cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A064888 Numerators of partial sums of 1/A051451.

Original entry on oeis.org

1, 2, 3, 23, 323, 647, 971, 7121, 6943, 185147, 363173, 179407463, 412637165, 20631858251, 140035237, 3716297449, 27822060851939, 2853544702763, 58823785801243, 568431869527163, 279209361758899949, 4944838261875010691
Offset: 1

Views

Author

Labos Elemer, Oct 10 2001

Keywords

Comments

A051451 unlike A003418 contains distinct values of lcm(1..m).

Examples

			n=6, s(n) = 1/2 + 1/6 + 1/12 + 1/60 + 1/420 + 1/840 = 646/840 = 323/420, the numerator is a(6)=323.
		

Crossrefs

Programs

  • Mathematica
    s=Select[Range[a, b], Equal[Length[FactorInteger[ # ]], 1]&] a(m) = Apply[LCM, Table[Part[s, w], {w, 1, m}]]

Formula

a(n) = Sum_{k=1..n} 1/A051451(k), where A051451 is the lcm(1...m), m is a prime or true power of prime. The sequence is convergent.

A346407 a(n) is the position of A051451(n) in A025487.

Original entry on oeis.org

1, 2, 4, 6, 13, 29, 36, 55, 112, 223, 264, 514, 956, 1749, 2345, 2847, 5005, 8567, 9507, 16073, 26792, 43730, 70482, 88969, 140871, 221370, 342958, 368588, 565510, 859401, 1290994, 1927925, 2128165, 3142980, 4616207, 6754033, 9810997, 14133201, 20230329, 28744301
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2021

Keywords

Comments

Equivalently, the positions of the distinct terms of A003418 in A025487.

Examples

			A138534(1) = A025487(1) = 1, so a(1) = 1.
A138534(2) = A025487(2) = 2, so a(2) = 2.
A138534(3) = A025487(4) = 6, so a(3) = 4.
		

Crossrefs

Similar sequences: A098718, A098719, A293635, A306802, A346043.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; s = {}; lcms = Union @ Table[LCM @@ Range[n], {n, 1, 31}]; Do[p = Position[lps, lcms[[n]]]; If[p == {}, Break[]]; AppendTo[s, p[[1, 1]]], {n, 1, Length[lcms]}]; s

Formula

A025487(a(n)) = A003418(n).

A056603 Squarefree kernels of distinct values of lcm(1,...,m) (A051451).

Original entry on oeis.org

1, 2, 6, 6, 30, 210, 210, 210, 2310, 30030, 30030, 510510, 9699690, 223092870, 223092870, 223092870, 6469693230, 200560490130, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Examples

			Only values of A002110 arise with repetitions, but the sequence is not identical to A034386. It is more compact than A034386, but still not a repetition-free primorial sequence. E.g., the values 1,2,6,30,210,2310,30030,... occurs in A034386 1,1,2,2,4,2,4,2,4,... times, while the same values arise here 1,1,2,1,3,1,2,1,1,... times. This sequence represents a transition between A034386 and the more compact A002110.
		

Crossrefs

A058020 Difference between lcm(1,..,n) and the smallest prime > lcm(1,...,n) + 1, where n runs over A000961, lcm(n) runs through A051451.

Original entry on oeis.org

3, 5, 5, 7, 11, 13, 11, 13, 31, 23, 19, 37, 41, 29, 31, 43, 53, 41, 53, 79, 59, 97, 59, 61, 113, 97, 179, 73, 73, 97, 103, 101, 109, 101, 229, 109, 139, 113, 227, 131, 191, 163, 139, 199, 151, 139, 181, 223, 229, 367, 239, 499, 251, 509, 251, 227, 373, 281, 233
Offset: 1

Views

Author

Labos Elemer, Nov 14 2000

Keywords

Comments

Analogous to Fortunate numbers and like them so far proved to be primes. This holds for x<=421: if Q is the first follower prime, then Q(421)-lcm(1,...421) = 557. For first some cases when 1+LCM is also a prime, the 2nd primes give 3,5,5,7,11,11,.. deviations, i.e. give primes.

Crossrefs

Programs

  • PARI
    N=1; for(n=2,1e3, if(isprimepower(n,&p), N*=p; print1(nextprime(N+2)-N", "))) \\ Charles R Greathouse IV, Nov 18 2015

Extensions

Name corrected by Charles R Greathouse IV, Nov 18 2015

A064889 Denominators of partial sums of reciprocals of A051451 (A051451 includes lcm(1,...,x), x=power of prime from A000961 and also contains 1).

Original entry on oeis.org

1, 2, 3, 4, 30, 420, 840, 1260, 9240, 9009, 240240, 471240, 232792560, 535422888, 26771144400, 181704600, 4822131600, 36100888223400, 3702655202400, 76327592243760, 737576396429600, 362291852261631600, 6416241209619040800
Offset: 1

Views

Author

Labos Elemer, Oct 11 2001

Keywords

Examples

			n=6, sum = (1/1) + (1/2) + (1/6) + (1/12) + (1/60) + (1/420) = 743/420, the denominator = a(6) = 743. Remark: If 1 is omitted from A051451, the denominators of partial sums of reciprocals do not change; however, numerators are changing, not compatible with these denominators (see A064888).
		

Crossrefs

Formula

a(n) = denominator(Sum_{k=1..n} 1/A051451(k)).

A077639 LCM of terms in period of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

Original entry on oeis.org

1, 2, 4, 6, 14, 40, 56, 100, 2988, 13200, 805600, 1323000, 1744790520, 112326337200, 10154793943770044128560, 26773964343922343708160, 185027354760601080, 1418008957437634586640
Offset: 1

Views

Author

Labos Elemer, Nov 13 2002

Keywords

Examples

			For A051451(10) = 360360, the periodic part is P = {3,2,1,132,1,2,3,1200} with lcm(P)=13200 as LCM of terms, so a(10) = 13200.
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[LCM, Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]

A001359 Lesser of twin primes.

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607
Offset: 1

Views

Author

Keywords

Comments

Also, solutions to phi(n + 2) = sigma(n). - Conjectured by Jud McCranie, Jan 03 2001; proved by Reinhard Zumkeller, Dec 05 2002
The set of primes for which the weight as defined in A117078 is 3 gives this sequence except for the initial 3. - Rémi Eismann, Feb 15 2007
The set of lesser of twin primes larger than three is a proper subset of the set of primes of the form 3n - 1 (A003627). - Paul Muljadi, Jun 05 2008
It is conjectured that A113910(n+4) = a(n+2) for all n. - Creighton Dement, Jan 15 2009
I would like to conjecture that if f(x) is a series whose terms are x^n, where n represents the terms of sequence A001359, and if we inspect {f(x)}^5, the conjecture is that every term of the expansion, say a_n * x^n, where n is odd and at least equal to 15, has a_n >= 1. This is not true for {f(x)}^k, k = 1, 2, 3 or 4, but appears to be true for k >= 5. - Paul Bruckman (pbruckman(AT)hotmail.com), Feb 03 2009
A164292(a(n)) = 1; A010051(a(n) - 2) = 0 for n > 1. - Reinhard Zumkeller, Mar 29 2010
From Jonathan Sondow, May 22 2010: (Start)
About 15% of primes < 19000 are the lesser of twin primes. About 26% of Ramanujan primes A104272 < 19000 are the lesser of twin primes.
About 46% of primes < 19000 are Ramanujan primes. About 78% of the lesser of twin primes < 19000 are Ramanujan primes.
A reason for the jumps is in Section 7 of "Ramanujan primes and Bertrand's postulate" and in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps". (End)
Primes generated by sequence A040976. - Odimar Fabeny, Jul 12 2010
Primes of the form 2*n - 3 with 2*n - 1 prime n > 2. Primes of the form (n^2 - (n-2)^2)/2 - 1 with (n^2 - (n-2)^2)/2 + 1 prime so sum of two consecutive odd numbers/2 - 1. - Pierre CAMI, Jan 02 2012
Conjecture: For any integers n >= m > 0, there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) (i.e., (a(m), ..., a(n)) in base b) is prime; moreover, when m = 1 there is such an integer b < (n+6)^2. - Zhi-Wei Sun, Mar 26 2013
Except for the initial 3, all terms are congruent to 5 mod 6. One consequence of this is that no term of this sequence appears in A030459. - Alonso del Arte, May 11 2013
Aside from the first term, all terms have digital root 2, 5, or 8. - J. W. Helkenberg, Jul 24 2013
The sequence provides all solutions to the generalized Winkler conjecture (A051451) aside from all multiples of 6. Specifically, these solutions start from n = 3 as a(n) - 3. This gives 8, 14, 26, 38, 56, ... An example from the conjecture is solution 38 from twin prime pairs (3, 5), (41, 43). - Bill McEachen, May 16 2014
Conjecture: a(n)^(1/n) is a strictly decreasing function of n. Namely a(n+1)^(1/(n+1)) < a(n)^(1/n) for all n. This conjecture is true for all a(n) <= 1121784847637957. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 21 2014
a(n) are the only primes, p(j), such that (p(j+m) - p(j)) divides (p(j+m) + p(j)) for some m > 0, where p(j) = A000040(j). For all such cases m=1. It is easy to prove, for j > 1, the only common factor of (p(j+m) - p(j)) and (p(j+m) + p(j)) is 2, and there are no common factors if j = 1. Thus, p(j) and p(j+m) are twin primes. Also see A067829 which includes the prime 3. - Richard R. Forberg, Mar 25 2015
Primes prime(k) such that prime(k)! == 1 (mod prime(k+1)) with the exception of prime(991) = 7841 and other unknown primes prime(k) for which (prime(k)+1)*(prime(k)+2)*...*(prime(k+1)-2) == 1 (mod prime(k+1)) where prime(k+1) - prime(k) > 2. - Thomas Ordowski and Robert Israel, Jul 16 2016
For the twin prime criterion of Clement see the link. In Ribenboim, pp. 259-260 a more detailed proof is given. - Wolfdieter Lang, Oct 11 2017
Conjecture: Half of the twin prime pairs can be expressed as 8n + M where M > 8n and each value of M is a distinct composite integer with no more than two prime factors. For example, when n=1, M=21 as 8 + 21 = 29, the lesser of a twin prime pair. - Martin Michael Musatov, Dec 14 2017
For a discussion of bias in the distribution of twin primes, see my article on the Vixra web site. - Waldemar Puszkarz, May 08 2018
Since 2^p == 2 (mod p) (Fermat's little theorem), these are primes p such that 2^p == q (mod p), where q is the next prime after p. - Thomas Ordowski, Oct 29 2019, edited by M. F. Hasler, Nov 14 2019
The yet unproved "Twin Prime Conjecture" states that this sequence is infinite. - M. F. Hasler, Nov 14 2019
Lesser of the twin primes are the set of elements that occur in both A162566, A275697. Proof: A prime p will only have integer solutions to both (p+1)/g(p) and (p-1)/g(p) when p is the lesser of a twin prime, where g(p) is the gap between p and the next prime, because gcd(p+1,p-1) = 2. - Ryan Bresler, Feb 14 2021
From Lorenzo Sauras Altuzarra, Dec 21 2021: (Start)
J. A. Hervás Contreras observed the subsequence 11, 311, 18311, 1518311, 421518311... (see the links), which led me to conjecture the following statements.
I. If i is an integer greater than 2, then there exist positive integers j and k such that a(j) equals the concatenation of 3k and a(i).
II. If k is a positive integer, then there exist positive integers i and j such that a(j) equals the concatenation of 3k and a(i).
III. If i, j, and r are positive integers such that i > 2 and a(j) equals the concatenation of r and a(i), then 3 divides r. (End)

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 81.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 192-197.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 111-112.

Crossrefs

Subsequence of A003627.
Cf. A104272 (Ramanujan primes), A178127 (lesser of twin Ramanujan primes), A178128 (lesser of twin primes if it is a Ramanujan prime).

Programs

  • Haskell
    a001359 n = a001359_list !! (n-1)
    a001359_list = filter ((== 1) . a010051' . (+ 2)) a000040_list
    -- Reinhard Zumkeller, Feb 10 2015
    
  • Magma
    [n: n in PrimesUpTo(1610) | IsPrime(n+2)];  // Bruno Berselli, Feb 28 2011
    
  • Maple
    select(k->isprime(k+2),select(isprime,[$1..1616])); # Peter Luschny, Jul 21 2009
    A001359 := proc(n)
       option remember;
       if n = 1
          then 3;
       else
          p := nextprime(procname(n-1)) ;
          while not isprime(p+2) do
             p := nextprime(p) ;
          end do:
          p ;
       end if;
    end proc: # R. J. Mathar, Sep 03 2011
  • Mathematica
    Select[Prime[Range[253]], PrimeQ[# + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
    a[n_] := a[n] = (p = NextPrime[a[n - 1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[1] = 3; Table[a[n], {n, 51}]  (* Jean-François Alcover, Dec 13 2011, after R. J. Mathar *)
    nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[NextPrime@ q - q > 2, q = NextPrime@ q]; q]; NestList[nextLesserTwinPrime@# &, 3, 50] (* Robert G. Wilson v, May 20 2014 *)
    Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 04 2021 *)
    q = Drop[Prepend[p = Prime[Range[100]], 2], -1];
    Flatten[q[[#]] & /@ Position[p - q, 2]] (* Horst H. Manninger, Mar 28 2021 *)
  • PARI
    A001359(n,p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0,); p-2}
    /* The following gives a reasonably good estimate for any value of n from 1 to infinity; compare to A146214. */
    A001359est(n) = solve( x=1,5*n^2/log(n+1), 1.320323631693739*intnum(t=2.02,x+1/x,1/log(t)^2)-log(x) +.5 - n)
    /* The constant is A114907; the expression in front of +.5 is an estimate for A071538(x) */ \\  M. F. Hasler, Dec 10 2008
    
  • Python
    from sympy import primerange, isprime
    print([n for n in primerange(1, 2001) if isprime(n + 2)]) # Indranil Ghosh, Jul 20 2017

Formula

a(n) = A077800(2n-1).
A001359 = { n | A071538(n-1) = A071538(n)-1 }; A071538(A001359(n)) = n. - M. F. Hasler, Dec 10 2008
A001359 = { prime(n) : A069830(n) = A087454(n) }. - Juri-Stepan Gerasimov, Aug 23 2011
a(n) = prime(A029707(n)). - R. J. Mathar, Feb 19 2017

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0

Views

Author

Keywords

Comments

Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
Apart from the initial 0, a subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i) [implied by Henry Bottomley's Sep 27 2006 formula], but neither does p^p divide a(i) when 0 < i < A000720(p), as then p^p > a(i). See A074107, which gives an upper bound for this sequence. - Antti Karttunen, Nov 19 2024

Examples

			0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.

Crossrefs

Denominators are A002110.
Row sums of A077011 and A258566.
Subsequence of A048103 (after the initial 0).
Cf. A053144 (a lower bound), A074107 (an upper bound).
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes), A377992 (antiderivatives of the terms > 1 of this sequence).

Programs

  • Magma
    [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ];  // Bruno Berselli, Apr 11 2011
    
  • Maple
    h:= n-> add(1/(ithprime(i)),i=1..n);
    t1:=[seq(h(n),n=0..50)];
    t1a:=map(numer,t1); # A024451
    t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
  • Mathematica
    a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18]  (* Jean-François Alcover, Apr 11 2011 *)
    f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A024451 *)
    (* Clark Kimberling, Dec 29 2011 *)
    Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
    
  • Python
    from math import prod
    from sympy import prime
    def A024451(n):
        q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
        return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022

Formula

Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
For n >= 0, A053144(n) <= a(n) <= A074107(n) < A070826(1+n).
(End)

Extensions

a(0)=0 prepended by Alois P. Heinz, Jun 26 2015

A055874 a(n) = largest m such that 1, 2, ..., m divide n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Leroy Quet, Jul 16 2000

Keywords

Comments

From Antti Karttunen, Nov 20 2013 & Jan 26 2014: (Start)
Differs from A232098 for the first time at n=840, where a(840)=8, while A232098(840)=7. A232099 gives all the differing positions. See also the comments at A055926 and A232099.
The positions where a(n) is an odd prime is given by A017593 up to A017593(34)=414 (so far all 3's), after which comes the first 7 at a(420). (A017593 gives the positions of 3's.)
(Continued on Jan 26 2014):
Only terms of A181062 occur as values.
A235921 gives such n where a(n^2) (= A235918(n)) differs from A071222(n-1) (= A053669(n)-1). (End)
a(n) is the largest m such that A003418(m) divides n. - David W. Wilson, Nov 20 2014
a(n) is the largest number of consecutive integers dividing n. - David W. Wilson, Nov 20 2014
A051451 gives indices where record values occur. - Gionata Neri, Oct 17 2015
Yuri Matiyasevich calls this the maximum inheritable divisor of n. - N. J. A. Sloane, Dec 14 2023

Examples

			a(12) = 4 because 1, 2, 3, 4 divide 12, but 5 does not.
		

Crossrefs

Programs

  • Haskell
    a055874 n = length $ takeWhile ((== 0) . (mod n)) [1..]
    -- Reinhard Zumkeller, Feb 21 2012, Dec 09 2010
    
  • Maple
    N:= 1000: # to get a(1) to a(N)
    A:= Vector(N,1);
    for m from 2 do
      Lm:= ilcm($1..m);
      if Lm > N then break fi;
      if Lm mod (m+1) = 0 then next fi;
      for k from 1 to floor(N/Lm) do
        A[k*Lm]:=m
      od
    od:
    convert(A,list); # Robert Israel, Nov 28 2014
  • Mathematica
    a[n_] := Module[{m = 1}, While[Divisible[n, m++]]; m - 2]; Array[a, 100] (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    a(n) = my(m = 1); while ((n % m) == 0, m++); m - 1; \\ Michel Marcus, Jan 17 2014
    
  • Python
    from itertools import count
    def A055874(n):
        for m in count(1):
            if n % m:
                return m-1 # Chai Wah Wu, Jan 02 2022
  • Scheme
    (define (A055874 n) (let loop ((m 1)) (if (not (zero? (modulo n m))) (- m 1) (loop (+ 1 m))))) ;; Antti Karttunen, Nov 18 2013
    

Formula

a(n) = A007978(n) - 1. - Antti Karttunen, Jan 26 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A064859 (Farhi, 2009). - Amiram Eldar, Jul 25 2022
Previous Showing 11-20 of 64 results. Next