cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A109613 Odd numbers repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 01 2005

Keywords

Comments

The number of rounds in a round-robin tournament with n competitors. - A. Timothy Royappa, Aug 13 2011
Diagonal sums of number triangle A113126. - Paul Barry, Oct 14 2005
When partitioning a convex n-gon by all the diagonals, the maximum number of sides in resulting polygons is 2*floor(n/2)+1 = a(n-1) (from Moscow Olympiad problem 1950). - Tanya Khovanova, Apr 06 2008
The inverse values of the coefficients in the series expansion of f(x) = (1/2)*(1+x)*log((1+x)/(1-x)) lead to this sequence; cf. A098557. - Johannes W. Meijer, Nov 12 2009
From Reinhard Zumkeller, Dec 05 2009: (Start)
First differences: A010673; partial sums: A000982;
A059329(n) = Sum_{k = 0..n} a(k)*a(n-k);
A167875(n) = Sum_{k = 0..n} a(k)*A005408(n-k);
A171218(n) = Sum_{k = 0..n} a(k)*A005843(n-k);
A008794(n+2) = Sum_{k = 0..n} a(k)*A059841(n-k). (End)
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(5). - Michael Somos, May 29 2013
For n > 4: a(n) = A230584(n) - A230584(n-2). - Reinhard Zumkeller, Feb 10 2015
The arithmetic function v+-(n,2) as defined in A290988. - Robert Price, Aug 22 2017
For n > 0, also the chromatic number of the (n+1)-triangular (Johnson) graph. - Eric W. Weisstein, Nov 17 2017
a(n-1), for n >= 1, is also the upper bound a_{up}(b), where b = 2*n + 1, in the first (top) row of the complete coach system Sigma(b) of Hilton and Pedersen [H-P]. All odd numbers <= a_{up}(b) of the smallest positive restricted residue system of b appear once in the first rows of the c(2*n+1) = A135303(n) coaches. If b is an odd prime a_{up}(b) is the maximum. See a comment in the proof of the quasi-order theorem of H-P, on page 263 ["Furthermore, every possible a_i < b/2 ..."]. For an example see below. - Wolfdieter Lang, Feb 19 2020
Satisfies the nested recurrence a(n) = a(a(n-2)) + 2*a(n-a(n-1)) with a(0) = a(1) = 1. Cf. A004001. - Peter Bala, Aug 30 2022
The binomial transform is 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560,.. (see A057711). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
		

References

  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).

Crossrefs

Complement of A052928 with respect to the universe A004526. - Guenther Schrack, Aug 21 2018
First differences of A000982, A061925, A074148, A105343, A116940, and A179207. - Guenther Schrack, Aug 21 2018

Programs

Formula

a(n) = 2*floor(n/2) + 1.
a(n) = A052928(n) + 1 = 2*A004526(n) + 1.
a(n) = A028242(n) + A110654(n).
a(n) = A052938(n-2) + A084964(n-2) for n > 1. - Reinhard Zumkeller, Aug 27 2005
G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005
a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008
a(n) = A001477(n) + A059841(n). - Philippe Deléham, Mar 31 2009
a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010
a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012
a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012
G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016
E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016
From Guenther Schrack, Sep 10 2018: (Start)
a(-n) = -a(n-1).
a(n) = A047270(n+1) - (2*n + 2).
a(n) = A005408(A004526(n)). (End)
a(n) = A000217(n) / A004526(n+1), n > 0. - Torlach Rush, Nov 10 2023

A038712 Let k be the exponent of highest power of 2 dividing n (A007814); a(n) = 2^(k+1)-1.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 127, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3
Offset: 1

Views

Author

Henry Bottomley, May 02 2000

Keywords

Comments

n XOR n-1, i.e., nim-sum of a pair of consecutive numbers.
Denominator of quotient sigma(2*n)/sigma(n). - Labos Elemer, Nov 04 2003
a(n) = the Towers of Hanoi disc moved at the n-th move, using standard moves with discs labeled (1, 3, 7, 15, ...) starting from top (smallest = 1). - Gary W. Adamson, Oct 26 2009
Equals row sums of triangle A168312. - Gary W. Adamson, Nov 22 2009
In the binary expansion of n, delete everything left of the rightmost 1 bit, and set all bits to the right of it. - Ralf Stephan, Aug 22 2013
Every finite sequence of positive integers summing to n may be termwise dominated by a subsequence of the first n values in this sequence [see Bannister et al., 2013]. - David Eppstein, Aug 31 2013
Sum of powers of 2 dividing n. - Omar E. Pol, Aug 18 2019
Given the binary expansion of (n-1) as {b[k-1], b[k-2], ..., b[2], b[1], b[0]}, then the binary expansion of a(n) is {bitand(b[k-1], b[k-2], ..., b[2], b[1], b[0]), bitand(b[k-2], ..., b[2], b[1], b[0]), ..., bitand(b[2], b[1], b[0]), bitand(b[1], b[0]), b[0], 1}. Recursively stated - 0th bit (L.S.B) of a(n), a(n)[0] = 1, a(n)[i] = bitand(a(n)[i-1], (n-1)[i-1]), where n[i] = i-th bit in the binary expansion of n. - Chinmaya Dash, Jun 27 2020

Examples

			a(6) = 3 because 110 XOR 101 = 11 base 2 = 3.
From _Omar E. Pol_, Aug 18 2019: (Start)
Illustration of initial terms:
a(n) is also the area of the n-th region of an infinite diagram of compositions (ordered partitions) of the positive integers, where the length of the n-th horizontal line segment is equal to A001511(n) and the length of the n-th vertical line segment is equal to A006519(n), as shown below (first eight regions):
-----------------------------
n    a(n)    Diagram
-----------------------------
.            _ _ _ _
1     1     |_| | | |
2     3     |_ _| | |
3     1     |_|   | |
4     7     |_ _ _| |
5     1     |_| |   |
6     3     |_ _|   |
7     1     |_|     |
8    15     |_ _ _ _|
.
The above diagram represents the eight compositions of 4: [1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4].
(End)
		

Crossrefs

A038713 translated from binary, diagonals of A003987 on either side of main diagonal.
Cf. A062383. Partial sums give A080277.
Bisection of A089312. Cf. A088837.
a(n)-1 is exponent of 2 in A089893(n).
Cf. A130093.
This is Guy Steele's sequence GS(6, 2) (see A135416).
Cf. A001620, A168312, A220466, A361019 (Dirichlet inverse).

Programs

  • C
    int a(int n) { return n ^ (n-1); } // Russ Cox, May 15 2007
    
  • Haskell
    import Data.Bits (xor)
    a038712 n = n `xor` (n - 1) :: Integer  -- Reinhard Zumkeller, Apr 23 2012
    
  • Maple
    nmax:=98: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+1)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 01 2013
    # second Maple program:
    a:= n-> Bits[Xor](n, n-1):
    seq(a(n), n=1..98);  # Alois P. Heinz, Feb 02 2023
  • Mathematica
    Table[Denominator[DivisorSigma[1, 2*n]/DivisorSigma[1, n]], {n, 1, 128}]
    Table[BitXor[(n + 1), n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    vector(66,n,bitxor(n-1,n)) \\ Joerg Arndt, Sep 01 2013; corrected by Michel Marcus, Aug 02 2018
    
  • PARI
    A038712(n) = ((1<<(1+valuation(n,2)))-1); \\ Antti Karttunen, Nov 24 2024
    
  • Python
    def A038712(n): return n^(n-1) # Chai Wah Wu, Jul 05 2022

Formula

a(n) = A110654(n-1) XOR A008619(n). - Reinhard Zumkeller, Feb 05 2007
a(n) = 2^A001511(n) - 1 = 2*A006519(n) - 1 = 2^(A007814(n)+1) - 1.
Multiplicative with a(2^e) = 2^(e+1)-1, a(p^e) = 1, p > 2. - Vladeta Jovovic, Nov 06 2001; corrected by Jianing Song, Aug 03 2018
Sum_{n>0} a(n)*x^n/(1+x^n) = Sum_{n>0} x^n/(1-x^n). Inverse Moebius transform of A048298. - Vladeta Jovovic, Jan 02 2003
From Ralf Stephan, Jun 15 2003: (Start)
G.f.: Sum_{k>=0} 2^k*x^2^k/(1 - x^2^k).
a(2*n+1) = 1, a(2*n) = 2*a(n)+1. (End)
Equals A130093 * [1, 2, 3, ...]. - Gary W. Adamson, May 13 2007
Sum_{i=1..n} (-1)^A000120(n-i)*a(i) = (-1)^(A000120(n)-1)*n. - Vladimir Shevelev, Mar 17 2009
Dirichlet g.f.: zeta(s)/(1 - 2^(1-s)). - R. J. Mathar, Mar 10 2011
a(n) = A086799(2*n) - 2*n. - Reinhard Zumkeller, Aug 07 2011
a((2*n-1)*2^p) = 2^(p+1)-1, p >= 0. - Johannes W. Meijer, Feb 01 2013
a(n) = A000225(A001511(n)). - Omar E. Pol, Aug 31 2013
a(n) = A000203(n)/A000593(n). - Ivan N. Ianakiev and Omar E. Pol, Dec 14 2017
L.g.f.: -log(Product_{k>=0} (1 - x^(2^k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 15 2018
a(n) = 2^(1 + (A183063(n)/A001227(n))) - 1. - Omar E. Pol, Nov 06 2018
a(n) = sigma(n)/(sigma(2*n) - 2*sigma(n)) = 3*sigma(n)/(sigma(4*n) - 4*sigma(n)) = 7*sigma(n)/(sigma(8*n) - 8*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
Sum_{k=1..n} a(k) ~ n*log_2(n) + (1/2 + (gamma - 1)/log(2))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 24 2022
a(n) = Sum_{d divides n} m(d)*phi(d), where m(n) = Sum_{d divides n} (-1)^(d+1)* mobius(d). - Peter Bala, Jan 23 2024

Extensions

Definition corrected by N. J. A. Sloane, Sep 07 2015 at the suggestion of Marc LeBrun
Name corrected by Wolfdieter Lang, Aug 30 2016

A007742 a(n) = n*(4*n+1).

Original entry on oeis.org

0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives the numbers that fall on the positive y-axis. (See Example section.)
Central terms of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
a(n)*Pi is the total length of 4 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A004770. The spiral length ratio rounded down [floor(L(n)/L(1))] is A047497. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n; {4, 4n}]. For n=1, this collapses to [2, {4}]. - Magus K. Chu, Sep 15 2022

Examples

			Part of the spiral:
.
  64--65--66--67--68
   |
  63  36--37--38--39--40--41--42
   |   |                       |
  62  35  16--17--18--19--20  43
   |   |   |               |   |
  61  34  15   4---5---6  21  44
   |   |   |   |       |   |   |
  60  33  14   3   0   7  22  45
   |   |   |   |   |   |   |   |
  59  32  13   2---1   8  23  46
   |   |   |           |   |   |
  58  31  12--11--10---9  24  47
   |   |                   |   |
  57  30--29--28--27--26--25  48
   |                           |
  56--55--54--53--52--51--50--49
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A081266.

Programs

  • Magma
    I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *)
    Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    a(n)=4*n^2+n
    

Formula

G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A033991(-n) = A074378(2*n).
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A110654(n) + A173511(n) = A002943(n) - n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010
Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013
a(n) = A000217(3*n) - A000217(n). - Bruno Berselli, Sep 21 2016
E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)
a(n) = A081266(n) - A000217(n). - Leo Tavares, Mar 25 2022

A000015 Smallest prime power >= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 13, 13, 16, 16, 16, 17, 19, 19, 23, 23, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 32, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 47, 47, 47, 47, 49, 49, 53, 53, 53, 53, 59, 59, 59, 59, 59, 59, 61, 61, 64, 64, 64, 67, 67, 67, 71, 71, 71, 71, 73
Offset: 1

Views

Author

Keywords

Comments

The length of the m-th run of {a(n)} is the length of the (m-1)-st run of A031218 for m > 1. - Colin Linzer, Mar 08 2024

Crossrefs

Programs

  • Haskell
    a000015 n = a000015_list !! (n-1)
    a000015_list = 1 : concat
       (zipWith(\pp qq -> replicate (fromInteger (pp - qq)) pp)
               (tail a000961_list) a000961_list)
    -- Reinhard Zumkeller, Nov 17 2011, Apr 25 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime,{$1..N}):
    PPs:= {1} union Primes:
    for k from 1 to ilog2(N) do
       PPs:= PPs union map(`^`, select(`<=`,Primes, floor(N^(1/k))),k)
    od:
    PPs:= sort(convert(PPs,list)):
    1, seq(PPs[i]$(PPs[i]-PPs[i-1]), i=2..nops(PPs)); # Robert Israel, Jul 23 2015
  • Mathematica
    Insert[Table[m:=n;While[Not[Length[FactorInteger[m]]==1],m++ ];m,{n,2,100}], 1, 1] (* Stefan Steinerberger, Apr 17 2006 *)
    a[n_] := NestWhile[# + 1 &, n, Not@*PrimePowerQ]; (* Matthew House, Jul 14 2015, v6.0+ *)
    a[ n_] := If[ n < 2, Boole[n == 1], Module[{m = n}, While[ ! PrimePowerQ[ m], m++]; m]]; (* Michael Somos, Mar 06 2018 *)
    a[ n_] := If[ n < 1, 0, Module[{m = n}, While[ Length[ FactorInteger @ m ] != 1, m++]; m]]; (* Michael Somos, Mar 06 2018 *)
  • PARI
    {a(n) = if( n<1, 0, while(matsize(factor(n))[1]>1, n++); n)}; /* Michael Somos, Jul 16 2002 */
    
  • PARI
    a(n)=if(n>1,while(!isprimepower(n),n++));n \\ Charles R Greathouse IV, Feb 01 2013
    
  • Python
    from itertools import count
    from sympy import factorint
    def A000015(n): return next(filter(lambda m:len(factorint(m))<=1, count(n))) # Chai Wah Wu, Oct 25 2024
  • Sage
    [next_prime_power(n) for n in range(72)]  # Zerinvary Lajos, Jun 13 2009
    

Formula

a(A110654(n+1)) = A188666(n). - Reinhard Zumkeller, Apr 25 2011, corrected by M. F. Hasler, Jul 25 2015
a(n) = A188666(2n-1). - M. F. Hasler, Jul 25 2015

Extensions

More terms from Michael Somos, Jul 16 2002

A028242 Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003
Number of permutations of [n+1] avoiding the patterns 123, 132 and 231 and having exactly one fixed point. Example: a(0) because we have 1; a(2)=2 because we have 213 and 321; a(3)=1 because we have 3214. - Emeric Deutsch, Nov 17 2005
The ring of invariants for the standard action of Quaternions on C^2 is generated by x^4 + y^4, x^2 * y^2, and x * y * (x^4 - y^4). - Michael Somos, Mar 14 2011
A000027 and A001477 interleaved. - Omar E. Pol, Feb 06 2012
First differences are A168361, extended by an initial -1. (Or: a(n)-a(n-1) = A168361(n+1), for all n >= 1.) - M. F. Hasler, Oct 05 2017
Also the number of unlabeled simple graphs with n + 1 vertices and exactly n endpoints (vertices of degree 1). The labeled version is A327370. - Gus Wiseman, Sep 06 2019

Examples

			G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + 4*x^9 + 6*x^10 + 5*x^11 + ...
Molien g.f. = 1 + 2*t^4 + t^6 + 3*t^8 + 2*t^10 + 4*t^12 + 3*t^14 + 5*t^16 + 4*t^18 + 6*t^20 + ...
		

References

  • D. Benson, Polynomial Invariants of Finite Groups, Cambridge, p. 23.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 15.
  • M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 97.
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 90.

Crossrefs

Cf. A000124 (a=1, a=n+a), A028242 (a=1, a=n-a).
Partial sums give A004652. A030451(n)=a(n+1), n>0.
Cf. A052938 (same sequence except no leading 1,0,2).
Column k = n - 1 of A327371.

Programs

  • GAP
    a:=[1];; for n in [2..80] do a[n]:=(n-1)-a[n-1]; od; a; # Muniru A Asiru, Dec 16 2018
    
  • Haskell
    import Data.List (transpose)
    a028242 n = n' + 1 - m where (n',m) = divMod n 2
    a028242_list = concat $ transpose [a000027_list, a001477_list]
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    &cat[ [n+1, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    series((1+x^3)/(1-x^2)^2,x,80);
    A028242:=n->floor((n+1+(-1)^n)/2): seq(A028242(n), n=0..100); # Wesley Ivan Hurt, Mar 17 2015
  • Mathematica
    Table[(1 + 2 n + 3 (-1)^n)/4, {n, 0, 74}] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 0, 2}, 75] (* or *)
    CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - x^2)), {x, 0, 74}], x] (* Michael De Vlieger, May 21 2017 *)
    Table[{n,n-1},{n,40}]//Flatten (* Harvey P. Dale, Jun 26 2017 *)
    Table[3*floor(n/2)-n+1,{n,0,40}] (* Pierre-Alain Sallard, Dec 15 2018 *)
  • PARI
    {a(n) = (n\2) - (n%2) + 1} \\ Michael Somos, Oct 02 1999
    
  • PARI
    A028242(n)=n\2+!bittest(n,0) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    s=((1+x^3)/(1-x^2)^2).series(x, 80); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018

Formula

Expansion of the Molien series for standard action of Quaternions on C^2: (1 + t^6) / (1 - t^4)^2 = (1 - t^12) / ((1 - t^4)^2 * (1 - t^6)) in powers of t^2.
Euler transform of length 6 sequence [0, 2, 1, 0, 0, -1]. - Michael Somos, Mar 14 2011
a(n) = n - a(n-1) [with a(0) = 1] = A000035(n-1) + A004526(n). - Henry Bottomley, Jul 25 2001
G.f.: (1 - x + x^2) / ((1 - x) * (1 - x^2)) = ( 1+x^2-x ) / ( (1+x)*(x-1)^2 ).
a(2*n) = n + 1, a(2*n + 1) = n, a(-1 - n) = -a(n).
a(n) = a(n - 1) + a(n - 2) - a(n - 3).
a(n) = floor(n/2) + 1 - n mod 2. a(2*k) = k+1, a(2*k+1) = k; A110657(n) = a(a(n)), A110658(n) = a(a(a(n))); a(n) = A109613(n)-A110654(n) = A110660(n)/A110654(n). - Reinhard Zumkeller, Aug 05 2005
a(n) = 2*floor(n/2) - floor((n-1)/2). - Wesley Ivan Hurt, Oct 22 2013
a(n) = floor((n+1+(-1)^n)/2). - Wesley Ivan Hurt, Mar 15 2015
a(n) = (1 + 2n + 3(-1)^n)/4. - Wesley Ivan Hurt, Mar 18 2015
a(n) = Sum_{i=1..floor(n/2)} floor(n/(n-i)) for n > 0. - Wesley Ivan Hurt, May 21 2017
a(2n) = n+1, a(2n+1) = n, for all n >= 0. - M. F. Hasler, Oct 05 2017
a(n) = 3*floor(n/2) - n + 1. - Pierre-Alain Sallard, Dec 15 2018
E.g.f.: ((2 + x)*cosh(x) + (x - 1)*sinh(x))/2. - Stefano Spezia, Aug 01 2022
Sum_{n>=2} (-1)^(n+1)/a(n) = 1. - Amiram Eldar, Oct 04 2022

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009

A033638 Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241, 257, 273, 290, 307, 325, 343, 362, 381, 401, 421, 442, 463, 485, 507, 530, 553, 577, 601, 626, 651, 677, 703, 730, 757, 785, 813, 842
Offset: 0

Views

Author

Tanya Y. Berger-Wolf (tanyabw(AT)uiuc.edu)

Keywords

Comments

Fill an infinity X infinity matrix with numbers so that 1..n^2 appear in the top left n X n corner for all n; write down the minimal elements in the rows and columns and sort into increasing order; maximize this list in the lexicographic order.
From Donald S. McDonald, Jan 09 2003: (Start)
Numbers of the form n^2 + 1 or n^2 + n + 1.
Locations of right angle turns in Ulam square spiral. (End)
a(n-1) (for n >= 1) is also the number u of unique Fibonacci/Lucas type sequences generated (the total number t of these sequences being a triangular number). Sum(n+1)=t. Then u=Sum((n+1/2) minus 0.5 for odd terms) except for the initial term. E.g., u=13: (n=6)+1 = 7; then 7/2 - 0.5 =3. So u = Sum(1, 1, 1, 2, 2, 3, 3) = 13. - Marco Matosic, Mar 11 2003
Number of (3412,123)-avoiding involutions in S_n.
Schur's Theorem (1905): the maximum number of mutually commuting linearly independent complex matrices of order n is floor((n^2)/4) + 1. - Jonathan Vos Post, Apr 03 2007
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=(-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Except for the initial two terms, A033638 gives iterates of the nonsquare function: c(n) = f(c(n-1)), where f(n) = A000037(n) = n + floor(1/2 + sqrt(n)) = n-th nonsquare, starting with c(1)=2. - Clark Kimberling, Dec 28 2010
For n >= 1: for all permutations of [0..n-1]: number of distinct values taken by Sum_{k=0..n-1} (k mod 2) * pi(k). - Joerg Arndt, Apr 22 2011
First differences are A110654. - Jon Perry, Sep 12 2012
Number of (weakly) unimodal compositions of n with maximal part <= 2, see example. - Joerg Arndt, May 10 2013
Construct an infinite triangular matrix with 1's in the leftmost column and the natural numbers in all other columns but shifted down twice. Square the triangle and the sequence is the leftmost column vector. - Gary W. Adamson, Jan 27 2014
Equals the sum of terms in upward sloping diagonals of an infinite lower triangle with 1's in the leftmost column and the natural numbers in all other columns. - Gary W. Adamson, Jan 29 2014
a(n) is the number of permutations of length n avoiding both 213 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of partitions of n with no more than 2 parts > 1. - Wouter Meeussen, Feb 22 2015, revised Apr 24 2023
Number of possible values for the area of a polyomino whose perimeter is 2n + 4. - Luc Rousseau, May 10 2018
a(n) is the number of 231-avoiding even Grassmannian permutations of size n+1. - Juan B. Gil, Mar 10 2023
For n > 0, a(n) is the smallest number that requires n iterations of the map k -> k - floor(sqrt(k)) to reach 0. - Jon E. Schoenfield, Jun 24 2023
a(n) agrees with the lower matching number of the (n + 1) X (n + 1) black bishop graph from n = 1 up to at least n = 14. - Eric W. Weisstein, Dec 23 2024
For n > 0, obtain a positive integer a(n+1) recursively from a(n) by minimizing a(n+1) > a(n) so that each gap between a(k) and a(k+1) for 1 <= k <= n is used at most twice. - Gerold Jäger, Jun 04 2025
From Roger Ford, May 19 2025: (Start)
a(n) = the number of different total arch lengths for the top arches of semi-meanders with n+2 arches.
Example: Each arch length equals 1 + the number of covered arches.
For semi-meanders with 5 top arches there are 3 different values.
/\
//\\ /\ /\
///\\\ //\\ /\ / \
////\\\\ /\ ///\\\ //\\ //\/\\ /\ /\
Total arch lengths: 4+3+2+1 +1= 11 3+2+1 2+1= 9 3+1+1 +1 +1= 7, so a(3) = 3.
For semi-meanders with 6 top arches there are 5 values: 8, 10, 12, 14, 16, so a(4) = 5. (End)

Examples

			First 4 rows can be taken to be 1,2,5,10,17,...; 3,4,6,11,18,...; 7,8,9,12,19,...; 13,14,15,16,20,...
Ulam square spiral = 7 8 9 / 6 1 2 / 5 4 3 /...; changes of direction (right-angle) at 1 2 3 5 7 ...
From _Joerg Arndt_, May 10 2013: (Start)
The a(7)=13 unimodal compositions of 7 with maximal part <= 2 are
  01:  [ 1 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 1 2 ]
  03:  [ 1 1 1 1 2 1 ]
  04:  [ 1 1 1 2 1 1 ]
  05:  [ 1 1 1 2 2 ]
  06:  [ 1 1 2 1 1 1 ]
  07:  [ 1 1 2 2 1 ]
  08:  [ 1 2 1 1 1 1 ]
  09:  [ 1 2 2 1 1 ]
  10:  [ 1 2 2 2 ]
  11:  [ 2 1 1 1 1 1 ]
  12:  [ 2 2 1 1 1 ]
  13:  [ 2 2 2 1 ]
(End)
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 13*x^7 + 17*x^8 + ...
		

Crossrefs

Equals A002620 + 1.
Cf. A002878, A004652, A002984, A083479, A080037 (complement, except 2).
A002522 lists the even-indexed terms of this sequence.

Programs

  • Haskell
    a033638 = (+ 1) . (`div` 4) . (^ 2)  -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [n^2 div 4 + 1: n in [0.. 50]]; // Vincenzo Librandi, Jul 31 2016
    
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=6..62); # Zerinvary Lajos, Mar 09 2007
    A033638 := proc(n)
            1+floor(n^2/4) ;
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    a[n_] := a[n] = 2*a[n - 1] - 2*a[n - 3] + a[n - 4]; a[0] = a[1] = 1; a[2] = 2; a[3] = 3; Array[a, 54, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 2, 3}, 60] (* Robert G. Wilson v, Sep 16 2012 *)
  • PARI
    {a(n) = n^2\4 + 1} /* Michael Somos, Apr 03 2007 */
    
  • Python
    def A033638(n): return (n**2>>2)+1 # Chai Wah Wu, Jul 27 2022

Formula

a(n) = ceiling((n^2+3)/4) = ( (7 + (-1)^n)/2 + n^2 )/4.
a(n) = A001055(prime^n), number of factorizations. - Reinhard Zumkeller, Dec 29 2001
G.f.: (1-x+x^3)/((1-x)^2*(1-x^2)); a(n) = a(n-1) + a(n-2) - a(n-3) + 1. - Jon Perry, Jul 07 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
a(0) = 1; a(1) = 1; for n > 1 a(n) = a(n-1) + round(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
a(n) = floor((n^2)/4) + 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3. - Philippe Deléham, Nov 03 2008
a(0) = a(1) = 1, a(n) = a(n-1) + ceiling(sqrt(a(n-2))) for n > 1. - Jonathan Vos Post, Oct 08 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 1. - Richard R. Forberg, Jun 08 2013
a(n) = a(n-1) + floor(n/2). - Michel Lagneau, Jul 11 2014
From Ilya Gutkovskiy, Oct 07 2016: (Start)
E.g.f.: (exp(-x) + (7 + 2*x + 2*x^2)*exp(x))/8.
a(n) = Sum_{k=0..n} A123108(k).
Convolution of A008619 and A179184. (End)
a(n) = (n^2 - n + 4)/2 - a(n-1) for n >= 1. - Kritsada Moomuang, Aug 03 2019

A003293 Number of planar partitions of n decreasing across rows.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
Offset: 0

Views

Author

Keywords

Comments

Also number of planar partitions monotonically decreasing down antidiagonals (i.e., with b(n,k) <= b(n-1,k+1)). Transpose (to get planar partitions decreasing down columns), then take the conjugate of each row. - Franklin T. Adams-Watters, May 15 2006
Also number of partitions into one kind of 1's and 2's, two kinds of 3's and 4's, three kinds of 5's and 6's, etc. - Joerg Arndt, May 01 2013
Also count of semistandard Young tableaux with sum of entries equal to n (row sums of A228125). - Wouter Meeussen, Aug 11 2013

Examples

			From _Gus Wiseman_, Jan 17 2019: (Start)
The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows):
  6   51   42   411   33   321   3111   222   2211   21111   111111
.
  5   4   41   31   32   311   22   221   2111
  1   2   1    2    1    1     11   1     1
.
  3
  2
  1
(End)
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n,2)=0,n,n+1)/2): seq(a(n), n=0..45);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]] (* Jean-François Alcover, Apr 18 2011, after Michael Somos *)
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */

Formula

G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015

Extensions

More terms from James Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000

A309049 Number T(n,k) of (binary) max-heaps on n elements from the set {0,1} containing exactly k 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 4, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 4, 7, 8, 7, 5, 2, 1, 1, 1, 5, 10, 12, 11, 8, 5, 2, 1, 1, 1, 5, 11, 16, 17, 13, 9, 5, 2, 1, 1, 1, 6, 15, 23, 27, 24, 16, 10, 5, 2, 1, 1, 1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the number T(n,k) of (binary) min-heaps on n elements from the set {0,1} containing exactly k 1's.
The sequence of column k satisfies a linear recurrence with constant coefficients of order A063915(k).

Examples

			T(6,0) = 1: 111111.
T(6,1) = 3: 111011, 111101, 111110.
T(6,2) = 4: 110110, 111001, 111010, 111100.
T(6,3) = 4: 101001, 110010, 110100, 111000.
T(6,4) = 2: 101000, 110000.
T(6,5) = 1: 100000.
T(6,6) = 1: 000000.
T(7,4) = T(7,7-3) = A000108(3) = 5: 1010001, 1010010, 1100100, 1101000, 1110000.
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  1,  1;
  1, 2,  2,  1,  1;
  1, 3,  3,  2,  1,  1;
  1, 3,  4,  4,  2,  1,  1;
  1, 4,  6,  6,  5,  2,  1,  1;
  1, 4,  7,  8,  7,  5,  2,  1,  1;
  1, 5, 10, 12, 11,  8,  5,  2,  1, 1;
  1, 5, 11, 16, 17, 13,  9,  5,  2, 1, 1;
  1, 6, 15, 23, 27, 24, 16, 10,  5, 2, 1, 1;
  1, 6, 16, 27, 34, 34, 27, 18, 11, 5, 2, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000012, A110654, A114220 (for n>0), A326504, A326505, A326506, A326507, A326508, A326509, A326510, A326511.
Row sums give A091980(n+1).
T(2n,n) gives A309050.
Rows reversed converge to A000108.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*b[n - 1 - f]]][Min[g - 1, n - g/2]]][2^Floor[Log[2, n]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A309051(n).
Sum_{k=0..n} (n-k) * T(n,k) = A309052(n).
Sum_{k=0..2^n-1} T(2^n-1,k) = A003095(n+1).
Sum_{k=0..2^n-1} (2^n-1-k) * T(2^n-1,k) = A024358(n).
Sum_{k=0..n} (T(n,k) - T(n-1,k)) = A168542(n).
T(m,m-n) = A000108(n) for m >= 2^n-1 = A000225(n).
T(2^n-1,k) = A202019(n+1,k+1).

A110660 Oblong (promic) numbers repeated.

Original entry on oeis.org

0, 0, 2, 2, 6, 6, 12, 12, 20, 20, 30, 30, 42, 42, 56, 56, 72, 72, 90, 90, 110, 110, 132, 132, 156, 156, 182, 182, 210, 210, 240, 240, 272, 272, 306, 306, 342, 342, 380, 380, 420, 420, 462, 462, 506, 506, 552, 552, 600, 600, 650, 650, 702, 702, 756, 756, 812, 812
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 05 2005

Keywords

Comments

a(floor(n/2)) = A002378(n).
Sum of the even numbers among the smallest parts in the partitions of 2n into two parts (see example). - Wesley Ivan Hurt, Jul 25 2014
For n > 0, a(n-1) is the sum of the smallest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 06 2017

Examples

			a(4) = 6; The partitions of 2*4 = 8 into two parts are: (7,1), (6,2), (5,3), (4,4). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
a(5) = 6; The partitions of 2*5 = 10 into two parts are: (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
		

Crossrefs

Cf. A109613.
Partial sums give A006584.

Programs

Formula

a(n) = floor(n/2) * (floor(n/2)+1).
a(n) = A028242(n) * A110654(n).
a(n) = A008805(n-2)*2, with A008805(-2) = A008805(-1) = 0.
From Wesley Ivan Hurt, Jul 25 2014: (Start)
G.f.: 2*x^2/((1-x)^3*(1+x)^2);
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), for n > 4;
a(n) = (2*n^2 + 2*n - 1 + (2*n + 1)*(-1)^n)/8. (End)
a(n) = Sum_{i=1..n; i even} i. - Olivier Pirson, Nov 05 2017

Extensions

Typo in description (Name) fixed by Harvey P. Dale, Jul 09 2021

A198442 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).

Original entry on oeis.org

0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1

Views

Author

Paul Weisenhorn, Oct 25 2011

Keywords

Comments

If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,0) Kain wins.
Abel(n) = A002620(n-1) = (2*n*(n - 2) + 1 - (-1)^n)/8.
Kain(n) = A004526(n-1) = floor((n - 1)/2).
Win probability for Abel = sum(Abel(n)/2^n) = 2/3.
Win probability for Kain = sum(Kain(n)/2^n) = 1/3.
Mean length of the game = sum(n*a(n)/2^n) = 16/3.
Essentially the same as A035106. - R. J. Mathar, Oct 27 2011
The sequence 2*a(n) is denoted as chi(n) by McKee (1994) and is the degree of the division polynomial f_n as a polynomial in x. He notes that "If x is given weight 1, a is given weight 2, and b is given weight 3, then all the terms in f_n(a, b, x) have weight chi(n)". - Michael Somos, Jan 09 2015
In Duistermaat (2010), at the end of section 11.2 The Elliptic Billiard, on page 492 the number of k-periodic fibers counted with multiplicities of the QRT root is given by equation (11.2.8) as "1/4 k^2 + 3{k/2}(1 - {k/2}) - 1 = n^2 - 1 when k = 2n, n^2 + n when k = 2n+1, for every integer k." - Michael Somos, Mar 14 2023

Examples

			For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and
  (0,0,0,1,0,0), (0,1,0,1,0,0) for Kain.
G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
		

References

  • J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
  • A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Programs

  • Magma
    [(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
    
  • Maple
    for n from 1 by 2 to 99 do
      a(n):=(n^2-1)/4:
      a(n+1):=(n+1)^2/4-1:
    end do:
    seq(a(n),n=1..100);
  • Mathematica
    a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
    
  • PARI
    {a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
    
  • Perl
    sub a {
        my ($t, $n) = (0, shift);
        for (0..((1<<$n)-1)) {
            my $str = substr unpack("B32", pack("N", $_)), -$n;
            $t++ if ($str =~ /1.0$/ and not $str =~ /1.0./);
        }
        return $t
    } # Charles R Greathouse IV, Oct 26 2011
    
  • Sage
    def A198442():
        yield 0
        x, y = 0, 2
        while True:
           yield x
           x, y = x + y, x//y + 1
    a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015

Formula

a(n) = (2*n^2 - 5 - 3*(-1)^n)/8.
a(2*n) = n^2 - 1; a(2*n+1) = n*(n + 1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) with n>=4.
G.f.: x^3*(2 - x)/((1 + x)*(1 - x)^3). - R. J. Mathar, Oct 27 2011
a(n) = a(-n) for all n in Z. a(0) = -1. - Michael Somos, Jan 09 2015
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-1 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 09 2015
1 = a(n) - a(n+1) - a(n+2) + a(n+3), 2 = a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Jan 09 2015
a(n) = A002620(n+2) - A052928(n+2) for n >= 1. (Note A265611(n) = A002620(n+1) + A052928(n+1) for n >= 1.) - Peter Luschny, Dec 22 2015
a(n+1) = A110654(n)^2 + A110654(n)*(2 - (n mod 2)), n >= 0. - Fred Daniel Kline, Jun 08 2016
a(n) = A004526(n)*A004526(n+3). - Fred Daniel Kline, Aug 04 2016
a(n) = floor((n^2 - 1)/4). - Bruno Berselli, Mar 15 2021

Extensions

a(12) inserted by Charles R Greathouse IV, Oct 26 2011
Previous Showing 11-20 of 73 results. Next