_{k=0..n-1} a(k) for n>0, A163102(0)=0. (End)
a(n) = A005900(n) - A000290(n) = A096000(n) - A000578(n+1) = A000578(n+1) - A084980(n+1) = A000578(n+1) - A077415(n)-1 = A112524(n) + 1 = A188475(n) - 1 = A061317(n) - A100178(n) = A035597(n+1) - A006331(n+1). - Bruce J. Nicholson, Jun 24 2018
E.g.f.: (1/3)*exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Jan 05 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi - 9. - Amiram Eldar, Jan 04 2022

A051890 a(n) = 2*(n^2 - n + 1).

Original entry on oeis.org

2, 2, 6, 14, 26, 42, 62, 86, 114, 146, 182, 222, 266, 314, 366, 422, 482, 546, 614, 686, 762, 842, 926, 1014, 1106, 1202, 1302, 1406, 1514, 1626, 1742, 1862, 1986, 2114, 2246, 2382, 2522, 2666, 2814, 2966, 3122, 3282, 3446, 3614, 3786, 3962
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 30 2000

Keywords

Comments

Draw n ellipses in the plane (n > 0); sequence gives maximum number of regions into which the plane is divided (cf. A014206, A386480).
Least k such that Z(k,2) <= Z(n,3) where Z(m,s) = Sum_{i>=m} 1/i^s = zeta(s) - Sum_{i=1..m-1} 1/i^s. - Benoit Cloitre, Nov 29 2002
For n > 2, third diagonal of A154685. - Vincenzo Librandi, Aug 06 2010
a(k) is also the Moore lower bound A198300(k,6) on the order A054760(k,6) of a (k,6)-cage. Equality is achieved if and only if there exists a finite projective plane of order k - 1. A sufficient condition for this is that k - 1 be a prime power. - Jason Kimberley, Oct 17 2011 and Jan 01 2013
From Jess Tauber, May 20 2013: (Start)
For neutron shell filling in spherical atomic nuclei, this sequence shows numerical differences between filled spin-split suborbitals sharing all quantum numbers except the principal quantum number n, and here all n's must differ by 1. Only a small handful of exceptions exist.
This sequence consists of summed pairs of every other doubled triangular number. It also can be created by taking differences between nuclear magic numbers from the harmonic oscillator (HO)(doubled tetrahedral) set and the spin-orbit (SO) set (2,6,14,28,50,82,126,184,...), with either set being larger. So SO-HO: 2-0=2, 6-0=6, 14-0=14, 28-2=26, 50-8=42, 82-20=62, 126-40=86, 184-70=114, and HO-SO: 2-0=2, 8-2=6, 20-6=14, 40-14=26, 70-28=42, 112-50=62, 168-82=86, 240-126=114. From the perspective of idealized HO periodic structure, with suborbitals in order from largest to smallest spin, alternating by parity, the HO-SO set is spaced two period analogs PLUS one suborbital, while the SO-HO set is spaced two period analogs MINUS one suborbital. (End)
The known values of f(k,6) and F(k,6) in Brown (1967), Table 1, closely match this sequence. - N. J. A. Sloane, Jul 09 2015
Numbers k such that 2*k - 3 is a square. - Bruno Berselli, Nov 08 2017
Numbers written 222 in number base B, including binary with 'digit' 2: 222(2)=14, 222(3)=26, ... - Ron Knott, Nov 14 2017

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), this sequence (g=6), A188377 (g=7).

Programs

Formula

a(n) = 4*binomial(n, 2) + 2. - Francois Jooste (phukraut(AT)hotmail.com), Mar 05 2003
For n > 2, nearest integer to (Sum_{k>=n} 1/k^3)/(Sum_{k>=n} 1/k^5). - Benoit Cloitre, Jun 12 2003
a(n) = 2*A002061(n). - Jonathan Vos Post, Jun 19 2005
a(n) = 4*n + a(n-1) - 4 for n > 0, a(0)=2. - Vincenzo Librandi, Aug 06 2010
a(n) = 2*(n^2 - n +1) = 2*(n-1)^2 + 2(n-1) + 2 = 222 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
G.f.: 2*(1 - 2*x + 3*x^2)/(1 - x)^3. - Colin Barker, Jan 10 2012
a(n) = A001844(n-1) + 1 = A046092(n-1) + 2. - Jaroslav Krizek, Dec 27 2013
E.g.f.: 2*(x^2 + 1)*exp(x). - G. C. Greubel, Jul 14 2017

A054000 a(n) = 2*n^2 - 2.

Original entry on oeis.org

0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 240, 286, 336, 390, 448, 510, 576, 646, 720, 798, 880, 966, 1056, 1150, 1248, 1350, 1456, 1566, 1680, 1798, 1920, 2046, 2176, 2310, 2448, 2590, 2736, 2886, 3040, 3198, 3360, 3526, 3696, 3870, 4048, 4230, 4416
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Comments

a(n) is the number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and great diagonal segments filled in.
Nonnegative X values of integer solutions to the equation 2*X^3 + 4*X^2 = Y^2. To find Y values: b(n) = 2*n*(2*n^2 - 2). - Mohamed Bouhamida, Nov 06 2007
Second term of an arithmetic progression of 5 numbers with common difference 2n+1. The sum of squares of such 5 terms equals the sum of squares of 5 consecutive numbers starting a(n) + 2n + 1. - Carmine Suriano, Oct 16 2013
For m > 2, a(m-1) = 2*m*(m-2) is the number of Hamiltonian circuits on an m-gonal bipyramid with labeled vertices. - Stanislav Sykora, Jul 22 2014
a(n+1), n >= 0, appears also as the third member of the quartet [p0(n), p1(n), a(n+1), p3(n)] of the square of [n, n+1, n+2, n+3] in the Clifford algebra Cl_2 for n >= 0. p0(n) = -A147973(n+3), p1(n) = A046092(n) and p3(n) = A139570(n). See a comment on A147973, also with a reference. - Wolfdieter Lang, Oct 15 2014
From Bui Quang Tuan, Mar 31 2015: (Start)
For n >= 2, a(n) is the total sum of all numbers on the perimeter of a square consisting of n columns, each of which contains n numbers 1, 2, 3, ..., n.
Here is an example with n = 5:
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
where 1+1+1+1+1 + 2+2 + 3+3 + 4+4 + 5+5+5+5+5 = 48 = a(5).
(End)
Nonnegative k such that k/2+1 is a square. - Bruno Berselli, Apr 10 2018

Examples

			For n=5, a(5)=48 and 37^2 + 48^2 + 59^2 + 70^2 + 81^2 = 59^2 + 60^2 + 61^2 + 62^2 + 63^2. - _Carmine Suriano_, Oct 16 2013
		

Crossrefs

Programs

  • Maple
    [ seq(2*n^2 - 2, n=1..60) ];
  • Mathematica
    2 Range[50]^2 - 2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 16}, 50] (* Harvey P. Dale, Feb 03 2012 *)
    CoefficientList[Series[2 x (3 - x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 01 2015 *)
  • PARI
    a(n)=2*n^2-2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 4*n + a(n-1) - 2, with n>1, a(1)=0. - Vincenzo Librandi, Aug 06 2010
a(1)=0, a(2)=6, a(3)=16; for n>3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 03 2012
a(n) = (n+i)^2 + (n-i)^2, where i=sqrt(-1). - Bruno Berselli, Jan 23 2014
a(n) = 1*A000290(n-1) + 2*A000217(n-1) + 3*A001477(n-1). - J. M. Bergot, Apr 23 2014
G.f.: 2*x^2*(3 - x)/(1 - x)^3. - Vincenzo Librandi, Apr 01 2015
E.g.f.: 2*(x^2 + x -1)*exp(x) + 2. - G. C. Greubel, Jul 13 2017
a(n) + a(n+2) = A005843(n+1)^2. - Ezhilarasu Velayutham, May 30 2019
From Amiram Eldar, Dec 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 3/8.
Sum_{n>=2} (-1)^n/a(n) = 1/8. (End)

A062786 Centered 10-gonal numbers.

Original entry on oeis.org

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Comments

Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023

Crossrefs

Programs

  • GAP
    List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
    
  • Magma
    [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
    
  • PARI
    for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
    
  • Python
    def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
  • Sage
    [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
    

Formula

a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)

Extensions

Better description from Terrel Trotter, Jr., Apr 06 2002

A035008 Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.

Original entry on oeis.org

0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776
Offset: 0

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com), Dec 11 1999

Keywords

Comments

16 times the triangular numbers A000217.
Centered 16-gonal numbers A069129, minus 1. Also, sequence found by reading the segment (0, 16) together with the line from 16, in the direction 16, 48, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Apr 26 2008, Nov 20 2008
For n >= 1, number of permutations of n+1 objects selected from 5 objects v, w, x, y, z with repetition allowed, containing n-1 v's. Examples: at n=1, n-1=0 (i.e., zero v's), and a(1)=16 because we have ww, wx, wy, wz, xw, xx, xy, xz, yw, yx, yy, yz, zw, zx, zy, zz; at n=2, n-1=1 (i.e., one v), and there are 3 permutations corresponding to each one in the n=1 case (e.g., the single v can be inserted in any of three places in the 2-object permutation xy, yielding vxy, xvy, and xyv), so a(2) = 3*a(1) = 3*16 = 48; at n=3, n-1=2 (i.e., two v's), and a(3) = C(4,2)*a(1) = 6*16 = 96; etc. - Zerinvary Lajos, Aug 07 2008 (this needs clarification, Joerg Arndt, Feb 23 2014)
Sequence found by reading the line from 0, in the direction 0, 16, ... and the same line from 0, in the direction 0, 48, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, Oct 03 2011
For n > 0, a(n) is the area of the triangle with vertices at ((n-1)^2, n^2), ((n+1)^2, (n+2)^2), and ((n+3)^2, (n+2)^2). - J. M. Bergot, May 22 2014
For n > 0, a(n) is the number of self-intersecting points in star polygon {4*(n+1)/(2*n+1)}. - Bui Quang Tuan, Mar 28 2015
Equivalently: integers k such that k$ / (k/2)! and k$ / (k/2+1)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information). - Bernard Schott, Dec 02 2021

Examples

			3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16.
		

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A002492 (Bishop) and A049450 (Pawn).
Cf. A348692.
Subsequence of A008586 and of A349081.

Programs

Formula

a(n) = 8*n*(n+1).
G.f.: 16*x/(1-x)^3.
a(n) = A069129(n+1) - 1. - Omar E. Pol, Apr 26 2008
a(n) = binomial(n+1,2)*4^2, n >= 0. - Zerinvary Lajos, Aug 07 2008
a(n) = 8*n^2 + 8*n = 16*A000217(n) = 8*A002378(n) = 4*A046092(n) = 2*A033996(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 16*n, with a(0)=0. - Vincenzo Librandi, Nov 17 2010
E.g.f.: 8*exp(x)*x*(2 + x). - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/8.
Product_{n>=1} (1 - 1/a(n)) = -(8/Pi)*cos(sqrt(3/2)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (8/Pi)*cos(Pi/(2*sqrt(2))). (End)

Extensions

More terms from Erich Friedman
Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A087475 a(n) = n^2 + 4.

Original entry on oeis.org

4, 5, 8, 13, 20, 29, 40, 53, 68, 85, 104, 125, 148, 173, 200, 229, 260, 293, 328, 365, 404, 445, 488, 533, 580, 629, 680, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1229, 1300, 1373, 1448, 1525, 1604, 1685, 1768, 1853, 1940, 2029, 2120, 2213, 2308, 2405, 2504
Offset: 0

Views

Author

Gary W. Adamson, Sep 09 2003

Keywords

Comments

Schroeder, p. 330, states "For positive n, these winding numbers are precisely those whose continued fraction expansion is periodic and has period length 1".
Positive X values of solutions to the equation X^3 - 4*X^2 = Y^2. To find Y values: b(n) = n*(n^2 + 4). - Mohamed Bouhamida, Nov 06 2007
From Artur Jasinski, Oct 03 2008: (Start)
General formula for cotangent recurrences type:
a(n+1) = a(n)^3 + 3*a(n) and a(1)=k is
a(n) = floor(((k + sqrt(k^2 + 4))/2)^(3^(n-1))). (End)
Given sequences of the form S(n) = N*S(n-1) + S(n-2) starting (1, N, ...), and having convergents with discriminant (N^2 + 4), S(p) == (a(n))^((p-1)/2) mod p, for n>0, p = odd prime. Example: with N = 2 we have the Pell series (1, 2, 5, 12, 29, 70, 169, ...) with P(7) = 169. Then 169 == 8^3 mod 7, with a(2) = 8. Cf. Schroeder, "Number Theory in Science and Communication", p. 90, for N = 1: F(p) == 5^((p-1)/2) mod p. - Gary W. Adamson, Feb 23 2009
The only two real solutions of the form f(x) = A*x^p with positive p that satisfy f^(n)(x) = f^[-1](x), x >= 0, n >= 1, with f^(n) the n-th derivative and f^[-1] the compositional inverse of f, are obtained for p = p1(n) = (n + sqrt(a(n)))/2 and p = p2(n) = (n - sqrt(a(n)))/2, n >= 1, and A = A(n) = (fallfac(p,n))^(-p/(p+1)), for p = p1(n) and p = p2(n), respectively. Here fallfac(x, k) := product(x - j, j = 0..k-1), the falling factorials. See the T. Koshy reference, pp. 263-264 (there is also a solution for negative p if n is even; see the corresponding comment in A002522). - Wolfdieter Lang, Oct 21 2010, Oct 28 2010
(n + sqrt(a(n)))/2 = [n;n,n,...], with the regular continued fraction with period length 1. For a simple proof see, e.g., the Schroeder reference, pp. 330-331. See also the first comment above.

Examples

			a(2) = 8, discriminant of algebraic representation of barover(2) = [2,2,2,...] = sqrt 2 - 1 = 0.41421356... = ((sqrt 8) - 2)/2. a(3) = 13, discriminant of barover(3) = [3,3,3,...] = 0.3027756... = ((sqrt 13) - 3)/2.
		

References

  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws"; W.H. Freeman & Co, 1991, p. 330-331.
  • Manfred R. Schroeder, "Number Theory in Science and Communication", Springer Verlag, 5th ed., 2009. [From Gary W. Adamson, Feb 23 2009]
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, New York, 2001. [From Wolfdieter Lang, Oct 21 2010]

Crossrefs

Programs

Formula

n^2 + 4 are discriminant terms in the formula for Positive Silver Mean Constants, defined as barover(n), = (sqrt (n^2 + 4) - n)/2. Such constants barover(n) = C have the property: 1/C - C = n.
a(n) = A156701(n) / A053755(n). - Reinhard Zumkeller, Feb 13 2009
a(n) = A156798(n)/A002522(n). - Reinhard Zumkeller, Feb 16 2009
a(n) = a(n-1) + 2*n-1 (with a(0)=4). - Vincenzo Librandi, Nov 22 2010
G.f.: (4 - 7*x + 5*x^2)/(1 - x)^3. - Colin Barker, Jan 06 2012
a(n)^3 = A155965(n)^2 + A155966(n)^2. - Vincenzo Librandi, Feb 22 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*Pi*coth(2*Pi))/8.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*Pi*cosech(2*Pi))/8 = A371803. (End)
E.g.f.: exp(x)*(4 + x + x^2). - Stefano Spezia, Jul 08 2023
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(3)*sinh(sqrt(3)*Pi)/(2*sinh(2*Pi)).
Product_{n>=0} (1 + 1/a(n)) = sqrt(5)*sinh(sqrt(5)*Pi)/(2*sinh(2*Pi)). (End)
Previous Showing 21-30 of 190 results. Next