A155719
Triangle t(n,m)=A039757(n,m)+A039757(n,n-m) read by rows.
Original entry on oeis.org
2, 0, 0, 4, -8, 4, -14, 14, 14, -14, 106, -192, 172, -192, 106, -944, 1664, -720, -720, 1664, -944, 10396, -19560, 12644, -6960, 12644, -19560, 10396, -135134, 264158, -176358, 47334, 47334, -176358, 264158, -135134, 2027026, -4098304, 2925880
Offset: 0
2;
0, 0;
4, -8, 4;
-14, 14, 14, -14;
106, -192, 172, -192, 106;
-944, 1664, -720, -720, 1664, -944;
10396, -19560, 12644, -6960, 12644, -19560, 10396;
-135134, 264158, -176358, 47334, 47334, -176358, 264158, -135134;
2027026, -4098304, 2925880, -1062656, 416108, -1062656, 2925880, -4098304, 2027026;
-34459424, 71697024, -53806368, 20516768, -3948000, -3948000, 20516768, -53806368, 71697024, -34459424;
-
Clear[p, x, n, b, a, b0];
p[x_, n_] := Product[x - (2*i + 1), {i, 0, Floor[n/2]}];
Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}];
Flatten[%]
A000165
Double factorial of even numbers: (2n)!! = 2^n*n!.
Original entry on oeis.org
1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0
The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
0 1 2 3 4
0 3 2 1 4
1 0 2 4 3
1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- CombOS - Combinatorial Object Server, Generate colored permutations
- R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015.
- Colin Defant, Rupert Li, James Propp, and Benjamin Young, Tilings of Benzels via the Abacus Bijection, arXiv preprint, arXiv:2209.05717 [math.CO], 2022.
- Eric S. Egge, Restricted symmetric permutations, Ann. Combin., 11 (2007), 405-434.
- Peter C. Fishburn, Signed Orders, Choice Probabilities and Linear Polytopes, Journal of Mathematical Psychology, Volume 45, Issue 1, (2001), pp. 53-80.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- G. Gordon, The answer is 2^n*n! What is the question?, Amer. Math. Monthly, 106 (1999), 636-645.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Hamed Hatami and Pooya Hatami, Perfect dominating sets in the Cartesian products of prime cycles, arXiv:math/0701018 [math.CO], 2006-2009.
- Jason D. Hildebrand, Differentiating Arctan(x)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 136
- E. Lappo and N. A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
- Eugene McDonnell, Magic Squares and Permutations, APL Quote Quad 7.3 (Fall 1976).
- B. E. Meserve, Double Factorials, American Mathematical Monthly, 55 (1948), 425-426.
- G. A. Miller, Groups formed by special matrices, Bull. Amer. Math. Soc. 24 (1918), 203-206.
- R. Ondrejka, Tables of double factorials, Math. Comp., 24 (1970), 231.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Eric Weisstein's World of Mathematics, Double Factorial
- Eric Weisstein's World of Mathematics, Graph Automorphism
- Eric Weisstein's World of Mathematics, Ladder Rung Graph
- Index to divisibility sequences
- Index entries for sequences related to factorial numbers
This sequence gives the row sums in
A060187, and (-1)^n*a(n) the alternating row sums in
A039757.
-
a000165 n = product [2, 4 .. 2 * n] -- Reinhard Zumkeller, Mar 28 2015
-
[2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
-
I:=[2,8]; [1] cat [n le 2 select I[n] else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
-
A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
-
Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
(2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
-
a(n)=n!<Charles R Greathouse IV, Feb 11 2011
-
{a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
-
from math import factorial
def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
-
[2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024
A047999
Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0
Triangle begins:
1,
1,1,
1,0,1,
1,1,1,1,
1,0,0,0,1,
1,1,0,0,1,1,
1,0,1,0,1,0,1,
1,1,1,1,1,1,1,1,
1,0,0,0,0,0,0,0,1,
1,1,0,0,0,0,0,0,1,1,
1,0,1,0,0,0,0,0,1,0,1,
1,1,1,1,0,0,0,0,1,1,1,1,
1,0,0,0,1,0,0,0,1,0,0,0,1,
...
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
- John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
- H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10584 [First 144 rows, flattened; first 50 rows from T. D. Noe].
- J.-P. Allouche and V. Berthe, Triangle de Pascal, complexité et automates, Bulletin of the Belgian Mathematical Society Simon Stevin 4.1 (1997): 1-24.
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Discrete Appl. Math. 66 (1996), 1-22.
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
- J. Baer, Explore patterns in Pascal's Triangle
- Valentin Bakoev, Fast Bitwise Implementation of the Algebraic Normal Form Transform, Serdica J. of Computing 11 (2017), No 1, 45-57.
- Valentin Bakoev, Properties and links concerning M_n
- Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
- Thomas Baruchel, A non-symmetric divide-and-conquer recursive formula for the convolution of polynomials and power series, arXiv:1912.00452 [math.NT], 2019.
- A. Bogomolny, Dot Patterns and Sierpinski Gasket
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, 2014.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 9.
- S. Butkevich, Pascal Triangle Applet
- David Callan, Sierpinski's triangle and the Prouhet-Thue-Morse word, arXiv:math/0610932 [math.CO], 2006.
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part I
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part II
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, arXiv:1411.1334 [math.NT], 2014; Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- Brady Haran, Chaos Game, Numberphile video, YouTube (April 27, 2017).
- I. Kobayashi et al., Pascal's Triangle
- Dr. Math, Regular polygon formulas [Broken link?]
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
- National Curve Bank, Sierpinski Triangles
- Hieu D. Nguyen, A Digital Binomial Theorem, arXiv:1412.3181 [math.NT], 2014.
- S. Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- F. Richman, Javascript for computing Pascal's triangle modulo n. Go to this page, then under "Modern Algebra and Other Things", click "Pascal's triangle modulo n".
- Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29. Also arXiv:1011.6083, 2010.
- N. J. A. Sloane, Illustration of rows 0 to 32 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 64 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 128 (encoignure style)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, Sierpiński Sieve, Rule 60, Rule 102
- Index entries for sequences related to cellular automata
- Index entries for triangles and arrays related to Pascal's triangle
- Index entries for sequences generated by sieves
Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2),
A083093 (m = 3),
A034931 (m = 4),
A095140 (m = 5),
A095141 (m = 6),
A095142 (m = 7),
A034930(m = 8),
A095143 (m = 9),
A008975 (m = 10),
A095144 (m = 11),
A095145 (m = 12),
A275198 (m = 14),
A034932 (m = 16).
Cf.
A007318,
A054431,
A001317,
A008292,
A083093,
A034931,
A034930,
A008975,
A034932,
A166360,
A249133,
A064194,
A227133.
A106344 is a skew version of this triangle.
Triangle sums (see the comments):
A001316 (Row1; Related to Row2),
A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23),
A007306 (Kn3, Kn4),
A060632 (Fi1, Fi2),
A120562 (Ca1, Ca2),
A112970 (Gi1, Gi2),
A127830 (Ze3, Ze4). (End)
-
import Data.Bits (xor)
a047999 :: Int -> Int -> Int
a047999 n k = a047999_tabl !! n !! k
a047999_row n = a047999_tabl !! n
a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
-
A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
[A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
-
# Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
ST:=[1,1,1]; a:=1; b:=2; M:=10;
for n from 2 to M do ST:=[op(ST),1];
for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
ST:=[op(ST),1];
a:=a+n; b:=a+n; od:
ST; # N. J. A. Sloane
# alternative
A047999 := proc(n,k)
modp(binomial(n,k),2) ;
end proc:
seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
-
Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0];
Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
-
\\ Recurrence for Pascal's triangle mod p, here p = 2.
p = 2; s=13; T=matrix(s,s); T[1,1]=1;
for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
-
A011371(n)=my(s);while(n>>=1,s+=n);s
T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
-
T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
-
def A047999_T(n,k):
return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
Comments