A002620 Quarter-squares: a(n) = floor(n/2)*ceiling(n/2). Equivalently, a(n) = floor(n^2/4).
0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380, 400, 420, 441, 462, 484, 506, 529, 552, 576, 600, 625, 650, 676, 702, 729, 756, 784, 812
Offset: 0
Examples
a(3) = 2, floor(3/2)*ceiling(3/2) = 2. [ n] a(n) --------- [ 2] 1 [ 3] 2 [ 4] 1 + 3 [ 5] 2 + 4 [ 6] 1 + 3 + 5 [ 7] 2 + 4 + 6 [ 8] 1 + 3 + 5 + 7 [ 9] 2 + 4 + 6 + 8 From _Wolfdieter Lang_, Dec 09 2014: (Start) Tiling of a triangular shape T_N, N >= 1 with rectangles: N=5, n=6: a(6) = 9 because all the rectangles (i, j) (modulo transposition, i.e., interchange of i and j) which are of use are: (5, 1) ; (1, 1) (4, 2), (4, 1) ; (2, 2), (2, 1) ; (3, 3), (3, 2), (3, 1) That is (1+1) + (2+2) + 3 = 9 = a(6). Partial sums of 1, 1, 2, 2, 3, ... (A004526). (End) Bisymmetric matrices B: 2 X 2, a(3) = 2 from B[1,1] and B[1,2]. 3 X 3, a(4) = 4 from B[1,1], B[1,2], B[1,3], and B[2,2]. - _Wolfdieter Lang_, Jul 07 2015 From _John M. Campbell_, Jan 29 2016: (Start) Letting n=5, there are a(n)=a(5)=6 partitions of 2n+1=11 of length three with exactly two even entries: (8,2,1) |- 2n+1 (7,2,2) |- 2n+1 (6,4,1) |- 2n+1 (6,3,2) |- 2n+1 (5,4,2) |- 2n+1 (4,4,3) |- 2n+1 (End) From _Aaron Khan_, Jul 13 2022: (Start) Examples of the sequence when used for rooks on a chessboard: . A solution illustrating a(5)=4: +---------+ | B B . . | | B B . . | | . . W W | | . . W W | +---------+ . A solution illustrating a(6)=6: +-----------+ | B B . . . | | B B . . . | | B B . . . | | . . W W W | | . . W W W | +-----------+ (End)
References
- Sergei Abramovich, Combinatorics of the Triangle Inequality: From Straws to Experimental Mathematics for Teachers, Spreadsheets in Education (eJSiE), Vol. 9, Issue 1, Article 1, 2016. See Fig. 3.
- G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
- Michael Doob, The Canadian Mathematical Olympiad -- L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society -- Société Mathématique du Canada, Problème 9, 1970, pp 22-23, 1993.
- H. J. Finck, On the chromatic numbers of a graph and its complement. Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York (1968), 99-113.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 99.
- D. E. Knuth, The art of programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 36 of section 1.2.4.
- J. Nelder, Critical sets in Latin squares, CSIRO Division of Math. and Stats. Newsletter, Vol. 38 (1977), p. 4.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..10000
- Akbar Ali, A survey of antiregular graphs, Contrib. Math. 1 (2020), 67-79.
- Suayb S. Arslan, Asymptotically MDS Array BP-XOR Codes, arXiv:1709.07949 [cs.IT], 2017.
- Nicolay Avilov, Illustration of the sequence.
- J. A. Bate and G. H. J. van Rees, The Size of the Smallest Strong Critical Set in a Latin Square, Ars Combinatoria, Vol. 53 (1999) 73-83.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS, Vol. 13 (2010), Article 10.3.5, Lemma 6 first line.
- Allan Bickle, Nordhaus-Gaddum Theorems for k-Decompositions, Congr. Num., Vol. 211 (2012), pp. 171-183.
- Allan Bickle, Extremal Decompositions for Nordhaus-Gaddum Theorems, Discrete Math, 346 7 (2023), 113392.
- G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, Vol. 10 (1962), pp. 55-69, 103. [Annotated scanned copy] See Table 4, row 3.
- Washington G. Bomfim, Illustration of the bracelets with 8 beads, 2 of which are red, 1 of which is blue.
- Henry Bottomley, Illustration of initial terms.
- J. Brandts and C. Cihangir, Counting triangles that share their vertices with the unit n-cube, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth. Jan Brandts, Sergey Korotov, et al., eds., Institute of Mathematics AS CR, Prague 2013.
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- P. J. Cameron, BCC Problem List, Problem BCC15.15 (DM285), Discrete Math., Vol. 167/168 (1997), pp. 605-615.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seq., Vol. 3 (2000), Article 00.1.5.
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- H. de Alba, W. Carballosa, J. Leaños, and L. M. Rivera, Independence and matching numbers of some token graphs Australas. J. Combin. 76(3) (2020), 387-403.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Bakir Farhi, On the Representation of the Natural Numbers as the Sum of Three Terms of the Sequence floor(n^2/a), Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.4.
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., Vol. 26 (1955), pp. 301-312.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., Vol. 26 (1955), pp. 301-312. [Annotated scanned copy]
- A. Ganesan, Automorphism groups of graphs, arXiv preprint arXiv:1206.6279 [cs.DM], 2012. - From _N. J. A. Sloane_, Dec 17 2012
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- J. W. L. Glaisher and G. Carey Foster, The Method of Quarter Squares, Journal of the Institute of Actuaries, Vol. 28, No. 3, January, 1890, pp. 227-235.
- E. Gottlieb and M. Sheard, An Erdős-Szekeres result for set partitions, Slides from a talk, Nov 14 2014. [A006260 is a typo for A002620]
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968
- Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute (Massachusetts, 2019).
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024). See Corollary 2.5 page 11.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 36.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 105
- O. A. Ivanov, On the number of regions into which n straight lines divide the plane, Amer. Math. Monthly, 117 (2010), 881-888. See Th. 4.
- T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, Vol. 107 (Aug. 2000), pp. 634-639.
- Paloma Jiménez-Sepúlveda and Luis Manuel Rivera, Independence numbers of some double vertex graphs and pair graphs, arXiv:1810.06354 [math.CO], 2018.
- V. Jovovic, Vladeta Jovovic, Number of binary matrices.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seq., Vol. 7 (2004), Article 04.1.6.
- Jukka Kohonen, Counting graded lattices of rank three that have few coatoms, arXiv:1804.03679 [math.CO], 2018.
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
- W. Lanssens, B. Demoen and P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- W. Mantel and W. A. Wythoff, Vraagstuk XXVIII, Wiskundige Opgaven, Vol. 10 (1907), pp. 60-61.
- Rene Marczinzik, Finitistic Auslander algebras, arXiv:1701.00972 [math.RT], 2017 [Page 9, Conjecture].
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche, Vol. 76, No. 1 (2021), pp. 277-310, see page 282.
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 11.
- Kival Ngaokrajang, Illustration of twin hearts patterns (6c4c): T, U, V.
- E. A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math. Monthly, Vol. 63 (1956), pp. 175-177.
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv:0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=2]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009;
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- N. Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets
- N. Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, No. 1 (2002), pp. 73-100.
- Denis Roegel, A reconstruction of Blater's table of quarter-squares (1887), Locomat Project, 6 November 2013.
- J. Scholes, 27th Putnam 1966 Prob. A1.
- N. J. A. Sloane, Classic Sequences.
- Sam E. Speed, The Integer Sequence A002620 and Upper Antagonistic Functions, Journal of Integer Sequences, Vol. 6 (2003), Article 03.1.4.
- K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051v3 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Black Bishop Graph.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Eric Weisstein's World of Mathematics, Lower Matching Number.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, Triangular Honeycomb Rook Graph.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
- Wikipedia, Bisymmetric Matrix.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
- Index entries for "core" sequences.
Crossrefs
A087811 is another version of this sequence.
Cf. A024206, A072280, A002984, A007590, A000212, A118015, A056827, A118013, A128174, A000601, A115514, A189151, A063657, A171608, A005044, A030179, A275437, A004526.
Antidiagonal sums of array A003983.
Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A184535 (= R_n(2,5) = R_n(3,5)).
Programs
-
GAP
# using the formula by Paul Barry A002620 := List([1..10^4], n-> (2*n^2 - 1 + (-1)^n)/8); # Muniru A Asiru, Feb 01 2018
-
Haskell
a002620 = (`div` 4) . (^ 2) -- Reinhard Zumkeller, Feb 24 2012
-
Magma
[ Floor(n/2)*Ceiling(n/2) : n in [0..40]];
-
Maple
A002620 := n->floor(n^2/4); G002620 := series(x^2/((1-x)^2*(1-x^2)),x,60); with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card
=1)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=0..57) ; # Zerinvary Lajos, Mar 09 2007 -
Mathematica
Table[Ceiling[n/2] Floor[n/2], {n, 0, 56}] (* Robert G. Wilson v, Jun 18 2005 *) LinearRecurrence[{2, 0, -2, 1}, {0, 0, 1, 2}, 60] (* Harvey P. Dale, Oct 05 2012 *) Table[Floor[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Sep 11 2018 *) Floor[Range[0, 20]^2/4] (* Eric W. Weisstein, Sep 11 2018 *) CoefficientList[Series[-(x^2/((-1 + x)^3 (1 + x))), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *) Table[Floor[n^2/2]/2, {n, 0, 56}] (* Clark Kimberling, Dec 05 2021 *)
-
Maxima
makelist(floor(n^2/4),n,0,50); /* Martin Ettl, Oct 17 2012 */
-
PARI
a(n)=n^2\4
-
PARI
(t(n)=n*(n+1)/2);for(i=1,50,print1(",",(-1)^i*sum(k=1,i,(-1)^k*t(k))))
-
PARI
a(n)=n^2>>2 \\ Charles R Greathouse IV, Nov 11 2009
-
PARI
x='x+O('x^100); concat([0, 0], Vec(x^2/((1-x)^2*(1-x^2)))) \\ Altug Alkan, Oct 15 2015
-
Python
def A002620(n): return (n**2)>>2 # Chai Wah Wu, Jul 07 2022
-
Sage
def A002620(): x, y = 0, 1 yield x while true: yield x x, y = x + y, x//y + 1 a = A002620(); print([next(a) for i in range(58)]) # Peter Luschny, Dec 17 2015
Formula
a(n) = (2*n^2-1+(-1)^n)/8. - Paul Barry, May 27 2003
G.f.: x^2/((1-x)^2*(1-x^2)) = x^2 / ( (1+x)*(1-x)^3 ). - Simon Plouffe in his 1992 dissertation, leading zeros dropped
E.g.f.: exp(x)*(2*x^2+2*x-1)/8 + exp(-x)/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Jaume Oliver Lafont, Dec 05 2008
a(-n) = a(n) for all n in Z.
a(n) = a(n-1) + floor(n/2), n > 0. Partial sums of A004526. - Adam Kertesz, Sep 20 2000
a(n) = a(n-1) + a(n-2) - a(n-3) + 1 [with a(-1) = a(0) = a(1) = 0], a(2k) = k^2, a(2k-1) = k(k-1). - Henry Bottomley, Mar 08 2000
0*0, 0*1, 1*1, 1*2, 2*2, 2*3, 3*3, 3*4, ... with an obvious pattern.
a(n) = Sum_{k=1..n} floor(k/2). - Yong Kong (ykong(AT)curagen.com), Mar 10 2001
a(n) = n*floor((n-1)/2) - floor((n-1)/2)*(floor((n-1)/2)+ 1); a(n) = a(n-2) + n-2 with a(1) = 0, a(2) = 0. - Santi Spadaro, Jul 13 2001
Also: a(n) = binomial(n, 2) - a(n-1) = A000217(n-1) - a(n-1) with a(0) = 0. - Labos Elemer, Apr 26 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k, 2). - Paul Barry, Jul 01 2003
a(n) = (-1)^n * partial sum of alternating triangular numbers. - Jon Perry, Dec 30 2003
a(n) = A024206(n+1) - n. - Philippe Deléham, Feb 27 2004
a(n) = a(n-2) + n - 1, n > 1. - Paul Barry, Jul 14 2004
a(n+1) = Sum_{i=0..n} min(i, n-i). - Marc LeBrun, Feb 15 2005
a(n+1) = Sum_{k = 0..floor((n-1)/2)} n-2k; a(n+1) = Sum_{k=0..n} k*(1-(-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = A108561(n+1,n-2) for n > 2. - Reinhard Zumkeller, Jun 10 2005
1 + 1/(1 + 2/(1 + 4/(1 + 6/(1 + 9/(1 + 12/(1 + 16/(1 + ...))))))) = 6/(Pi^2 - 6) = 1.550546096730... - Philippe Deléham, Jun 20 2005
a(n) = Sum_{k=0..n} Min_{k, n-k}, sums of rows of the triangle in A004197. - Reinhard Zumkeller, Jul 27 2005
For n > 2 a(n) = a(n-1) + ceiling(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
Sequence starting (2, 2, 4, 6, 9, ...) = A128174 (as an infinite lower triangular matrix) * vector [1, 2, 3, ...]; where A128174 = (1; 0,1; 1,0,1; 0,1,0,1; ...). - Gary W. Adamson, Jul 27 2007
a(n) = Sum_{i=k..n} P(i, k) where P(i, k) is the number of partitions of i into k parts. - Thomas Wieder, Sep 01 2007
a(n) = sum of row (n-2) of triangle A115514. - Gary W. Adamson, Oct 25 2007
For n > 1: gcd(a(n+1), a(n)) = a(n+1) - a(n). - Reinhard Zumkeller, Apr 06 2008
a(n+3) = a(n) + A000027(n) + A008619(n+1) = a(n) + A001651(n+1) with a(1) = 0, a(2) = 0, a(3) = 1. - Yosu Yurramendi, Aug 10 2008
a(n+1) = a(n) + A110654(n). - Reinhard Zumkeller, Aug 06 2009
a(n-1) = (n*n - 2*n + n mod 2)/4. - Ctibor O. Zizka, Nov 23 2009
a(n) = round((2*n^2-1)/8) = round(n^2/4) = ceiling((n^2-1)/4). - Mircea Merca, Nov 29 2010
n*a(n+2) = 2*a(n+1) + (n+2)*a(n). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n+1) = (n*(2+n) + n mod 2)/4. - Fred Daniel Kline, Sep 11 2011
a(n) = A199332(n, floor((n+1)/2)). - Reinhard Zumkeller, Nov 23 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 0. - Richard R. Forberg, Jun 08 2013
a(n) = Sum_{i=1..floor((n+1)/2)} (n+1)-2i. - Wesley Ivan Hurt, Jun 09 2013
a(n) = floor((n+2)/2 - 1)*(floor((n+2)/2)-1 + (n+2) mod 2). - Wesley Ivan Hurt, Jun 09 2013
Sum_{n>=2} 1/a(n) = 1 + zeta(2) = 1+A013661. - Enrique Pérez Herrero, Jun 30 2013
Empirical: a(n-1) = floor(n/(e^(4/n)-1)). - Richard R. Forberg, Jul 24 2013
a(n) = A007590(n)/2. - Wesley Ivan Hurt, Mar 08 2014
A240025(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
0 = a(n)*a(n+2) + a(n+1)*(-2*a(n+2) + a(n+3)) for all integers n. - Michael Somos, Nov 22 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n-1)/2). - Wesley Ivan Hurt, Mar 12 2015
a(4n+1) = A002943(n) for all n>=0. - M. F. Hasler, Oct 11 2015
a(n+2)-a(n-2) = A004275(n+1). - Anton Zakharov, May 11 2017
a(n) = floor(n/2)*floor((n+1)/2). - Bruno Berselli, Jun 08 2017
a(n) = a(n-3) + floor(3*n/2) - 2. - Yuchun Ji, Aug 14 2020
a(n)+a(n+1) = A000217(n). - R. J. Mathar, Mar 13 2021
a(n) = A004247(n,floor(n/2)). - Logan Pipes, Jul 08 2021
a(n) = floor(n^2/2)/2. - Clark Kimberling, Dec 05 2021
Sum_{n>=2} (-1)^n/a(n) = Pi^2/6 - 1. - Amiram Eldar, Mar 10 2022
Comments