cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A155719 Triangle t(n,m)=A039757(n,m)+A039757(n,n-m) read by rows.

Original entry on oeis.org

2, 0, 0, 4, -8, 4, -14, 14, 14, -14, 106, -192, 172, -192, 106, -944, 1664, -720, -720, 1664, -944, 10396, -19560, 12644, -6960, 12644, -19560, 10396, -135134, 264158, -176358, 47334, 47334, -176358, 264158, -135134, 2027026, -4098304, 2925880
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2009

Keywords

Comments

Row sums are zero if n>0.
Building the symmetric form A(n,m)+A(n,n-m) as here is equivalent to tabulation of the coefficients of a polynomial p_n(x) of order n associated with A(.,.) plus its reverse: t(n,m) = [x^m] ( p_n(x)+x^n*p_n(1/x)), here with p_n(x)=product(x-(2i-1)). Note that the product of the polynomial p_n(x) = sum_{m>=0} A(n,m)*x^m and the polynomial p'n(x)= sum{m>=0} A(n,n-m)*x^m is given in terms of (terminating) generating function by a convolution, related to the reversal of the sense of the second index in the A(n,m). So the fact that one can obtain A(n,n-m) by using the reverse polynomial p'_n(x) = x^n/p_n(x) is by no means special to this sequence here. The consequence that A(n,m)+A(n,n-m) defines a left-right symmetric row is then obvious.

Examples

			2;
0, 0;
4, -8, 4;
-14, 14, 14, -14;
106, -192, 172, -192, 106;
-944, 1664, -720, -720, 1664, -944;
10396, -19560, 12644, -6960, 12644, -19560, 10396;
-135134, 264158, -176358, 47334, 47334, -176358, 264158, -135134;
2027026, -4098304, 2925880, -1062656, 416108, -1062656, 2925880, -4098304, 2027026;
-34459424, 71697024, -53806368, 20516768, -3948000, -3948000, 20516768, -53806368, 71697024, -34459424;
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, b, a, b0];
    p[x_, n_] := Product[x - (2*i + 1), {i, 0, Floor[n/2]}];
    Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}];
    Flatten[%]

A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.

Original entry on oeis.org

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the size of the automorphism group of the graph (edge graph) of the n-dimensional hypercube and also of the geometric automorphism group of the hypercube (the two groups are isomorphic). This group is an extension of an elementary Abelian group (C_2)^n by S_n. (C_2 is the cyclic group with two elements and S_n is the symmetric group.) - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001
Then a(n) appears in the power series: sqrt(1+sin(y)) = Sum_{n>=0} (-1)^floor(n/2)*y^(n)/a(n) and sqrt((1+cos(y))/2) = Sum_{n>=0} (-1)^n*y^(2n)/a(2n). - Benoit Cloitre, Feb 02 2002
Appears to be the BinomialMean transform of A001907. See A075271. - John W. Layman, Sep 28 2002
Number of n X n monomial matrices with entries 0, +-1.
Also number of linear signed orders.
Define a "downgrade" to be the permutation d which places the items of a permutation p in descending order. This note concerns those permutations that are equal to their double-downgrades. The number of permutations of order 2n having this property are equinumerous with those of order 2n+1. a(n) = number of double-downgrading permutations of order 2n and 2n+1. - Eugene McDonnell (eemcd(AT)mac.com), Oct 27 2003
a(n) = (Integral_{x=0..Pi/2} cos(x)^(2*n+1) dx) where the denominators are b(n) = (2*n)!/(n!*2^n). - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
1 + (1/2)x - (1/8)x^2 - (1/48)x^3 + (1/384)x^4 + ... = sqrt(1+sin(x)).
a(n)*(-1)^n = coefficient of the leading term of the (n+1)-th derivative of arctan(x), see Hildebrand link. - Reinhard Zumkeller, Jan 14 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is j for iDavid Callan, Sep 25 2006
a(n) is the number of increasing plane trees with n+1 edges. (In a plane tree, each subtree of the root is an ordered tree but the subtrees of the root may be cyclically rotated.) Increasing means the vertices are labeled 0,1,2,...,n+1 and each child has a greater label than its parent. Cf. A001147 for increasing ordered trees, A000142 for increasing unordered trees and A000111 for increasing 0-1-2 trees. - David Callan, Dec 22 2006
Hamed Hatami and Pooya Hatami prove that this is an upper bound on the cardinality of any minimal dominating set in C_{2n+1}^n, the Cartesian product of n copies of the cycle of size 2n+1, where 2n+1 is a prime. - Jonathan Vos Post, Jan 03 2007
This sequence and (1,-2,0,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n,n+1,n+1} such that between the two occurrences of i, there is exactly one entry >i, for i=1,2,...,n. Example: a(2) = 8 counts 121323, 131232, 213123, 231213, 232131, 312132, 321312, 323121. Proof: There is always exactly one entry between the two 1s (when n>=1). Given a permutation p in A(n) (counted by a(n)), record the position i of the first 1, then delete both 1s and subtract 1 from every entry to get a permutation q in A(n-1). The mapping p -> (i,q) is a bijection from A(n) to the Cartesian product [1,2n] X A(n-1). - David Callan, Nov 29 2007
Row sums of A028338. - Paul Barry, Feb 07 2009
a(n) is the number of ways to seat n married couples in a row so that everyone is next to their spouse. Compare A007060. - Geoffrey Critzer, Mar 29 2009
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 2, 8, 48, ...) dot (1, -3, 5, -7, 9, ...).
Example: a(4) = 384 = (1, 1, 2, 8, 48) dot (1, -3, 5, -7, 9) = (1, -3, 10, -56, 432). (End)
exp(x/2) = Sum_{n>=0} x^n/a(n). - Jaume Oliver Lafont, Sep 07 2009
Assuming n starts at 0, a(n) appears to be the number of Gray codes on n bits. It certainly is the number of Gray codes on n bits isomorphic to the canonical one. Proof: There are 2^n different starting positions for each code. Also, each code has a particular pattern of bit positions that are flipped (for instance, 1 2 1 3 1 2 1 for n=3), and these bit position patterns can be permuted in n! ways. - D. J. Schreffler (ds1404(AT)txstate.edu), Jul 18 2010
E.g.f. of 0,1,2,8,... is x/(1-2x/(2-2x/(3-8x/(4-8x/(5-18x/(6-18x/(7-... (continued fraction). - Paul Barry, Jan 17 2011
Number of increasing 2-colored trees with choice of two colors for each edge. In general, if we replace 2 with k we get the number of increasing k-colored trees. For example, for k=3 we get the triple factorial numbers. - Wenjin Woan, May 31 2011
a(n) = row sums of triangle A193229. - Gary W. Adamson, Jul 18 2011
Also the number of permutations of 2n (or of 2n+1) that are equal to their reverse-complements. (See the Egge reference.) Note that the double-downgrade described in the preceding comment (McDonnell) is equivalent to the reverse-complement. - Justin M. Troyka, Aug 11 2011
The e.g.f. can be used to form a generator, [1/(1-2x)] d/dx, for A000108, so a(n) can be applied to A145271 to generate the Catalan numbers. - Tom Copeland, Oct 01 2011
The e.g.f. of 1/a(n) is BesselI(0,sqrt(2*x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
a(n) = order of the largest imprimitive group of degree 2n with n systems of imprimitivity (see [Miller], p. 203). - L. Edson Jeffery, Feb 05 2012
Row sums of triangle A208057. - Gary W. Adamson, Feb 22 2012
a(n) is the number of ways to designate a subset of elements in each n-permutation. a(n) = A000142(n) + A001563(n) + A001804(n) + A001805(n) + A001806(n) + A001807(n) + A035038(n) * n!. - Geoffrey Critzer, Nov 08 2012
For n>1, a(n) is the order of the Coxeter groups (also called Weyl groups) of types B_n and C_n. - Tom Edgar, Nov 05 2013
For m>0, k*a(m-1) is the m-th cumulant of the chi-squared probability distribution for k degrees of freedom. - Stanislav Sykora, Jun 27 2014
a(n) with 0 prepended is the binomial transform of A120765. - Vladimir Reshetnikov, Oct 28 2015
Exponential self-convolution of A001147. - Vladimir Reshetnikov, Oct 08 2016
Also the order of the automorphism group of the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
a(n) is the order of the group O_n(Z) = {A in M_n(Z): A*A^T = I_n}, the group of n X n orthogonal matrices over the integers. - Jianing Song, Mar 29 2021
a(n) is the number of ways to tile a (3n,3n)-benzel or a (3n+1,3n+2)-benzel using left stones and two kinds of bones; see Defant et al., below. - James Propp, Jul 22 2023
a(n) is the number of labeled histories for a labeled topology with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
  0 1 2 3 4
  0 3 2 1 4
  1 0 2 4 3
  1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142 (n!), A001147 ((2n-1)!!), A032184 (2^n*(n-1)!).
This sequence gives the row sums in A060187, and (-1)^n*a(n) the alternating row sums in A039757.
Also row sums in A028338.
Column k=2 of A329070.

Programs

  • Haskell
    a000165 n = product [2, 4 .. 2 * n]  -- Reinhard Zumkeller, Mar 28 2015
    
  • Magma
    [2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
    
  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n]  else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
    G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
    A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
  • Mathematica
    Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
    RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=n!<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
    
  • Python
    from math import factorial
    def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
    
  • SageMath
    [2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024

Formula

E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025

A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Restored the alternative spelling of Sierpinski to facilitate searching for this triangle using regular-expression matching commands in ASCII. - N. J. A. Sloane, Jan 18 2016
Also triangle giving successive states of cellular automaton generated by "Rule 60" and "Rule 102". - Hans Havermann, May 26 2002
Also triangle formed by reading triangle of Eulerian numbers (A008292) mod 2. - Philippe Deléham, Oct 02 2003
Self-inverse when regarded as an infinite lower triangular matrix over GF(2).
Start with [1], repeatedly apply the map 0 -> [00/00], 1 -> [10/11] [Allouche and Berthe]
Also triangle formed by reading triangles A011117, A028338, A039757, A059438, A085881, A086646, A086872, A087903, A104219 mod 2. - Philippe Deléham, Jun 18 2005
J. H. Conway writes (in Math Forum): at least the first 31 rows give odd-sided constructible polygons (sides 1, 3, 5, 15, 17, ... see A001317). The 1's form a Sierpiński sieve. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005
When regarded as an infinite lower triangular matrix, its inverse is a (-1,0,1)-matrix with zeros undisturbed and the nonzero entries in every column form the Prouhet-Thue-Morse sequence (1,-1,-1,1,-1,1,1,-1,...) A010060 (up to relabeling). - David Callan, Oct 27 2006
Triangle read by rows: antidiagonals of an array formed by successive iterates of running sums mod 2, beginning with (1, 1, 1, ...). - Gary W. Adamson, Jul 10 2008
T(n,k) = A057427(A143333(n,k)). - Reinhard Zumkeller, Oct 24 2010
The triangle sums, see A180662 for their definitions, link Sierpiński’s triangle A047999 with seven sequences, see the crossrefs. The Kn1y(n) and Kn2y(n), y >= 1, triangle sums lead to the Sierpiński-Stern triangle A191372. - Johannes W. Meijer, Jun 05 2011
Used to compute the total Steifel-Whitney cohomology class of the Real Projective space. This was an essential component of the proof that there are no product operations without zero divisors on R^n for n not equal to 1, 2, 4 or 8 (real numbers, complex numbers, quaternions, Cayley numbers), proved by Bott and Milnor. - Marcus Jaiclin, Feb 07 2012
T(n,k) = A134636(n,k) mod 2. - Reinhard Zumkeller, Nov 23 2012
T(n,k) = 1 - A219463(n,k), 0 <= k <= n. - Reinhard Zumkeller, Nov 30 2012
From Vladimir Shevelev, Dec 31 2013: (Start)
Also table of coefficients of polynomials s_n(x) of degree n which are defined by formula s_n(x) = Sum_{i=0..n} (binomial(n,i) mod 2)*x^k. These polynomials we naturally call Sierpiński's polynomials. They also are defined by the recursion: s_0(x)=1, s_(2*n+1)(x) = (x+1)*s_n(x^2), n>=0, and s_(2*n)(x) = s_n(x^2), n>=1.
Note that: s_n(1) = A001316(n),
s_n(2) = A001317(n),
s_n(3) = A100307(n),
s_n(4) = A001317(2*n),
s_n(5) = A100308(n),
s_n(6) = A100309(n),
s_n(7) = A100310(n),
s_n(8) = A100311(n),
s_n(9) = A100307(2*n),
s_n(10) = A006943(n),
s_n(16) = A001317(4*n),
s_n(25) = A100308(2*n), etc.
The equality s_n(10) = A006943(n) means that sequence A047999 is obtained from A006943 by the separation by commas of the digits of its terms. (End)
Comment from N. J. A. Sloane, Jan 18 2016: (Start)
Take a diamond-shaped region with edge length n from the top of the triangle, and rotate it by 45 degrees to get a square S_n. Here is S_6:
[1, 1, 1, 1, 1, 1]
[1, 0, 1, 0, 1, 0]
[1, 1, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0]
[1, 1, 1, 1, 0, 0]
[1, 0, 1, 0, 0, 0].
Then (i) S_n contains no square (parallel to the axes) with all four corners equal to 1 (cf. A227133); (ii) S_n can be constructed by using the greedy algorithm with the constraint that there is no square with that property; and (iii) S_n contains A064194(n) 1's. Thus A064194(n) is a lower bound on A227133(n). (End)
See A123098 for a multiplicative encoding of the rows, i.e., product of the primes selected by nonzero terms; e.g., 1 0 1 => 2^1 * 3^0 * 5^1. - M. F. Hasler, Sep 18 2016
From Valentin Bakoev, Jul 11 2020: (Start)
The Sierpinski's triangle with 2^n rows is a part of a lower triangular matrix M_n of dimension 2^n X 2^n. M_n is a block matrix defined recursively: M_1= [1, 0], [1, 1], and for n>1, M_n = [M_(n-1), O_(n-1)], [M_(n-1), M_(n-1)], where M_(n-1) is a block matrix of the same type, but of dimension 2^(n-1) X 2^(n-1), and O_(n-1) is the zero matrix of dimension 2^(n-1) X 2^(n-1). Here is how M_1, M_2 and M_3 look like:
1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 - It is seen the self-similarity of the
1 0 1 0 1 0 1 0 0 0 0 0 matrices M_1, M_2, ..., M_n, ...,
1 1 1 1 1 1 1 1 0 0 0 0 analogously to the Sierpinski's fractal.
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
M_n can also be defined as M_n = M_1 X M_(n-1) where X denotes the Kronecker product. M_n is an important matrix in coding theory, cryptography, Boolean algebra, monotone Boolean functions, etc. It is a transformation matrix used in computing the algebraic normal form of Boolean functions. Some properties and links concerning M_n can be seen in LINKS. (End)
Sierpinski's gasket has fractal (Hausdorff) dimension log(A000217(2))/log(2) = log(3)/log(2) = 1.58496... (and cf. A020857). This gasket is the first of a family of gaskets formed by taking the Pascal triangle (A007318) mod j, j >= 2 (see CROSSREFS). For prime j, the dimension of the gasket is log(A000217(j))/log(j) = log(j(j + 1)/2)/log(j) (see Reiter and Bondarenko references). - Richard L. Ollerton, Dec 14 2021

Examples

			Triangle begins:
              1,
             1,1,
            1,0,1,
           1,1,1,1,
          1,0,0,0,1,
         1,1,0,0,1,1,
        1,0,1,0,1,0,1,
       1,1,1,1,1,1,1,1,
      1,0,0,0,0,0,0,0,1,
     1,1,0,0,0,0,0,0,1,1,
    1,0,1,0,0,0,0,0,1,0,1,
   1,1,1,1,0,0,0,0,1,1,1,1,
  1,0,0,0,1,0,0,0,1,0,0,0,1,
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
  • John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
  • H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Other versions: A090971, A038183.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Triangle sums (see the comments): A001316 (Row1; Related to Row2), A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A007306 (Kn3, Kn4), A060632 (Fi1, Fi2), A120562 (Ca1, Ca2), A112970 (Gi1, Gi2), A127830 (Ze3, Ze4). (End)

Programs

  • Haskell
    import Data.Bits (xor)
    a047999 :: Int -> Int -> Int
    a047999 n k = a047999_tabl !! n !! k
    a047999_row n = a047999_tabl !! n
    a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
    
  • Magma
    A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
    [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
  • Maple
    # Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
    ST:=[1,1,1]; a:=1; b:=2; M:=10;
    for n from 2 to M do ST:=[op(ST),1];
    for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
    ST:=[op(ST),1];
    a:=a+n; b:=a+n; od:
    ST; # N. J. A. Sloane
    # alternative
    A047999 := proc(n,k)
        modp(binomial(n,k),2) ;
    end proc:
    seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
  • Mathematica
    Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
    rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
    Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
    A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0];
    Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
  • PARI
    \\ Recurrence for Pascal's triangle mod p, here p = 2.
    p = 2; s=13; T=matrix(s,s); T[1,1]=1;
    for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
    for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
    
  • PARI
    A011371(n)=my(s);while(n>>=1,s+=n);s
    T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
    
  • Python
    def A047999_T(n,k):
        return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
    

Formula

Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)

Extensions

Additional links from Lekraj Beedassy, Jan 22 2004

A039755 Triangle of B-analogs of Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 40, 58, 16, 1, 1, 121, 330, 170, 25, 1, 1, 364, 1771, 1520, 395, 36, 1, 1, 1093, 9219, 12411, 5075, 791, 49, 1, 1, 3280, 47188, 96096, 58086, 13776, 1428, 64, 1, 1, 9841, 239220, 719860, 618870, 209622, 32340, 2388, 81, 1, 1
Offset: 0

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Comments

Let M be an infinite lower triangular bidiagonal matrix with (1,3,5,7,...) in the main diagonal and (1,1,1,...) in the subdiagonal. n-th row = M^n * [1,0,0,0,...]. - Gary W. Adamson, Apr 13 2009
From Peter Bala, Aug 08 2011: (Start)
A type B_n set partition is a partition P of the set {1, 2, ..., n, -1, -2, ..., -n} such that for any block B of P, -B is also a block of P, and there is at most one block, called a zero-block, satisfying B = -B. We call (B, -B) a block pair of P if B is not a zero-block. Then T(n,k) is the number of type B_n set partitions with k block pairs. See [Wang].
For example, T(2,1) = 4 since the B_2 set partitions with 1 block pair are {1,2}{-1,-2}, {1,-2}{-1,2}, {1,-1}{2}{-2} and {2,-2}{1}{-1} (the last two partitions contain a zero block).
(End)
Exponential Riordan array [exp(x), (1/2)*(exp(2*x) - 1)]. Triangle of connection constants for expressing the monomial polynomials x^n as a linear combination of the basis polynomials (x-1)*(x-3)*...*(x-(2*k-1)) of A039757. An example is given below. Inverse array is A039757. Equals matrix product A008277 * A122848. - Peter Bala, Jun 23 2014
T(n, k) also gives the (dimensionless) volume of the multichoose(k+1, n-k) = binomial(n, k) polytopes of dimension n-k with side lengths from the set {1, 3, ..., 1+2*k}. See the column g.f.s and the complete homogeneous symmetric function formula for T(n, k) below. - Wolfdieter Lang, May 26 2017
T(n, k) is the number of k-dimensional subspaces (i.e., sets of fixed points like rotation axes and symmetry planes) of the n-cube. See "Sets of fixed points..." in LINKS section. - Tilman Piesk, Oct 26 2019

Examples

			Triangle T(n,k) begins:
  n\k 0     1       2        3       4       5      6     7    8   9 10 ...
  0:  1
  1:  1     1
  2:  1     4       1
  3:  1    13       9        1
  4:  1    40      58       16       1
  5:  1   121     330      170      25       1
  6:  1   364    1771     1520     395      36      1
  7:  1  1093    9219    12411    5075     791     49     1
  8:  1  3280   47188    96096   58086   13776   1428    64    1
  9:  1  9841  239220   719860  618870  209622  32340  2388   81   1
 10:  1 29524 1205941  5278240 6289690 2924712 630042 68160 3765 100  1
 ... reformatted and extended by _Wolfdieter Lang_, May 26 2017
The sequence of row polynomials of A214406 begins [1, 1+x, 1+8*x+3*x^2, ...]. The o.g.f.'s for the diagonals of this triangle thus begin
1/(1-x) = 1 + x + x^2 + x^3 + ...
(1+x)/(1-x)^3 = 1 + 4*x + 9*x^2 + 16*x^3 + ...
(1+8*x+3*x^2)/(1-x)^5 = 1 + 13*x + 58*x^2 + 170*x^3 + ... . - _Peter Bala_, Jul 20 2012
Connection constants: x^3 = 1 + 13*(x-1) + 9*(x-1)*(x-3) + (x-1)*(x-3)*(x-5). Hence row 3 = [1,13,9,1]. - _Peter Bala_, Jun 23 2014
Complete homogeneous symmetric functions: T(3, 1) = h^{(2)}_2 = 1^2 + 3^2 + 1^1*3^1 = 13. The three 2D polytopes are two squares and a rectangle. T(3, 2) = h^{(3)}_1 = 1^1 + 3^1 + 5^1 = 9. The 1D polytopes are three lines. - _Wolfdieter Lang_, May 26 2017
T(4, 3) = 16 is the number of 3-dimensional subspaces (mirror hyperplanes) of the 4-cube. (These are 4 cubes and 12 cuboids.) See "Sets of fixed points..." in LINKS section. - _Tilman Piesk_, Oct 26 2019
		

Crossrefs

Programs

  • Magma
    [[(&+[(-1)^(k-j)*(2*j+1)^n*Binomial(k, j): j in [0..k]])/( 2^k*Factorial(k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 14 2019
    
  • Maple
    A039755 := proc(n,k) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1)+(2*k+1)*procname(n-1,k) ; end if; end proc:
    seq(seq(A039755(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Oct 30 2009
  • Mathematica
    t[n_, k_] = Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[1 ;; 56]]
    (* Jean-François Alcover, Jun 09 2011, after Peter Bala *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp(x+y/2*(exp(2*x+x*O(x^n))-1)),n),k))
    
  • Sage
    [[sum((-1)^(k-j)*(2*j+1)^n*binomial(k, j) for j in (0..k))/( 2^k*factorial(k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 14 2019

Formula

E.g.f. row polynomials: exp(x + y/2 * (exp(2*x) - 1)).
T(n,k) = T(n-1,k-1) + (2*k+1)*T(n-1,k) with T(0,k) = 1 if k=0 and 0 otherwise. Sum_{k=0..n} T(n,k) = A007405(n). - R. J. Mathar, Oct 30 2009; corrected by Joshua Swanson, Feb 14 2019
T(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2*j+1)^n.
T(n,k) = (1/(2^k*k!)) * A145901(n,k). - Peter Bala
The row polynomials R(n,x) satisfy the Dobinski-type identity:
R(n,x) = exp(-x/2)*Sum_{k >= 0} (2*k+1)^n*(x/2)^k/k!, as well as the recurrence equation R(n+1,x) = (1+x)*R(n,x)+2*x*R'(n,x). The polynomial R(n,x) has all real zeros (apply [Liu et al., Theorem 1.1] with f(x) = R(n,x) and g(x) = R'(n,x)). The polynomials R(n,2*x) are the row polynomials of A154537. - Peter Bala, Oct 28 2011
Let f(x) = exp((1/2)*exp(2*x)+x). Then the row polynomials R(n,x) are given by R(n,exp(2*x)) = (1/f(x))*(d/dx)^n(f(x)). Similar formulas hold for A008277, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
From Peter Bala, Jul 20 2012: (Start)
The o.g.f. for the n-th diagonal (with interpolated zeros) is the rational function D^n(x), where D is the operator x/(1-x^2)*d/dx. For example, D^3(x) = x*(1+8*x^2+3*x^4)/(1-x^2)^5 = x + 13*x^3 + 58*x^5 + 170*x^7 + ... . See A214406 for further details.
An alternative formula for the o.g.f. of the n-th diagonal is exp(-x/2)*(Sum_{k >= 0} (2*k+1)^(k+n-1)*(x/2*exp(-x))^k/k!).
(End)
From Tom Copeland, Dec 31 2015: (Start)
T(n,m) = Sum_{i=0..n-m} 2^(n-m-i)*binomial(n,i)*St2(n-i,m), where St2(n,k) are the Stirling numbers of the second kind, A048993 (also A008277). See p. 755 of Dolgachev and Lunts.
The relation of this entry's e.g.f. above to that of the Bell polynomials, Bell_n(y), of A048993 establishes this formula from a binomial transform of the normalized Bell polynomials, NB_n(y) = 2^n Bell_n(y/2); that is, e^x exp[(y/2)(e^(2x)-1)] = e^x exp[x*2*Bell.(y/2)] = exp[x(1+NB.(y))] = exp(x*P.(y)), so the row polynomials of this entry are given by P_n(y) = [1+NB.(y)]^n = Sum_{k=0..n} C(n,k) NB_k(y) = Sum_{k=0..n} 2^k C(n,k) Bell_k(y/2).
The umbral compositional inverses of the Bell polynomials are the falling factorials Fct_n(y) = y! / (y-n)!; i.e., Bell_n(Fct.(y)) = y^n = Fct_n(Bell.(y)). Since P_n(y) = [1+2Bell.(y/2)]^n, the umbral inverses are determined by [1 + 2 Bell.[ 2 Fct.[(y-1)/2] / 2 ] ]^n = [1 + 2 Bell.[ Fct.[(y-1)/2] ] ]^n = [1+y-1]^n = y^n. Therefore, the umbral inverse sequence of this entry's row polynomials is the sequence IP_n( y) = 2^n Fct_n[(y-1)/2] = (y-1)(y-3) .. (y-2n+1) with IP_0(y) = 1 and, from the binomial theorem, with e.g.f. exp[x IP.(y)]= exp[ x 2Fct.[(y-1)/2] ] = (1+2x)^[(y-1)/2] = exp[ [(y-1)/2] log(1+2x) ].
(End)
Let B(n,k) = T(n,k)*((2*k)!)/(2^k*k!) and P(n,x) = Sum_{k=0..n} B(n,k)*x^(2*k+1). Then (1) P(n+1,x) = (x+x^3)*P'(n,x) for n >= 0, and (2) Sum_{n>=0} B(n,k)/(n!)*t^n = binomial(2*k,k)*exp(t)*(exp(2*t)-1)^k/4^k for k >= 0, and (3) Sum_{n>=0} t^n* P(n,x)/(n!) = x*exp(t)/sqrt(1+x^2-x^2*exp(2*t)). - Werner Schulte, Dec 12 2016
From Wolfdieter Lang, May 26 2017: (Start)
G.f. column k: x^k/Product_{j=0..k} (1 - (1+2*j)*x), k >= 0.
T(n, k) = h^{(k+1)}_{n-k}, the complete homogeneous symmetric function of degree n-k of the k+1 symbols a_j = 1 + 2*j, j = 0, 1, ..., k. (End)
With p(n, x) = Sum_{k=0..n} A001147(k) * T(n, k) * x^k for n >= 0 holds:
(1) Sum_{i=0..n} p(i, x)*p(n-i, x) = 2^n*(Sum_{k=0..n} A028246(n+1, k+1)*x^k);
(2) p(n, -1/2) = (n!) * ([t^n] sqrt(2 / (1 + exp(-2*t)))). - Werner Schulte, Feb 16 2024

A028338 Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
Offset: 0

Author

Keywords

Comments

Exponential Riordan array (1/sqrt(1-2*x), log(1/sqrt(1-2*x))). - Paul Barry, May 09 2011
The o.g.f.s D(d, x) of the column sequences, for d, d >= 0,(d=0 for the main diagonal) are P(d, x)/(1 - x)^(2*d+1), with the row polynomial P(d, x) = Sum_{m=0..d} A288875(d, m)*x^m. See A288875 for details. - Wolfdieter Lang, Jul 21 2017

Examples

			G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4.
The triangle T(n, k) begins:
n\k       0        1        2        3       4      5     6    7  8  9
0:        1
1:        1        1
2:        3        4        1
3:       15       23        9        1
4:      105      176       86       16       1
5:      945     1689      950      230      25      1
6:    10395    19524    12139     3480     505     36     1
7:   135135   264207   177331    57379   10045    973    49    1
8:  2027025  4098240  2924172  1038016  208054  24640  1708   64  1
9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81  1
...
row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1.
...  reformatted and extended. - _Wolfdieter Lang_, May 09 2017
O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - _Wolfdieter Lang_, Jul 21 2017
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - _Wolfdieter Lang_, Aug 11 2017
		

Crossrefs

A039757 is signed version.
Row sums: A000165.
Diagonals: A000012, A000290(n+1), A024196(n+1), A024197(n+1), A024198(n+1).
A161198 is a scaled triangle version and A109692 is a transposed triangle version.
Central terms: A293318.
Cf. A286718, A002208(n+1)/A002209(n+1).

Programs

  • Maple
    nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
  • Mathematica
    T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *)
    Join[{1},Flatten[Table[CoefficientList[Expand[Times@@Table[x+i,{i,1,2n+1,2}]],x],{n,0,10}]]] (* Harvey P. Dale, Jan 29 2013 *)

Formula

Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
From Wolfdieter Lang, May 09 2017: (Start)
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017

A161198 Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).

Original entry on oeis.org

1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0

Author

Johannes W. Meijer, Jun 08 2009, Jul 22 2011

Keywords

Comments

The series expansion of (1-x)^((-1-2*n)/2) = sum(b(p)*x^p, p=0..infinity) for n = 0, 1, 2, .. can be described with b(p) = (F(p,n)/ (2*n-1)!!)*(binomial(2*p,p)/4^(p)) with F(x,n) = 2^n * product( x+(2*k-1)/2, k=1..n). The roots of the F(x,n) polynomials can be found at p = (1-2*k)/2 with k from 1 to n for n = 0, 1, 2, .. . The coefficients of the F(x,n) polynomials lead to the triangle given above. The triangle row sums lead to A001147.
Quite surprisingly we discovered that sum(b(p)*x^p, p=0..infinity) = (1-x)^(-1-2*n)/2, for n = -1, -2, .. . We assume that if m = n+1 then the value returned for product(f(k), k = m..n) is 1 and if m> n+1 then 1/product(f(k), k=n+1..m-1) is the value returned. Furthermore (1-2*n)!! = (-1)^(n+1)/(2*n-3)!! for n = 1, 2, 3 .. . This leads to b(p) = ((-1-2*n)!!/ G(p,n))*(binomial(2*p,p) /4^(p)) for n = -1, -2, .. . For the G(p,n) polynomials we found that G(p,n) = F(-p,-n). The roots of the G(p,n) polynomials can be found at p=(2*k-1)/2 with k from 1 to (-n) for n = -1, -2, .. . The coefficients of the G(p,n) polynomials lead to a second triangle that stands with its head on top of the first one. It is remarkable that the row sums lead once again to A001147.
These two triangles together look like an hourglass so we propose to call the F(p,n) and the G(p,n) polynomials the hourglass polynomials.
Triangle T(n,k), read by rows, given by (1, 2, 3, 4, 5, 6, 7, 8, 9, ...) DELTA (2, 0, 2, 0, 2, 0, 2, 0, 2, ...) where DELTA is the operator defined in A084938. Philippe Deléham, May 14 2015.

Examples

			From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
  1, 2,  0,  0, 0, ...
  1, 3,  2,  0, 0, ...
  1, 4,  5,  2, 0, ...
  1, 5,  9,  7, 2, ...
  1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
  G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
  G(p,-2) = 3 - 8*p + 4*p^2
  G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
  F(p,0) = 1
  F(p,1) = 1 + 2*p
  F(p,2) = 3 + 8*p + 4*p^2
  F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
  [15, -46, 36, -8]
  [3, -8, 4]
  [1, -2]
  [1]
  [1, 2]
  [3, 8, 4]
  [15, 46, 36, 8]
		

Crossrefs

Cf. A001790 [(1-x)^(-1/2)], A001803 [(1-x)^(-3/2)], A161199 [(1-x)^(-5/2)] and A161201 [(1-x)^(-7/2)].
Cf. A002596 [(1-x)^(1/2)], A161200 [(1-x)^(3/2)] and A161202 [(1-x)^(5/2)].
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version, A039757 is a scaled signed triangle version and A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2, A028339 is the third left hand column divided by 4, A028340 is the fourth left hand column divided by 8, A028341 is the fifth left hand column divided by 16.
A000012, A000290, A024196, A024197 and A024198 are the first (n-m=0), second (n-m=1), third (n-m=2), fourth (n-m=3) and fifth (n-m=4) right hand columns divided by 2^m.
A074599 * A025549 is not always equals the second left hand column.
Cf. A029635. [Gary W. Adamson, Jul 19 2011]

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
    nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
    A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
    seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6);  # Peter Luschny, May 09 2013
  • Mathematica
    nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
  • PARI
    for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1))))  \\ M. F. Hasler, Jul 23 2011
    
  • Sage
    @CachedFunction
    def A161198(n,k):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
    for n in (0..6): [A161198(n,k) for k in (0..n)]  # Peter Luschny, May 09 2013

Formula

a(n,m) := coeff(2^(n)*product((x+(2*k-1)/2),k=1..n), x, m) for n = 0, 1, .. ; m = 0, 1, .. .
a(n, m) = 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) with a(n, n) = 2^n and a(n, 0) = (2*n-1)!!.
a(n,m) = the (m+1)-th term in the top row of M^n, where M is an infinite square production matrix; M[i,j] = A029635(i,j-1) = binomial(i, j-1) + binomial(i-1, j-2) with A029635 the (1.2)-Pascal triangle, see the examples and second Maple program. [Gary W. Adamson, Jul 19 2011]
T(n,k) = 2^k * A028338(n,k). - Philippe Deléham, May 14 2015

A293318 a(n) = (2*n)! * [x^(2*n)] (-log(sqrt(1 - 2*x)))^n/(sqrt(1 - 2*x)*n!).

Original entry on oeis.org

1, 4, 86, 3480, 208054, 16486680, 1628301884, 192666441968, 26569595376038, 4184718381424152, 741138328282003860, 145795774074768177360, 31540994233548116475196, 7442380580681963411363440, 1902155375416975061879918520, 523496081998297020687019596000
Offset: 0

Author

Ilya Gutkovskiy, Oct 06 2017

Keywords

Crossrefs

Central terms of triangles A028338, A039757 (gives absolute values) and A109692.
Cf. A265846.

Programs

  • Mathematica
    Table[(2 n)! SeriesCoefficient[(-Log[Sqrt[1 - 2 x]])^n/(Sqrt[1 - 2 x] n!), {x, 0, 2 n}], {n, 0, 15}]

Formula

a(n) ~ c * d^n * (n-1)!, where d = -16*LambertW(-1, -exp(-1/2)/2)^2 / (1 + 2*LambertW(-1, -exp(-1/2)/2)) = 19.643259858273023595... (see also A265846) and c = 1/(2*Pi*sqrt(1 + 1/LambertW(-1, -exp(-1/2)/2))) = 0.2425219128152359859... - Vaclav Kotesovec, Oct 18 2017, updated Mar 17 2024 and May 14 2025

A039758 Triangle of B-analogs of Stirling numbers of first kind.

Original entry on oeis.org

1, 1, -1, 1, -4, 3, 1, -9, 23, -15, 1, -16, 86, -176, 105, 1, -25, 230, -950, 1689, -945, 1, -36, 505, -3480, 12139, -19524, 10395, 1, -49, 973, -10045, 57379, -177331, 264207, -135135, 1, -64, 1708, -24640, 208054, -1038016, 2924172, -4098240, 2027025, 1, -81, 2796, -53676, 626934, -4574934, 20570444, -53809164, 71697105, -34459425
Offset: 0

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Comments

Triangle T(n,k), read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -2, -3, -4, -5, -6, -7, -8, ...], where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 08 2005

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  -1;
  1,  -4,   3;
  1,  -9,  23,   -15;
  1, -16,  86,  -176,   105;
  1, -25, 230,  -950,  1689,   -945;
  1, -36, 505, -3480, 12139, -19524, 10395;
... [Edited by _Petros Hadjicostas_, Jul 12 2020]
		

Crossrefs

Cf. A039757.

Programs

  • Mathematica
    a[n_, m_] := a[n, m] = a[n - 1, m - 1] - (2*n - 1)*a[n - 1, m]; a[n_, 0] := (-1)^n*(2*n - 1)!!; a[n_, n_] = 1; Table[a[n, m], {n, 0, 9}, {m, n, 0, -1}] // Flatten (* Michael De Vlieger, Dec 29 2023, after Jean-François Alcover at A039757 *)
  • PARI
    row(n)=Vec(prod(i=1, n, 'x-2*i+1)) \\ Petros Hadjicostas, Jul 12 2020

Formula

T(n,k) = A039757(n,n-k). - Petros Hadjicostas, Jul 12 2020

Extensions

More terms from Petros Hadjicostas, Jul 12 2020

A122850 Exponential Riordan array (1, sqrt(1+2x)-1).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -15, 15, -6, 1, 0, 105, -105, 45, -10, 1, 0, -945, 945, -420, 105, -15, 1, 0, 10395, -10395, 4725, -1260, 210, -21, 1, 0, -135135, 135135, -62370, 17325, -3150, 378, -28, 1, 0, 2027025, -2027025, 945945, -270270, 51975, -6930, 630, -36, 1
Offset: 0

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Inverse of number triangle A122848. Entries are Bessel polynomial coefficients. Row sums are A000806.
Also the inverse Bell transform of the sequence "g(n) = 1 if n<2 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins
  1
  0 1
  0 -1 1
  0 3 -3 1
  0 -15 15 -6 1
  0 105 -105 45 -10 1
  0 -945 945 -420 105 -15 1
  0 10395 -10395 4725 -1260 210 -21 1
  0 -135135 135135 -62370 17325 -3150 378 -28 1
  0 2027025 -2027025 945945 -270270 51975 -6930 630 -36 1
  0 -34459425 34459425 -16216200 4729725 -945945 135135 -13860 990 -45 1
  ...
		

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (-1)^n*doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[Function[n, (-1)^n (2n-1)!!], rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<2 else 0, 12).inverse() # Peter Luschny, Jan 19 2016

Formula

T(n,k) = (-1)^(n-k)*A132062(n,k). - Philippe Deléham, Nov 06 2011
Triangle equals the matrix product A039757*A008277. Dobinski-type formula for the row polynomials: R(n,x) = x*exp(-x)*Sum_{k = 0..inf} (k-1)*(k-3)*(k-5)*...*(k-(2*n-3))*x^k/k! for n >= 1. Cf. A001497. - Peter Bala, Jun 23 2014
From Peter Bala, Jan 09 2018: (Start)
Alternative Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-(2*n-2))*x^k/k!.
Equivalently, R(n,x) = x o (x-2) o (x-4) o...o (x-(2*n-2)), where o denotes the white diamond product of polynomials. See the Bala link for the definition and details.
The white diamond products (x-1) o (x-3) o...o (x-(2*n-3)) give the row polynomials of the array with a factor of x removed.
If d is the first derivative operator f -> d/dx(f(x)) and D is the operator f(x) -> 1/x*d/dx(f(x)) then x^(2*n)*D^n = R(n,x*d), with the understanding that (x*d)^k is to interpreted as the operator f(x) -> x^k*d^k(f(x))/dx^k. (End)
Sum_{k=0..n} (-1)^(n+k) * T(n,k) = A144301(n). - Alois P. Heinz, Aug 31 2022

Extensions

More terms from Alois P. Heinz, Aug 31 2022

A039762 Triangle of D-analogs of Stirling numbers of first kind.

Original entry on oeis.org

1, 0, 1, 1, -2, 1, -6, 11, -6, 1, 45, -84, 50, -12, 1, -420, 809, -520, 150, -20, 1, 4725, -9390, 6439, -2100, 355, -30, 1, -62370, 127539, -92358, 33019, -6510, 721, -42, 1, 945945, -1984584, 1505524, -578984, 127694, -16856, 1316, -56, 1, -16216200, 34812945, -27491616, 11228300, -2702448, 405174, -38304, 2220, -72, 1
Offset: 0

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
     1;
     0,   1;
     1,  -2,    1;
    -6,  11,   -6,   1;
    45, -84,   50, -12,   1;
  -420, 809, -520, 150, -20, 1;
  ...
		

Crossrefs

Cf. A039757, A039758, A039763 (transposed triangle).

Programs

  • PARI
    row(n) = if(n==0, [1], Vecrev(prod(i=1, n-1, x-2*i+1)*(x-n+1))); \\ Petros Hadjicostas, Jul 12 2020

Formula

From Petros Hadjicostas, Jul 11 2020: (Start)
T(n,k) = [x^k] (x - (n - 1)) * Product_{k=1..n-1} (x - (2*k - 1)) for n >= 1 with T(0,0) = 1. (Empty products equal 1.)
Let R(n,k) = A039757(n,k) = A039758(n,n-k). Then, for n >= 1:
T(n,0) = -(n - 1)*R(n-1,0);
T(n,k) = R(n-1,k-1) - (n - 1)*R(n-1,k) for k = 1..n-1;
T(n,n) = R(n-1, n-1) = 1.
As a result, for n >= 2, T(n,0) = (-1)^n*(n-1)*(2*n-3)!!. (End)

Extensions

More terms from Petros Hadjicostas, Jul 12 2020
Showing 1-10 of 12 results. Next