cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 95 results. Next

A064180 Composite numbers k such that the sum of the proper divisors of k not including 1, (Chowla's function, A048050) and their product (A007956) are both perfect squares.

Original entry on oeis.org

117, 208, 292, 320, 475, 539, 549, 567, 873, 964, 1737, 2107, 2692, 2997, 3573, 3904, 4477, 4802, 5275, 5284, 5968, 6057, 7267, 7488, 7492, 9189, 9457, 9475, 10084, 10377, 11072, 11728, 11737, 12717, 13769, 14373, 14692, 16219, 16399, 17397
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2001

Keywords

Examples

			117 is in the sequence because the divisors of 117 are 1, 3, 9, 13, 39 and 117. Being squarefree itself, the product of divisors is a perfect square. The sum of the divisors in question, 3+9+13+39 = 64 and it is a perfect square.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..18000]| not IsPrime(k) and IsSquare((&+Divisors(k))-1-k) and IsSquare((&*Divisors(k))/k) ]; // Marius A. Burtea, Jul 03 2019
  • Mathematica
    Select[ Range[2, 25000], IntegerQ[ Sqrt[ Apply[ Plus, Delete[ Divisors[ # ], -1]] - 1]] && IntegerQ[ Sqrt[ Apply[ Times, Delete[ Divisors[ # ], -1]]]] && ! PrimeQ[ # ] & ]
    aQ[n_] := CompositeQ[n] && IntegerQ[Sqrt[n^(DivisorSigma[0, n]/2 - 1)]] && IntegerQ[Sqrt[DivisorSigma[1, n] - 1 - n]]; Select[Range[18000], aQ] (* Amiram Eldar, Jul 03 2019 *)

A062957 a(n) = C(n^2) - C(n), where C(n) is Chowla's function (A048050).

Original entry on oeis.org

0, 2, 3, 12, 5, 49, 7, 56, 36, 109, 11, 243, 13, 193, 169, 240, 17, 502, 19, 539, 289, 433, 23, 1039, 150, 589, 351, 955, 29, 1879, 31, 992, 625, 973, 529, 2400, 37, 1201, 841, 2287, 41, 3369, 43, 2147, 1693, 1729, 47, 4263, 392, 2924, 1369, 2923, 53, 4669
Offset: 1

Views

Author

Jason Earls, Jul 22 2001

Keywords

Crossrefs

Cf. A048050.

Programs

  • PARI
    C(n)=sigma(n)-n-1; j=[]; for(n=1,150,j=concat(j,C(n^2)-C(n))); j

A066924 Nonprime numbers n such that the GCD of n and the Chowla's function of n (A048050) is >= n/3.

Original entry on oeis.org

1, 4, 9, 36, 345, 6489, 88473
Offset: 1

Views

Author

Robert G. Wilson v, Jan 23 2002

Keywords

Comments

No more terms below 10^9. - Amiram Eldar, Aug 28 2019

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 10^7 ], GCD[ #, DivisorSigma[ 1, # ] - # - 1 ] >= #/3 && !PrimeQ[ # ] & ]
  • PARI
    f(n) = if(n>1, sigma(n)-n-1, 0); \\ A048050
    isok(n) = !isprime(n) && gcd(n, f(n)) >= n/3; \\ Michel Marcus, Aug 28 2019 [Corrected by Sean A. Irvine, Nov 25 2023]

Extensions

Name clarified by Sean A. Irvine, Nov 25 2023

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A057427 a(n) = 1 if n > 0, a(n) = 0 if n = 0; series expansion of x/(1-x).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Bottomley, Sep 05 2000

Keywords

Comments

Parity of (n+1)-st prime, A000040(n+1). - Philippe Deléham, Apr 04 2009
Decimal expansion of 1/90.
Partial sums of A063524 (characteristic function of 1). - Jeremy Gardiner, Sep 08 2002
Characteristic function of positive integers. - Franklin T. Adams-Watters, Aug 01 2011
Number of binary bracelets of n beads, 0 of them 0. Number of binary bracelets of n beads, 1 of them 0. Number of binary bracelets of n beads, 0 of them 0, with 00 prohibited. For n>=2, a(n-1) is the number of binary bracelets of n beads, one of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Central terms of the triangle in A152487. - Reinhard Zumkeller, Dec 06 2008
This is sgn(n) (or sign(n), or signum(n)) restricted to nonnegative integers. See sequence A261012 for a version that extends the sequence backwards to offset -1.

Examples

			1/90 = .0111111111111111111...
G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + ...
		

References

  • T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan and Co., London, 1958, p. 90.

Crossrefs

Programs

Formula

G.f.: x / (1 - x).
G.f.: Sum_{k>=0} 2^k * x^(2^k) / (1 + x^(2^k)). - Michael Somos, Sep 11 2005
a(A000027(n)) = 1; a(A000004(n)) = 0. - Reinhard Zumkeller, Oct 11 2008
a(n) = A000007(0^n). - Jaume Oliver Lafont, Mar 19 2009
From Michael Somos, Aug 17 2015: (Start)
a(n) = -a(-n) for all n in Z if a(n) is treated as sgn(n).
Sum_{k<0} a(k) * x^k = 1 / (1 - x) if abs(x) > 1. (End)
Dirichlet g.f.: zeta(s) - 1. - Álvar Ibeas, Nov 29 2015; corrected by Francois Oger, Oct 26 2019
a(n) = A001065(n+1) - A048050(n+1). - Omar E. Pol, Apr 30 2018
E.g.f.: e^x - 1. - Francois Oger, Oct 26 2019
a(n) = 1-A000007(n). - Chai Wah Wu, Nov 14 2022

Extensions

Entry edited at the suggestion of Robert G. Wilson v by N. J. A. Sloane, Aug 16 2015

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A153485 Sum of all aliquot divisors of all positive integers <= n.

Original entry on oeis.org

0, 1, 2, 5, 6, 12, 13, 20, 24, 32, 33, 49, 50, 60, 69, 84, 85, 106, 107, 129, 140, 154, 155, 191, 197, 213, 226, 254, 255, 297, 298, 329, 344, 364, 377, 432, 433, 455, 472, 522, 523, 577, 578, 618, 651, 677, 678, 754, 762, 805, 826
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008

Keywords

Comments

a(n) is also the sum of first n terms of A000203, minus n-th triangular number.
n is prime if and only if a(n) - a(n-1) = 1. - Omar E. Pol, Dec 31 2012
Also the alternating row sums of A236540. - Omar E. Pol, Jun 23 2014
Sum of the areas of all x X z rectangles with x and y integers, x + y = n, x <= y and z = floor(y/x). - Wesley Ivan Hurt, Dec 21 2020
Apart from the symmetric representation of a(n) given in the Example section we have that a(n) can be represented with an arrowhead-shaped polygon formed by two zig-zag paths and the Dyck path described in the n-th row of A237593 as shown in the Links section. - Omar E. Pol, Jun 13 2022

Examples

			Assuming that a(1) = 0, for n = 6 the aliquot divisors of the first six positive integers are [0], [1], [1], [1, 2], [1], [1, 2, 3], so a(6) = 0 + 1 + 1 + 1 + 2 + 1 + 1 + 2 + 3 = 12.
From _Omar E. Pol_, Mar 27 2021: (Start)
The following diagrams show a square dissection into regions that are the symmetric representation of A000203, A004125, A244048 and this sequence.
In order to construct every diagram we use the following rules:
At stage 1 in the first quadrant of the square grid we draw the symmetric representation of sigma(n) using the two Dyck paths described in the rows n and n-1 of A237593.
At stage 2 we draw a pair of orthogonal line segments (if it's necessary) such that in the drawing appears totally formed a square n X n. The area of the region that is above the symmetric representation of sigma(n) equals A004125(n).
At stage 3 we draw a zig-zag path with line segments of length 1 from (0,n-1) to (n-1,0) such that appears a staircase with n-1 steps. The area of the region (or regions) that is below the symmetric representation of sigma(n) and above the staircase equals A244048(n).
At stage 4 we draw a copy of the symmetric representation of A004125(n) rotated 180 degrees such that one of its vertices is the point (0,0). a(n) is the area of the region (or regions) that is above of this region and below the staircase.
Illustration for n = 1..6:
.                                                                    _ _ _ _ _ _
.                                                     _ _ _ _ _     |_ _ _  |_ R|
.                                        _ _ _ _ R   |_ _S_|  R|    | |_T | S |_|
.                             _ _ _ R   |_ _  |_|    | |_  |_ _|    |   |_|_ _  |
.                    _ _     |_S_|_|    | |_|_S |    |_U_|_T | |    |_  U |_T | |
.             _ S   |_ S|   U|_|_|S|    |_ U|_| |    |   | |_|S|    | |_    |_| |
.            |_|    |_|_|    |_|_|_|    |_|_ _|_|    |_V_|_U_|_|    |_V_|_ _ _|_|
.                  U        V   U       V
.
n:            1       2         3           4             5               6
R: A004125    0       0         1           1             4               3
S: A000203    1       3         4           7             6              12
T: A244048    0       0         1           2             5               6
U: a(n)       0       1         2           5             6              12
V: A004125    0       0         1           1             4               3
.
Illustration for n = 7..9:
.                                                      _ _ _ _ _ _ _ _ _
.                                _ _ _ _ _ _ _ _      |_ _ _S_ _|       |
.            _ _ _ _ _ _ _      |_ _ _ _  |     |     | |_      |_ _ R  |
.           |_ _S_ _|     |     | |_    | |_ R  |     |   |_    |_ S|   |
.           | |_    |_ R  |     |   |_  |_S |_ _|     |     |_  T |_|_ _|
.           |   |_  T |_ _|     |     |_T |_ _  |     |_ _    |_      | |
.           |_ _  |_    | |     |_ _  U |_    | |     |   |  U  |_    | |
.           |   |_U |_  |S|     |   |_    |_  | |     |   |_ _    |_  |S|
.           |  V  |   |_| |     |  V  |     |_| |     |  V    |     |_| |
.           |_ _ _|_ _ _|_|     |_ _ _|_ _ _ _|_|     |_ _ _ _|_ _ _ _|_|
.
n:                 7                    8                      9
R: A004125         8                    8                     12
S: A000203         8                   15                     12
T: A244048        12                   13                     20
U: a(n)           13                   20                     24
V: A004125         8                    8                     12
.
Illustration for n = 10..12:
.                                                         _ _ _ _ _ _ _ _ _ _ _ _
.                              _ _ _ _ _ _ _ _ _ _ _     |_ _ _ _ _ _  |         |
.     _ _ _ _ _ _ _ _ _ _     |_ _ _S_ _ _|         |    | |_        | |_ _   R  |
.    |_ _ _S_ _  |       |    | |_        |      R  |    |   |_      |     |_    |
.    | |_      | |_  R   |    |   |_      |_        |    |     |_    |_  S   |   |
.    |   |_    |_ _|_    |    |     |_      |_      |    |       |_    |_    |_ _|
.    |     |_      | |_ _|    |       |_   T  |_ _ _|    |         |_ T  |_ _ _  |
.    |       |_ T  |_ _  |    |_ _ _    |_        | |    |_ _        |_        | |
.    |_ _      |_      | |    |     |_ U  |_      | |    |   |    U    |_      | |
.    |   |_ U    |_    |S|    |       |_    |_    |S|    |   |_          |_    | |
.    |     |_      |_  | |    |         |     |_  | |    |     |_ _        |_  | |
.    |  V    |       |_| |    |  V      |       |_| |    |  V      |         |_| |
.    |_ _ _ _|_ _ _ _ _|_|    |_ _ _ _ _|_ _ _ _ _|_|    |_ _ _ _ _|_ _ _ _ _ _|_|
.
n:            10                         11                          12
R: A004125    13                         22                          17
S: A000203    18                         12                          28
T: A244048    24                         32                          33
U: a(n)       32                         33                          49
V: A004125    13                         22                          17
.
Note that in the diagrams the symmetric representation of A244048(n+1) is the same as the symmetric representation of a(n) rotated 180 degrees.
The diagrams for n = 11 and n = 12 both are copies from the diagrams that are in A244048 dated Jun 24 2014.
[Another way for the illustration of this sequence which is visible in the pyramid described in A245092 will be added soon.]
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ DivisorSigma[1, m] - m, {m, n}]; Array[f, 60] (* Robert G. Wilson v, Jun 30 2014 *)
    Accumulate@ Table[DivisorSum[n, # &, # < n &], {n, 51}] (* or *)
    Table[Sum[k Floor[(n - k)/k], {k, n}], {n, 51}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)-k); \\ Michel Marcus, Jan 22 2017
    
  • Python
    from math import isqrt
    def A153485(n): return (-n*(n+1)-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A024916(n) - A000217(n).
a(n) = A000217(n-1) - A004125(n). - Omar E. Pol, Jan 28 2014
a(n) = A000290(n) - A000203(n) - A024816(n) - A004125(n) = A024816(n+1) - A004125(n+1). - Omar E. Pol, Jun 23 2014
G.f.: (1/(1 - x))*Sum_{k>=1} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017
a(n) = Sum_{k=1..n} k * floor((n-k)/k). - Wesley Ivan Hurt, Apr 02 2017
a(n) ~ n^2 * (Pi^2/12 - 1/2). - Vaclav Kotesovec, Dec 21 2020
a(n) = A000290(n) - A000217(n) - A004125(n). - Omar E. Pol, Feb 26 2021
a(n) = A244048(n+1). - Omar E. Pol, Mar 28 2021

Extensions

Better name from Omar E. Pol, Jan 28 2014, Jun 23 2014

A244049 Sum of all proper divisors of all positive integers <= n.

Original entry on oeis.org

0, 0, 0, 2, 2, 7, 7, 13, 16, 23, 23, 38, 38, 47, 55, 69, 69, 89, 89, 110, 120, 133, 133, 168, 173, 188, 200, 227, 227, 268, 268, 298, 312, 331, 343, 397, 397, 418, 434, 483, 483, 536, 536, 575, 607, 632, 632, 707, 714, 756, 776, 821, 821, 886, 902
Offset: 1

Views

Author

Omar E. Pol, Jun 24 2014

Keywords

Comments

The proper divisors of n are all divisors except 1 and n itself. Therefore noncomposite numbers have no proper divisors.
For the sum of all aliquot divisors of all positive integers <= n see A153485.
For the sum all divisors of all positive integers <= n see A024916.
a(n) = a(n - 1) if and only if n is prime.
For n >= 3 a(n) equals the area of an arrowhead-shaped polygon formed by two zig-zag paths and the Dyck path described in the n-th row of A237593 as shown in the Links section. Note that there is a similar diagram of A153485(n) in A153485. - Omar E. Pol, Jun 14 2022

Examples

			a(4) = 2 because the only proper divisor of 4 is 2 and the previous n contributed no proper divisors to the sum.
a(5) = 2 because 5 is prime and contributes no proper divisors to the sum.
a(6) = 7 because the proper divisors of 6 are 2 and 3, which add up to 5, and a(5) + 5 = 2 + 5 = 7.
		

Crossrefs

Programs

  • Mathematica
    propDivsRunSum[1] := 0; propDivsRunSum[n_] := propDivsRunSum[n] = propDivsRunSum[n - 1] + (Plus@@Divisors[n]) - (n + 1); Table[propDivsRunSum[n], {n, 60}] (* Alonso del Arte, Jun 30 2014 *)
    Accumulate[Join[{0},Table[Total[Most[Divisors[n]]]-1,{n,2,60}]]] (* Harvey P. Dale, Aug 12 2016 *)
    Accumulate[Join[{0}, Table[DivisorSigma[1, n] - n - 1, {n, 2, 55}]]] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = sum(k=2, n, sigma(k)-k-1); \\ Michel Marcus, Mar 30 2021
    
  • Python
    from math import isqrt
    def A244049(n): return ((-n*(n+3)-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1)+1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A024916(n) - A034856(n).
a(n) = A153485(n) - n + 1.
G.f.: (1/(1 - x))*Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017
a(n) = A161680(n-1) - A004125(n). - Omar E. Pol, Mar 25 2021
a(n) = A000290(n) - A034856(n) - A004125(n). - Omar E. Pol, Mar 26 2021
a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 1/2 = 0.322467... . - Amiram Eldar, Nov 27 2023
Previous Showing 11-20 of 95 results. Next