cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 85 results. Next

A110654 a(n) = ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 05 2005

Keywords

Comments

The number of partitions of 2n into exactly 2 odd parts. - Wesley Ivan Hurt, Jun 01 2013
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+1. - Christian Barrientos and Sarah Minion, Feb 27 2018
Also the clique covering number of the n-dipyramidal graph for n >= 3. - Eric W. Weisstein, Jun 27 2018

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...
		

Crossrefs

Essentially the same sequence as A008619 and A123108.
Cf. A014557, A275416 (multisets).
Cf. A298648 (number of smallest coverings of dipyramidal graphs by maximal cliques).

Programs

Formula

a(n) = floor(n/2) + n mod 2.
a(n) = A004526(n+1) = A001057(n)*(-1)^(n+1).
For n > 0: a(n) = A008619(n-1).
A110655(n) = a(a(n)), A110656(n) = a(a(a(n))).
a(n) = A109613(n) - A028242(n) = A110660(n) / A028242(n).
a(n) = A001222(A029744(n)). - Reinhard Zumkeller, Feb 16 2006
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - Reinhard Zumkeller, May 22 2006
First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A007742(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000217(n) / A008619(n). - Reinhard Zumkeller, Aug 24 2011
From Michael Somos, Sep 19 2006: (Start)
Euler transform of length 2 sequence [1, 1].
G.f.: x/((1-x)*(1-x^2)).
a(-1-n) = -a(n). (End)
a(n) = floor((n+1)/2) = |Sum_{m=1..n} Sum_{k=1..m} (-1)^k|, where |x| is the absolute value of x. - William A. Tedeschi, Mar 21 2008
a(n) = A065033(n) for n > 0. - R. J. Mathar, Aug 18 2008
a(n) = ceiling(n/2) = smallest integer >= n/2. - M. F. Hasler, Nov 17 2008
If n is zero then a(n) is zero, else a(n) = a(n-1) + (n mod 2). - R. J. Cano, Jun 15 2014
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - Michael Somos, Jun 15 2014
Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - Michael Somos, Jun 15 2014
a(n) = (n + (n mod 2)) / 2. - Fred Daniel Kline, Jun 08 2016
E.g.f.: (sinh(x) + x*exp(x))/2. - Ilya Gutkovskiy, Jun 08 2016
Satisfies the nested recurrence a(n) = a(a(n-2)) + a(n-a(n-1)) with a(1) = a(2) = 1. Cf. A004001. - Peter Bala, Aug 30 2022

Extensions

Deleted wrong formula and added formula. - M. F. Hasler, Nov 17 2008

A028242 Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003
Number of permutations of [n+1] avoiding the patterns 123, 132 and 231 and having exactly one fixed point. Example: a(0) because we have 1; a(2)=2 because we have 213 and 321; a(3)=1 because we have 3214. - Emeric Deutsch, Nov 17 2005
The ring of invariants for the standard action of Quaternions on C^2 is generated by x^4 + y^4, x^2 * y^2, and x * y * (x^4 - y^4). - Michael Somos, Mar 14 2011
A000027 and A001477 interleaved. - Omar E. Pol, Feb 06 2012
First differences are A168361, extended by an initial -1. (Or: a(n)-a(n-1) = A168361(n+1), for all n >= 1.) - M. F. Hasler, Oct 05 2017
Also the number of unlabeled simple graphs with n + 1 vertices and exactly n endpoints (vertices of degree 1). The labeled version is A327370. - Gus Wiseman, Sep 06 2019

Examples

			G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + 4*x^9 + 6*x^10 + 5*x^11 + ...
Molien g.f. = 1 + 2*t^4 + t^6 + 3*t^8 + 2*t^10 + 4*t^12 + 3*t^14 + 5*t^16 + 4*t^18 + 6*t^20 + ...
		

References

  • D. Benson, Polynomial Invariants of Finite Groups, Cambridge, p. 23.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 15.
  • M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 97.
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 90.

Crossrefs

Cf. A000124 (a=1, a=n+a), A028242 (a=1, a=n-a).
Partial sums give A004652. A030451(n)=a(n+1), n>0.
Cf. A052938 (same sequence except no leading 1,0,2).
Column k = n - 1 of A327371.

Programs

  • GAP
    a:=[1];; for n in [2..80] do a[n]:=(n-1)-a[n-1]; od; a; # Muniru A Asiru, Dec 16 2018
    
  • Haskell
    import Data.List (transpose)
    a028242 n = n' + 1 - m where (n',m) = divMod n 2
    a028242_list = concat $ transpose [a000027_list, a001477_list]
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    &cat[ [n+1, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    series((1+x^3)/(1-x^2)^2,x,80);
    A028242:=n->floor((n+1+(-1)^n)/2): seq(A028242(n), n=0..100); # Wesley Ivan Hurt, Mar 17 2015
  • Mathematica
    Table[(1 + 2 n + 3 (-1)^n)/4, {n, 0, 74}] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 0, 2}, 75] (* or *)
    CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - x^2)), {x, 0, 74}], x] (* Michael De Vlieger, May 21 2017 *)
    Table[{n,n-1},{n,40}]//Flatten (* Harvey P. Dale, Jun 26 2017 *)
    Table[3*floor(n/2)-n+1,{n,0,40}] (* Pierre-Alain Sallard, Dec 15 2018 *)
  • PARI
    {a(n) = (n\2) - (n%2) + 1} \\ Michael Somos, Oct 02 1999
    
  • PARI
    A028242(n)=n\2+!bittest(n,0) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    s=((1+x^3)/(1-x^2)^2).series(x, 80); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018

Formula

Expansion of the Molien series for standard action of Quaternions on C^2: (1 + t^6) / (1 - t^4)^2 = (1 - t^12) / ((1 - t^4)^2 * (1 - t^6)) in powers of t^2.
Euler transform of length 6 sequence [0, 2, 1, 0, 0, -1]. - Michael Somos, Mar 14 2011
a(n) = n - a(n-1) [with a(0) = 1] = A000035(n-1) + A004526(n). - Henry Bottomley, Jul 25 2001
G.f.: (1 - x + x^2) / ((1 - x) * (1 - x^2)) = ( 1+x^2-x ) / ( (1+x)*(x-1)^2 ).
a(2*n) = n + 1, a(2*n + 1) = n, a(-1 - n) = -a(n).
a(n) = a(n - 1) + a(n - 2) - a(n - 3).
a(n) = floor(n/2) + 1 - n mod 2. a(2*k) = k+1, a(2*k+1) = k; A110657(n) = a(a(n)), A110658(n) = a(a(a(n))); a(n) = A109613(n)-A110654(n) = A110660(n)/A110654(n). - Reinhard Zumkeller, Aug 05 2005
a(n) = 2*floor(n/2) - floor((n-1)/2). - Wesley Ivan Hurt, Oct 22 2013
a(n) = floor((n+1+(-1)^n)/2). - Wesley Ivan Hurt, Mar 15 2015
a(n) = (1 + 2n + 3(-1)^n)/4. - Wesley Ivan Hurt, Mar 18 2015
a(n) = Sum_{i=1..floor(n/2)} floor(n/(n-i)) for n > 0. - Wesley Ivan Hurt, May 21 2017
a(2n) = n+1, a(2n+1) = n, for all n >= 0. - M. F. Hasler, Oct 05 2017
a(n) = 3*floor(n/2) - n + 1. - Pierre-Alain Sallard, Dec 15 2018
E.g.f.: ((2 + x)*cosh(x) + (x - 1)*sinh(x))/2. - Stefano Spezia, Aug 01 2022
Sum_{n>=2} (-1)^(n+1)/a(n) = 1. - Amiram Eldar, Oct 04 2022

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009

A074148 a(n) = n + floor(n^2/2).

Original entry on oeis.org

1, 4, 7, 12, 17, 24, 31, 40, 49, 60, 71, 84, 97, 112, 127, 144, 161, 180, 199, 220, 241, 264, 287, 312, 337, 364, 391, 420, 449, 480, 511, 544, 577, 612, 647, 684, 721, 760, 799, 840, 881, 924, 967, 1012, 1057, 1104, 1151, 1200, 1249, 1300, 1351, 1404, 1457
Offset: 1

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

Last term in each group in A074147.
Index of the last occurrence of n in A100795.
Equals row sums of an infinite lower triangular matrix with alternate columns of (1, 3, 5, 7, ...) and (1, 1, 1, ...). - Gary W. Adamson, May 16 2010
a(n) = A214075(n+2,2). - Reinhard Zumkeller, Jul 03 2012
The heart pattern appears in (n+1) X (n+1) coins. Abnormal orientation heart is A065423. Normal heart is A093005 (A074148 - A065423). Void is A007590. See illustration in links. - Kival Ngaokrajang, Sep 11 2013
a(n+1) is the smallest size of an n-prolific permutation; a permutation of s letters is n-prolific if each (s - n)-subset of the letters in its one-line notation forms a unique pattern. - David Bevan, Nov 30 2016
For n > 2, a(n-1) is the smallest size of a nontrivial permuted packing of diamond tiles with diagonal length n; a permuted packing is a translational packing for which the set of translations is the plot of a permutation. - David Bevan, Nov 30 2016
Also the length of a longest path in the (n+1) X (n+1) bishop and black bishop graphs. - Eric W. Weisstein, Mar 27 2018
Row sums of A143182 triangle - Nikita Sadkov, Oct 10 2018

Examples

			Equals row sums of the generating triangle:
   1;
   3,  1;
   5,  1,  1;
   7,  1,  3,  1;
   9,  1,  5,  1,  1;
  11,  1,  7,  1,  3,  1;
  13,  1,  9,  1,  5,  1,  1;
  15,  1, 11,  1,  7,  1,  3,  1;
  ...
Example: a(5) = 17 = (9 + 1 + 5 + 1 + 1). - _Gary W. Adamson_, May 16 2010
The smallest 1-prolific permutations are 3142 and its symmetries; a(2) = 4. The smallest 2-prolific permutations are 3614725 and its symmetries; a(3) = 7. - _David Bevan_, Nov 30 2016
		

Crossrefs

a(n) = A000982(n+1) - 1.
Antidiagonal sums of A237447 & A237448.

Programs

Formula

a(n) = (2*n^2 + 4*n + (-1)^n - 1)/4. - Vladeta Jovovic, Apr 06 2003
a(n) = A109225(n,2) for n > 1. - Reinhard Zumkeller, Jun 23 2005
a(n) = +2*a(n-1) - 2*a(n-3) + 1*a(n-4). - Joerg Arndt, Apr 02 2011
a(n) = a(n-2) + 2*n, a(0) = 0, a(1) = 1. - Paul Barry, Jul 17 2004
From R. J. Mathar, Aug 30 2008: (Start)
G.f.: x*(1 + 2*x - x^2)/((1 - x)^3*(1 + x)).
a(n) + a(n+1) = A028387(n).
a(n+1) - a(n) = A109613(n+1). (End)
a(n) = floor(n^4/(2n^2 + 1)) with offset 2..a(2) = 1. - Gary Detlefs, Feb 11 2010
a(n) = n + floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Franck Maminirina Ramaharo, Jan 04 2019: (Start)
a(n) = n*(n + 1)/2 + floor(n/2) = A000217(n) + A004526(n).
E.g.f.: (exp(-x) - (1 - 6*x - 2*x^2)*exp(x))/4. (End)
Sum_{n>=1} 1/a(n) = 1 - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Sep 16 2022

Extensions

More terms from Vladeta Jovovic, Apr 06 2003
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007
Further edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Description simplified by Eric W. Weisstein, Mar 27 2018

A008794 Squares repeated; a(n) = floor(n/2)^2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 36, 36, 49, 49, 64, 64, 81, 81, 100, 100, 121, 121, 144, 144, 169, 169, 196, 196, 225, 225, 256, 256, 289, 289, 324, 324, 361, 361, 400, 400, 441, 441, 484, 484, 529, 529, 576, 576
Offset: 0

Views

Author

Keywords

Comments

Also number of non-attacking kings on (n-1) X (n-1) board (cf. A030978). - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
Also the independence number and clique covering number of the (n-1) X (n-1) king graph. - Eric W. Weisstein, Jun 20 2017
Maximum number of 2 X 2 tiles that fit on an n X n board. - Jon Perry, Aug 10 2003
(n)-(1) + (n-1)-(2) + (n-3)-(3) + ... + (n-r)-(r) ... n terms. E.g., 5-1+4-2+3 = 9, 6-1+5-2+4-3 = 9, 7-1+6-2+5-3+4 = 16, 8-1+7-2+6-3+5-4 = 16. - Amarnath Murthy, Jul 24 2005
The smallest possible number of white cells in a solution to an n X n nurikabe grid. - Tanya Khovanova, Feb 24 2009
(1 + x + 4*x^2 + 4*x^3 + 9*x^4 + ...) = (1/(1-x))*(1 + 3*x^2 + 5*x^4 + 7*x^6 + ...). - Gary W. Adamson, Apr 07 2010
If the set {1,2,...,n} is divided in half (a part having size ceiling(n/2) and the rest), then a(n+1) is the largest possible difference between the totals of these parts. - Vladimir Shevelev, Oct 14 2017
a(n+1) is the sum of the smallest parts of the partitions of 2n into two odd parts. - Wesley Ivan Hurt, Dec 06 2017
a(n-1) is the largest number of single cells of an n X n grid that share no edge or vertex with each other or those of the grid perimeter. - Stefano Spezia, Jul 30 2021
The binomial transform is 0, 0, 1, 4, 14, 44, 128, 352, 928, 2368, 5888... (see A007466). - R. J. Mathar, Feb 25 2023

Crossrefs

Programs

  • GAP
    Flat(List([0..24],n->[n^2,n^2])); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    [(2*n-1)*(-1)^n/8+(2*n^2-2*n +1)/8: n in [0..60]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A008794:=n->floor(n/2)^2: seq(A008794(n), n=0..50); # Wesley Ivan Hurt, Dec 08 2017
  • Mathematica
    With[{sq = Range[0, 30]^2}, Riffle[sq, sq]] (* Harvey P. Dale, Nov 20 2015 *)
    Table[Floor[n/2]^2, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
    Table[(2 n - 1) (-1)^n/8 + (2 n^2 - 2 n + 1)/8, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
    CoefficientList[Series[x^2*(1 + x^2)/((1 - x) (1 - x^2)^2), {x, 0, 49}], x] (* Michael De Vlieger, Oct 21 2016 *)
    CoefficientList[Series[((x^2-x)Cosh[x]+(1+x+x^2)Sinh[x])/4,{x,0,50}],x]*Table[k!,{k,0,50}] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    a(n)=(n\2)^2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    first(n) = Vec(x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2) + O(x^n), -n) \\ Iain Fox, Dec 08 2017
    
  • Python
    def A008794(n): return (n//2)**2 # Chai Wah Wu, Jun 07 2022
  • Sage
    [((-1)^n*(2*n-1) +(2*n^2-2*n +1))/8 for n in (0..50)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2).
a(n) = floor(n/2)^2.
From Paul Barry, May 31 2003: (Start)
a(n) = (2*n - 1)*(-1)^n/8 + (2*n^2 - 2*n + 1)/8.
a(n+1) = Sum_{k=0..n} k*(1-(-1)^k)/2. (End)
a(n+2) = Sum_{k=0..n} A109613(k)*A059841(n-k). - Reinhard Zumkeller, Dec 05 2009
a(n) = A182579(n,n-2) for n > 1. - Reinhard Zumkeller, May 07 2012
3*a(n) = A032766(n)^2 - A032766(n^2). - Bruno Berselli, Oct 21 2016
a(n) = Sum_{i=1..n-1; i odd} i. - Olivier Pirson, Nov 06 2017
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n > 4. - Iain Fox, Dec 08 2017
E.g.f.: ((x^2 - x)*cosh(x) + (1 + x + x^2)*sinh(x))/4. - Stefano Spezia, Oct 07 2018

A084964 Follow n+2 by n. Also solution of a(n+2)=a(n)+1, a(0)=2, a(1)=0.

Original entry on oeis.org

2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 10, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 20, 18, 21, 19, 22, 20, 23, 21, 24, 22, 25, 23, 26, 24, 27, 25, 28, 26, 29, 27, 30, 28, 31, 29, 32, 30, 33, 31, 34, 32, 35, 33, 36, 34, 37, 35, 38, 36, 39
Offset: 0

Views

Author

Michael Somos, Jun 15 2003

Keywords

Crossrefs

Cf. A217764(1,n) = a(n+2).

Programs

  • Haskell
    import Data.List (transpose)
    a084964 n = a084964_list !! n
    a084964_list = concat $ transpose [[2..], [0..]]
    -- Reinhard Zumkeller, Apr 06 2015
  • Magma
    &cat[ [n+2, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    A084964:=n->floor(n/2)+1+(-1)^n; seq(A084964(k), k=0..100); # Wesley Ivan Hurt, Nov 08 2013
  • Mathematica
    lst={}; a=1; Do[a=n-a; AppendTo[lst, a], {n, 0, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2008 *)
    Table[{n,n-2},{n,2,40}]//Flatten (* or *) LinearRecurrence[{1,1,-1},{2,0,3},80] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    a(n)=n\2-2*(n%2)+2
    

Formula

G.f.: (2-2x+x^2)/((1-x)(1-x^2)).
a(2n+1)=n. a(2n)=n+2. a(n+2)=a(n)+1. a(n)=-a(-3-n).
a(n) = floor(n/2) + 1 + (-1)^n. - Reinhard Zumkeller, Aug 27 2005
A112032(n)=2^a(n); A112033(n)=3*2^a(n); a(n)=A109613(n+2)-A052938(n). - Reinhard Zumkeller, Aug 27 2005
a(n) = n + 1 - a(n-1) (with a(0)=2). - Vincenzo Librandi, Aug 08 2010
a(n) = floor(n/2)*3 - floor((n-1)/2)*2. - Ross La Haye, Mar 27 2013
a(n) = 3*n - 3 - 5*floor((n-1)/2). - Wesley Ivan Hurt, Nov 08 2013
a(n) = (3 + 5*(-1)^n + 2*n)/4. - Wolfgang Hintze, Dec 13 2014
E.g.f.: ((4 + x)*cosh(x) - (1 - x)*sinh(x))/2. - Stefano Spezia, Jul 01 2023

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009

A010673 Period 2: repeat [0, 2].

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Euler number (or Euler characteristic) of (n+1)-sphere. - Franz Vrabec, Sep 07 2007
First differences of A109613. - Reinhard Zumkeller, Dec 05 2009
a(n) = Sum_{k=0..n-1} (-1)^k*N_k, for n >= 1, is Schläfli's generalization of Euler's formula for simply-connected n-dimensional polytopes. N_0 is the number of vertices, ..., N_{d-1} is the number of (d-1)-dimensional faces. See Coxeter's book for references, also for Poincaré's proof. - Wolfdieter Lang, Feb 09 2018
Decimal expansion of 2/99. - R. J. Mathar, May 15 2025

References

  • R. Carter, G. Segal, I. Macdonald, Lectures on Lie Groups and Lie Algebras, London Mathematical Society Student Texts 32, Cambridge University Press, 1995; see p. 68.
  • H. S. M. Coxeter, Regular Polytopes, third ed., Dover publications, New York, 1973, p. 165.

Crossrefs

Cf. A109613.

Programs

  • GAP
    Flat(List([0..80],n->[0,2])); # Muniru A Asiru, Oct 26 2018
  • Maple
    seq(op([0,2]),n=0..80); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    PadRight[{},120,{0,2}] (* or *) LinearRecurrence[{0,1},{0,2},120] (* Harvey P. Dale, May 29 2016 *)
  • Maxima
    makelist(if evenp(n) then 0 else 2, n, 0, 30); /* Martin Ettl, Nov 11 2012 */
    
  • Maxima
    makelist(concat(0,", ",2), n, 0, 40); /* Bruno Berselli, Nov 13 2012 */
    
  • PARI
    a(n)=1-(-1)^n \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = 1 - (-1)^n.
a(n) = 2*(n mod 2). - Paolo P. Lava, Oct 20 2006
G.f.: -2*x / ((x-1)*(1+x)). - R. J. Mathar, Apr 06 2011
E.g.f.: (exp(2*x) - 1)/exp(x). - Elmo R. Oliveira, Dec 19 2023

A026585 a(n) = T(n,n), T given by A026584. Also a(n) is the number of integer strings s(0), ..., s(n) counted by T, such that s(n)=0.

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 40, 86, 222, 518, 1296, 3130, 7770, 19066, 47324, 117094, 291260, 724302, 1806220, 4507230, 11266718, 28188070, 70609316, 177023466, 444231564, 1115639586, 2803975860, 7052132546, 17748069294, 44693162266
Offset: 0

Views

Author

Keywords

Comments

The signed sequence 1,0,2,-2,8,-14,... is the inverse binomial transform of A026569. - Paul Barry, Sep 09 2004
Hankel transform of a(n) is 2^n. Hankel transform of a(n+1) is {0, -4, 0, 16, 0, -64, 0, 256, 0, ...} or -2^(n+1)*[x^n](x/(1+x^2)). Hankel transform of a(n+2) is 2^(n+1)*A109613(n+1). - Paul Barry, Mar 23 2011

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-j-1, n-2*j)*Binomial(2*j, j): j in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Dec 12 2021
    
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-x-4*x^2)], {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Sage
    [sum(binomial(n-j-1, n-2*j)*binomial(2*j, j) for j in (0..(n//2))) for n in [0..40]] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n).
G.f.: sqrt((1-x)/(1-x-4*x^2)). - Ralf Stephan, Jan 08 2004
From Paul Barry, Jul 01 2009: (Start)
G.f.: 1/(1 -2*x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 - ... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(n-k,k)*A000984(k). (End)
From Paul Barry, Mar 23 2011: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*A000984(k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*C(2*k,k). (End)
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +(-3*n+2)*a(n-2) +2*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (sqrt(17)+1)^(n-1/2) / (17^(1/4) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Feb 12 2014

A061925 a(n) = ceiling(n^2/2) + 1.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, 1302, 1353, 1406
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

a(n+1) gives index of the first occurrence of n in A100795. - Amarnath Murthy, Dec 05 2004
First term in each group in A074148. - Amarnath Murthy, Aug 28 2002
From Christian Barrientos, Jan 01 2021: (Start)
For n >= 3, a(n) is the number of square polyominoes with at least 2n - 2 cells whose bounding box has size 2 X n.
For n = 3, there are 6 square polyominoes with a bounding box of size 2 X 3:
_ _ _ _ _
|||_| |||_| |||_| |||_| |||_| |||_
|||_| ||| || || || || |||
(End)
Except for a(2), a(n) agrees with the lower matching number of the (n+1) X (n+1) bishop graph up to at least n = 13. - Eric W. Weisstein, Dec 23 2024

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*floor((n-1)/2) + 1 = A061926(3, k) = 2*A002620(n+1) - (n-1) = A000982(n) + 1.
a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n).
a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1).
a(n) = floor((n^2+3)/2). - Gary Detlefs, Feb 13 2010
From R. J. Mathar, Feb 19 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End)
a(n) = (2*n^2 - (-1)^n + 5)/4. - Bruno Berselli, Sep 29 2011
a(n) = A007590(n+1) - n + 1. - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A027688(n). a(n+1) - a(n) = A109613(n). - R. J. Mathar, Jul 20 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - Stefano Spezia, May 07 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 09 2007

A047270 Numbers that are congruent to {3, 5} mod 6.

Original entry on oeis.org

3, 5, 9, 11, 15, 17, 21, 23, 27, 29, 33, 35, 39, 41, 45, 47, 51, 53, 57, 59, 63, 65, 69, 71, 75, 77, 81, 83, 87, 89, 93, 95, 99, 101, 105, 107, 111, 113, 117, 119, 123, 125, 129, 131, 135, 137, 141, 143, 147, 149
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 10 ).
This sequence is an interleaving of A016945 with A016969. - Guenther Schrack, Nov 16 2018

Crossrefs

Cf. A047235 [(6*n-(-1)^n-3)/2], A047241 [(6*n-(-1)^n-5)/2], A047238 [(6*n-(-1)^n-7)/2]. [Bruno Berselli, Jun 24 2010]
Subsequence of A186422.
From Guenther Schrack, Nov 18 2018: (Start)
Complement: A047237.
First differences: A105397(n) for n > 0.
Partial sums: A227017(n+1) for n > 0.
Elements of odd index: A016945.
Elements of even index: A016969(n-1) for n > 0. (End)

Programs

  • Mathematica
    Select[Range@ 149, MemberQ[{3, 5}, Mod[#, 6]] &] (* or *)
    Array[(6 # - (-1)^# - 1)/2 &, 50] (* or *)
    Fold[Append[#1, 6 #2 - Last@ #1 - 4] &, {3}, Range[2, 50]] (* or *)
    CoefficientList[Series[(3 + 2 x + x^2)/((1 + x) (1 - x)^2), {x, 0, 49}], x] (* Michael De Vlieger, Jan 12 2018 *)
  • PARI
    a(n) = (6*n - 1 - (-1)^n)/2 \\ David Lovler, Aug 25 2022

Formula

a(n) = sqrt(2)*sqrt((1-6*n)*(-1)^n + 18*n^2 - 6*n + 1)/2. - Paul Barry, May 11 2003
From Bruno Berselli, Jun 24 2010: (Start)
G.f.: (3+2*x+x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0, with n > 3.
a(n) = (6*n - (-1)^n - 1)/2. (End)
a(n) = 6*n - a(n-1) - 4 with n > 1, a(1)=3. - Vincenzo Librandi, Aug 05 2010
From Guenther Schrack, Nov 17 2018: (Start)
a(n) = a(n-2) + 6 for n > 2.
a(-n) = -A047241(n+1) for n > 0.
a(n) = A109613(n-1) + 2*n for n > 0.
a(n) = 2*A001651(n) + 1.
m-element moving averages: Sum_{k=1..m} a(n-m+k)/m = A016777(n-m/2) for m = 2, 4, 6, ... and n >= m. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f.: 1 + 3*x*exp(x) - cosh(x). - David Lovler, Aug 25 2022

A099392 a(n) = floor((n^2 - 2*n + 3)/2).

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405
Offset: 1

Views

Author

Ralf Stephan following a suggestion from Luke Pebody, Oct 20 2004

Keywords

Crossrefs

Differs from A085913 at n = 61. Apart from leading term, identical to A080827.
Cf. A000217, A001844, A002522, A007494, A007590, A058331 (bisections).
From Guenther Schrack, Apr 17 2018: (Start)
First differences: A052928.
Partial sums: A212964(n) + n for n > 0.
Also A058331 and A001844 interleaved. (End)

Programs

  • Mathematica
    Array[Floor[(#^2 - 2 # + 3)/2] &, 54] (* or *)
    Rest@ CoefficientList[Series[x (-1 + x - x^2 - x^3)/((1 + x) (x - 1)^3), {x, 0, 54}], x] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    a(n)=(n^2+3)\2-n \\ Charles R Greathouse IV, Aug 01 2013

Formula

a(n) = ceiling(n^2/2)-n+1. - Paul Barry, Jul 16 2006; index shifted by R. J. Mathar, Jul 29 2007
a(n) = ceiling(A002522(n-1)/2). - Branko Curgus, Sep 02 2007
From R. J. Mathar, Feb 20 2011: (Start)
G.f.: x *( -1+x-x^2-x^3 ) / ( (1+x)*(x-1)^3 ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n+1) = (3 + 2*n^2 + (-1)^n)/4. (End)
a(n) = A007590(n-1) + 1 for n >= 2. - Richard R. Forberg, Aug 01 2013
a(n) = A000217(n) - A007494(n-1). - Bui Quang Tuan, Mar 27 2015
From Guenther Schrack, Apr 17 2018: (Start)
a(n) = (2*n^2 - 4*n + 5 -(-1)^n)/4.
a(n+2) = a(n) + 2*n for n > 0.
a(n) = 2*A033683(n-1) - 1 for n > 0.
a(n) = A047838(n-1) + 2 for n > 2.
a(n) = A074148(n-1) - n + 2 for n > 1.
a(n) = A183575(n-3) + 3 for n > 3.
a(n) = 2*A290743(n-1) - 3 for n > 0.
a(n) = 2*A290743(n-2) + A109613(n-5) for n > 4.
a(n) = A074148(n) - A014601(n-1) for n > 0. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 16 2022
E.g.f.: ((2 - x + x^2)*cosh(x) + (3 - x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 28 2024
Previous Showing 11-20 of 85 results. Next