cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 436 results. Next

A028242 Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003
Number of permutations of [n+1] avoiding the patterns 123, 132 and 231 and having exactly one fixed point. Example: a(0) because we have 1; a(2)=2 because we have 213 and 321; a(3)=1 because we have 3214. - Emeric Deutsch, Nov 17 2005
The ring of invariants for the standard action of Quaternions on C^2 is generated by x^4 + y^4, x^2 * y^2, and x * y * (x^4 - y^4). - Michael Somos, Mar 14 2011
A000027 and A001477 interleaved. - Omar E. Pol, Feb 06 2012
First differences are A168361, extended by an initial -1. (Or: a(n)-a(n-1) = A168361(n+1), for all n >= 1.) - M. F. Hasler, Oct 05 2017
Also the number of unlabeled simple graphs with n + 1 vertices and exactly n endpoints (vertices of degree 1). The labeled version is A327370. - Gus Wiseman, Sep 06 2019

Examples

			G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + 4*x^9 + 6*x^10 + 5*x^11 + ...
Molien g.f. = 1 + 2*t^4 + t^6 + 3*t^8 + 2*t^10 + 4*t^12 + 3*t^14 + 5*t^16 + 4*t^18 + 6*t^20 + ...
		

References

  • D. Benson, Polynomial Invariants of Finite Groups, Cambridge, p. 23.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 15.
  • M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 97.
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 90.

Crossrefs

Cf. A000124 (a=1, a=n+a), A028242 (a=1, a=n-a).
Partial sums give A004652. A030451(n)=a(n+1), n>0.
Cf. A052938 (same sequence except no leading 1,0,2).
Column k = n - 1 of A327371.

Programs

  • GAP
    a:=[1];; for n in [2..80] do a[n]:=(n-1)-a[n-1]; od; a; # Muniru A Asiru, Dec 16 2018
    
  • Haskell
    import Data.List (transpose)
    a028242 n = n' + 1 - m where (n',m) = divMod n 2
    a028242_list = concat $ transpose [a000027_list, a001477_list]
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    &cat[ [n+1, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    series((1+x^3)/(1-x^2)^2,x,80);
    A028242:=n->floor((n+1+(-1)^n)/2): seq(A028242(n), n=0..100); # Wesley Ivan Hurt, Mar 17 2015
  • Mathematica
    Table[(1 + 2 n + 3 (-1)^n)/4, {n, 0, 74}] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 0, 2}, 75] (* or *)
    CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - x^2)), {x, 0, 74}], x] (* Michael De Vlieger, May 21 2017 *)
    Table[{n,n-1},{n,40}]//Flatten (* Harvey P. Dale, Jun 26 2017 *)
    Table[3*floor(n/2)-n+1,{n,0,40}] (* Pierre-Alain Sallard, Dec 15 2018 *)
  • PARI
    {a(n) = (n\2) - (n%2) + 1} \\ Michael Somos, Oct 02 1999
    
  • PARI
    A028242(n)=n\2+!bittest(n,0) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    s=((1+x^3)/(1-x^2)^2).series(x, 80); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018

Formula

Expansion of the Molien series for standard action of Quaternions on C^2: (1 + t^6) / (1 - t^4)^2 = (1 - t^12) / ((1 - t^4)^2 * (1 - t^6)) in powers of t^2.
Euler transform of length 6 sequence [0, 2, 1, 0, 0, -1]. - Michael Somos, Mar 14 2011
a(n) = n - a(n-1) [with a(0) = 1] = A000035(n-1) + A004526(n). - Henry Bottomley, Jul 25 2001
G.f.: (1 - x + x^2) / ((1 - x) * (1 - x^2)) = ( 1+x^2-x ) / ( (1+x)*(x-1)^2 ).
a(2*n) = n + 1, a(2*n + 1) = n, a(-1 - n) = -a(n).
a(n) = a(n - 1) + a(n - 2) - a(n - 3).
a(n) = floor(n/2) + 1 - n mod 2. a(2*k) = k+1, a(2*k+1) = k; A110657(n) = a(a(n)), A110658(n) = a(a(a(n))); a(n) = A109613(n)-A110654(n) = A110660(n)/A110654(n). - Reinhard Zumkeller, Aug 05 2005
a(n) = 2*floor(n/2) - floor((n-1)/2). - Wesley Ivan Hurt, Oct 22 2013
a(n) = floor((n+1+(-1)^n)/2). - Wesley Ivan Hurt, Mar 15 2015
a(n) = (1 + 2n + 3(-1)^n)/4. - Wesley Ivan Hurt, Mar 18 2015
a(n) = Sum_{i=1..floor(n/2)} floor(n/(n-i)) for n > 0. - Wesley Ivan Hurt, May 21 2017
a(2n) = n+1, a(2n+1) = n, for all n >= 0. - M. F. Hasler, Oct 05 2017
a(n) = 3*floor(n/2) - n + 1. - Pierre-Alain Sallard, Dec 15 2018
E.g.f.: ((2 + x)*cosh(x) + (x - 1)*sinh(x))/2. - Stefano Spezia, Aug 01 2022
Sum_{n>=2} (-1)^(n+1)/a(n) = 1. - Amiram Eldar, Oct 04 2022

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009

A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 3, 3, 5, 7, 5, 5, 5, 5, 7, 11, 7, 8, 6, 8, 7, 11, 15, 11, 11, 11, 11, 11, 11, 15, 22, 15, 17, 15, 14, 15, 17, 15, 22, 30, 22, 23, 23, 22, 22, 23, 23, 22, 30, 42, 30, 33, 30, 33, 25, 33, 30, 33, 30, 42
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   3
   5   3   3   3   5
   7   5   5   5   5   7
  11   7   8   6   8   7  11
  15  11  11  11  11  11  11  15
  22  15  17  15  14  15  17  15  22
  30  22  23  23  22  22  23  23  22  30
  42  30  33  30  33  25  33  30  33  30  42
  56  42  45  44  44  43  43  44  44  45  42  56
  77  56  62  58  62  56  53  56  62  58  62  56  77
Row n = 6 counts the following partitions:
  (6)       (51)      (42)      (33)      (42)      (51)      (6)
  (51)      (411)     (411)     (321)     (411)     (411)     (51)
  (42)      (321)     (321)     (3111)    (321)     (321)     (42)
  (411)     (3111)    (3111)    (2211)    (3111)    (3111)    (411)
  (33)      (2211)    (222)     (21111)   (222)     (2211)    (33)
  (321)     (21111)   (2211)    (111111)  (2211)    (21111)   (321)
  (3111)    (111111)  (21111)             (21111)   (111111)  (3111)
  (222)               (111111)            (111111)            (222)
  (2211)                                                      (2211)
  (21111)                                                     (21111)
  (111111)                                                    (111111)
		

Crossrefs

Columns k = 0 and k = n are A000041.
Central column n = 2k is A002219.
The complement is counted by A046663, strict A365663.
Row sums are A304792.
For subsets instead of partitions we have A365381.
The strict case is A365661.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]

A046663 Triangle: T(n,k) = number of partitions of n (>=2) with no subsum equal to k (1 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 3, 4, 4, 4, 4, 4, 4, 4, 7, 5, 7, 8, 7, 5, 7, 8, 7, 7, 8, 8, 7, 7, 8, 12, 9, 12, 9, 17, 9, 12, 9, 12, 14, 11, 12, 12, 13, 13, 12, 12, 11, 14, 21, 15, 19, 15, 21, 24, 21, 15, 19, 15, 21, 24, 19, 20, 19, 21, 22, 22, 21, 19, 20, 19, 24, 34, 23, 30, 24, 30, 25, 46, 25, 30, 24, 30, 23, 34
Offset: 2

Views

Author

Keywords

Examples

			For n = 4 there are two partitions (4, 2+2) with no subsum equal to 1, two (4, 3+1) with no subsum equal to 2 and two (4, 2+2) with no subsum equal to 3.
Triangle T(n,k) begins:
   1;
   1,  1;
   2,  2,  2;
   2,  2,  2,  2;
   4,  3,  5,  3,  4;
   4,  4,  4,  4,  4,  4;
   7,  5,  7,  8,  7,  5,  7;
   8,  7,  7,  8,  8,  7,  7,  8;
  12,  9, 12,  9, 17,  9, 12,  9, 12;
  ...
From _Gus Wiseman_, Oct 11 2023: (Start)
Row n = 8 counts the following partitions:
  (8)     (8)    (8)     (8)     (8)     (8)    (8)
  (62)    (71)   (71)    (71)    (71)    (71)   (62)
  (53)    (53)   (62)    (62)    (62)    (53)   (53)
  (44)    (44)   (611)   (611)   (611)   (44)   (44)
  (422)   (431)  (44)    (53)    (44)    (431)  (422)
  (332)          (422)   (521)   (422)          (332)
  (2222)         (2222)  (5111)  (2222)         (2222)
                         (332)
(End)
		

Crossrefs

Column k = 0 and diagonal k = n are both A002865.
Central diagonal n = 2k is A006827.
The complement with expanded domain is A365543.
The strict case is A365663, complement A365661.
Row sums are A365918, complement A304792.
For subsets instead of partitions we have A366320, complement A365381.
A000041 counts integer partitions, strict A000009.
A276024 counts distinct subset-sums of partitions.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(0 in s or n in s, 0, `if`(n=0 or s={}, g(n, i),
         `if`(i<1, 0, b(n, i-1, s)+`if`(i>n, 0, b(n-i, i,
          select(y-> 0<=y and y<=n-i, map(x-> [x, x-i][], s)))))))
        end:
    T:= (n, k)-> b(n, n, {min(k, n-k)}):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 13 2012
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0, 1, If[i > 1, g[n, i-1], 0] + If[i > n, 0, g[n-i, i]]]; b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0 || s == {}, g[n, i], If[i < 1, 0, b[n, i-1, s] + If[i > n, 0, b[n-i, i, Select[Flatten[s /. x_ :> {x, x-i}], 0 <= # <= n-i &]]]]]]; t[n_, k_] := b[n, n, {Min[k, n-k]}]; Table[t[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Aug 20 2013, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#],k]&]],{n,2,10},{k,1,n-1}] (* Gus Wiseman, Oct 11 2023 *)

Extensions

Corrected and extended by Don Reble, Nov 04 2001

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A006451 Numbers k such that k*(k+1)/2 + 1 is a square.

Original entry on oeis.org

0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
Offset: 0

Views

Author

Keywords

References

  • A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. numbers m such that k*A000217(m)+1 is a square: this sequence for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Haskell
    a006451 n = a006451_list !! n
    a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
       (zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
    -- Reinhard Zumkeller, Jan 10 2012
  • Maple
    N:= 100: # to get a(0) to a(N)
    A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
    for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
    seq(A[n],n=0..N); # Robert Israel, Aug 26 2014
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{0,2,5,15,32},30] (* Harvey P. Dale, Jul 17 2013 *)
    Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    for(n=1,10000,t=n*(n+1)/2+1;if(issquare(t), print1(n,", "))) \\ Joerg Arndt, Oct 10 2009
    

Formula

G.f.: x*(-2-3*x+2*x^2+x^3)/(x-1)/(x^2+2*x-1)/(x^2-2*x-1). Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
a(n) = 6*a(n-2) - a(n-4) + 2 with a(0)=0, a(1)=2, a(2)=5, a(3)=15. - Zak Seidov, Apr 15 2008
a(n) = 3*a(n-2) + 4*sqrt((a(n-2)^2 + a(n-2))/2 + 1) + 1 with a(0) = 0, a(1) = 2. - Raphie Frank, Feb 02 2013
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5); a(0)=0, a(1)=2, a(2)=5, a(3)=15, a(4)=32. - Harvey P. Dale, Jul 17 2013
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n+1) = A098790(2*n+1). - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n) = A098586(2*n-1), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = 8*sqrt(T(a(n-2)) + 1) + a(n-4) where T(a(n)) = A000217(a(n)), and a(-1) = -1, a(0)=0, a(1)=2, a(2)=5. - Vladimir Pletser, Apr 29 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009

A014206 a(n) = n^2 + n + 2.

Original entry on oeis.org

2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0

Views

Author

Keywords

Comments

Draw n + 1 circles in the plane; sequence gives maximal number of regions into which the plane is divided. Cf. A051890, A386480.
Number of binary (zero-one) bitonic sequences of length n + 1. - Johan Gade (jgade(AT)diku.dk), Oct 15 2003
Also the number of permutations of n + 1 which avoid the patterns 213, 312, 13452 and 34521. Example: the permutations of 4 which avoid 213, 312 (and implicitly 13452 and 34521) are 1234, 1243, 1342, 1432, 2341, 2431, 3421, 4321. - Mike Zabrocki, Jul 09 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is equal to the number of (n-3)-subsets and (n-1)-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
With a different offset, competition number of the complete tripartite graph K_{n, n, n}. [Kim, Sano] - Jonathan Vos Post, May 14 2009. Cf. A160450, A160457.
A related sequence is A241119. - Avi Friedlich, Apr 28 2015
From Avi Friedlich, Apr 28 2015: (Start)
This sequence, which also represents the number of Hamiltonian paths in K_2 X P_n (A200182), may be represented by interlacing recursive polynomials in arithmetic progression (discriminant =-63). For example:
a(3*k-3) = 9*k^2 - 15*k + 8,
a(3*k-2) = 9*k^2 - 9*k + 4,
a(3*k-1) = 9*k^2 - 3*k + 2,
a(3*k) = 3*(k+1)^2 - 1. (End)
a(n+1) is the area of a triangle with vertices at (n+3, n+4), ((n-1)*n/2, n*(n+1)/2),((n+1)^2, (n+2)^2) with n >= -1. - J. M. Bergot, Feb 02 2018
For prime p and any integer k, k^a(p-1) == k^2 (mod p^2). - Jianing Song, Apr 20 2019
From Bernard Schott, Jan 01 2021: (Start)
For n >= 1, a(n-1) is the number of solutions x in the interval 0 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(2) = 8 solutions in the interval [0, 3] are 0, 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This is a variant of the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see A002061). The interval [1, n] of the Olympiad problem becomes here [0, n], and only the new solution x = 0 is added. (End)
See A386480 for the almost identical sequence 1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, ... which is the maximum number of regions that can be formed in the plane by drawing n circles, and the maximum number of regions that can be formed on the sphere by drawing n great circles. - N. J. A. Sloane, Aug 01 2025

Examples

			a(0) = 0^2 + 0 + 2 = 2.
a(1) = 1^2 + 1 + 2 = 4.
a(2) = 2^2 + 2 + 2 = 8.
a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
		

References

  • K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
  • T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
  • Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
  • D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
  • Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.
Cf. A000124, A051890, A002522, A241119, A033547 (partial sums).
Cf. A002061 (central polygonal numbers).
Column 4 of A347570.

Programs

Formula

G.f.: 2*(x^2 - x + 1)/(1 - x)^3.
n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i = 0..k} C(n, i) regions.
a(n) = A002061(n+1) + 1 for n >= 0. - Rick L. Shepherd, May 30 2005
Equals binomial transform of [2, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 18 2008
a(n) = A003682(n+1), n > 0. - R. J. Mathar, Oct 28 2008
a(n) = a(n-1) + 2*n (with a(0) = 2). - Vincenzo Librandi, Nov 20 2010
a(0) = 2, a(1) = 4, a(2) = 8, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 14 2011
a(n + 1) = n^2 + 3*n + 4. - Alonso del Arte, Apr 12 2015
a(n) = Sum_{i=n-2..n+2} i*(i + 1)/5. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(7)/2)/sqrt(7). - Amiram Eldar, Jan 09 2021
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(11)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=0} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(sqrt(7)*Pi/2). (End)
a(n) = 2*A000124(n). - R. J. Mathar, Mar 14 2021
E.g.f.: exp(x)*(2 + 2*x + x^2). - Stefano Spezia, Apr 30 2022

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A000127 Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471, 1941, 2517, 3214, 4048, 5036, 6196, 7547, 9109, 10903, 12951, 15276, 17902, 20854, 24158, 27841, 31931, 36457, 41449, 46938, 52956, 59536, 66712, 74519, 82993, 92171, 102091, 112792, 124314, 136698
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of the first five terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 18 2009
{a(k): 1 <= k <= 5} = divisors of 16. - Reinhard Zumkeller, Jun 17 2009
Equals binomial transform of [1, 1, 1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Mar 02 2010
From Bernard Schott, Apr 05 2021: (Start)
As a(n) = 2^(n-1) for n = 1..5, it is misleading to believe that a(n) = 2^(n-1) for n > 5 (see Patrick Popescu-Pampu link); other curiosities: a(6) = 2^5 - 1 and a(10) = 2^8.
The sequence of the first differences is A000125, the sequence of the second differences is A000124, the sequence of the third differences is A000027 and the sequence of the fourth differences is the all 1's sequence A000012 (see J. H. Conway and R. K. Guy reference, p. 80). (End)
a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*. A000124 and A000125 count binary words of the form 0*1*0* and 1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(7)=99 because the first five terms in the 7th row of Pascal's triangle are 1 + 7 + 21 + 35 + 35 = 99. - _Geoffrey Critzer_, Jan 18 2009
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 31*x^6 + 57*x^7 + 99*x^8 + 163*x^9 + ...
		

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 28.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, Chap. 3.
  • J. H. Conway and R. K. Guy, Le Livre des Nombres, Eyrolles, 1998, p. 80.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 33 pp. 18; 128 Ellipses Paris 2004.
  • A. Deledicq and D. Missenard, A La Recherche des Régions Perdues, Math. & Malices, No. 22 Summer 1995 issue pp. 22-3 ACL-Editions Paris.
  • M. Gardner, Mathematical Circus, pp. 177; 180-1 Alfred A. Knopf NY 1979.
  • M. Gardner, The Colossal Book of Mathematics, 2001, p. 561.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. de Guzman, Aventures Mathématiques, Prob. B pp. 115-120 PPUR Lausanne 1990.
  • Ross Honsberger; Mathematical Gems I, Chap. 9.
  • Ross Honsberger; Mathematical Morsels, Chap. 3.
  • Jeux Mathématiques et Logiques, Vol. 3 pp. 12; 51 Prob. 14 FFJM-SERMAP Paris 1988.
  • J. N. Kapur, Reflections of a Mathematician, Chap.36, pp. 337-343, Arya Book Depot, New Delhi 1996.
  • C. D. Miller, V. E. Heeren, J. Hornsby, M. L. Morrow and J. Van Newenhizen, Mathematical Ideas, Tenth Edition, Pearson, Addison-Wesley, Boston, 2003, Cptr 1, 'The Art of Problem Solving, page 6.
  • I. Niven, Mathematics of Choice, pp. 158; 195 Prob. 40 NML 15 MAA 1965.
  • C. S. Ogilvy, Tomorrow's Math, pp. 144-6 OUP 1972.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 252-255.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 81-87.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000127 = sum . take 5 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(n^4-6*n^3+23*n^2-18*n+24)/24: n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A000127 := n->(n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24;
    with (combstruct):ZL:=[S, {S=Sequence(U, card=1)}, unlabeled]: seq(count(subs(r=6, ZL), size=m), m=0..41); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    f[n_] := Sum[Binomial[n, i], {i, 0, 4}]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Jun 29 2007 *)
    Total/@Table[Binomial[n-1,k],{n,50},{k,0,4}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,2,4,8,16},50] (* Harvey P. Dale, Aug 24 2011 *)
    Table[(n^4 - 6 n^3 + 23 n^2 - 18 n + 24) / 24, {n, 100}] (* Vincenzo Librandi, Feb 16 2015 *)
    a[ n_] := Binomial[n, 4] + Binomial[n, 2] + 1; (* Michael Somos, Dec 23 2017 *)
  • PARI
    a(n)=(n^4-6*n^3+23*n^2-18*n+24)/24 \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    {a(n) = binomial(n, 4) + binomial(n, 2) + 1}; /* Michael Somos, Dec 23 2017 */
    
  • Python
    def A000127(n): return n*(n*(n*(n - 6) + 23) - 18)//24 + 1 # Chai Wah Wu, Sep 18 2021

Formula

a(n) = C(n-1, 4) + C(n-1, 3) + ... + C(n-1, 0) = A055795(n) + 1 = C(n, 4) + C(n-1, 2) + n.
a(n) = Sum_{k=0..2} C(n, 2k). - Joel Sanderi (sanderi(AT)itstud.chalmers.se), Sep 08 2004
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24.
G.f.: (1 - 3*x + 4*x^2 - 2*x^3 + x^4)/(1-x)^5. (for offset 0) - Simon Plouffe in his 1992 dissertation
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24)*exp(x) (for offset 0). [Typos corrected by Juan M. Marquez, Jan 24 2011]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Aug 24 2011
a(n) = A000124(A000217(n-1)) - n*A000217(n-2) - A034827(n), n > 1. - Melvin Peralta, Feb 15 2016
a(n) = A223718(-n). - Michael Somos, Dec 23 2017
For n > 2, a(n) = n + 1 + sum_{i=2..(n-2)}sum_{j=1..(n-i)}(1+(i-1)(j-1)). - Alec Jones, Nov 17 2019

Extensions

Formula corrected and additional references from torsten.sillke(AT)lhsystems.com
Additional correction from Jonas Paulson (jonasso(AT)sdf.lonestar.org), Oct 30 2003

A345197 Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The matrices for n = 1..7:
  1   0 1   0 0 1   0 0 0 1   0 0 0 0 1   0 0 0 0 0 1   0 0 0 0 0 0 1
      1 0   1 1 0   1 1 1 0   1 1 1 1 0   1 1 1 1 1 0   1 1 1 1 1 1 0
            0 1 0   0 1 2 0   0 1 2 3 0   0 1 2 3 4 0   0 1 2 3 4 5 0
                    0 1 0 0   0 2 2 0 0   0 3 4 3 0 0   0 4 6 6 4 0 0
                              0 0 1 0 0   0 0 2 3 0 0   0 0 3 6 6 0 0
                                          0 0 1 0 0 0   0 0 3 3 0 0 0
                                                        0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
           i=-3:        i=-1:          i=1:            i=3:        i=5:
        -----------------------------------------------------------------
   k=1: |    0            0             0               0          (5)
   k=2: |   (14)         (23)          (32)            (41)         0
   k=3: |    0          (131)       (221)(122)   (311)(113)(212)    0
   k=4: |    0       (1211)(1112)  (2111)(1121)         0           0
   k=5: |    0            0          (11111)            0           0
		

Crossrefs

The number of nonzero terms in each matrix appears to be A000096.
The number of zeros in each matrix appears to be A000124.
Row sums and column sums both appear to be A007318 (Pascal's triangle).
The matrix sums are A131577.
Antidiagonal sums appear to be A163493.
The reverse-alternating version is also A345197 (this sequence).
Antidiagonals are A345907.
Traces are A345908.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Other tetrangles: A318393, A318816, A320808, A321912.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]

A014132 Complement of triangular numbers (A000217); also array T(n,k) = ((n+k)^2 + n-k)/2, n, k > 0, read by antidiagonals.

Original entry on oeis.org

2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Keywords

Comments

Numbers that are not triangular (nontriangular numbers).
Also definable as follows: a(1)=2; for n>1, a(n) is smallest integer greater than a(n-1) such that the condition "n and a(a(n)) have opposite parities" can always be satisfied. - Benoit Cloitre and Matthew Vandermast, Mar 10 2003
Record values in A256188 that are greater than 1. - Reinhard Zumkeller, Mar 26 2015
From Daniel Forgues, Apr 10 2015: (Start)
With n >= 1, k >= 1:
t(n+k) - k, 1 <= k <= n+k-1, n >= 1;
t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
where t(n+k) = t(n+k-1) + (n+k) is the (n+k)-th triangular number, while the number of compositions of n+k into 2 parts is C(n+k-1, 2-1) = n+k-1, the number of nontriangular numbers between t(n+k-1) and t(n+k), just right!
Related to Hilbert's Infinite Hotel:
0) All rooms, numbered through the positive integers, are full;
1) An infinite number of trains, each containing an infinite number of passengers, arrives: i.e., a 2-D lattice of pairs of positive integers;
2) Move occupant of room m, m >= 1, to room t(m) = m*(m+1)/2, where t(m) is the m-th triangular number;
3) Assign n-th passenger from k-th train to room t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
4) Everybody has his or her own room, no room is empty, for m >= 1.
If situation 1 happens again, repeat steps 2 and 3, you're back to 4.
(End)
1711 + 2*a(n)*(58 + a(n)) is prime for n<=21. The terms that do not have this property start 29,32,34,43,47,58,59,60,62,63,65,68,70,73,... - Benedict W. J. Irwin, Nov 22 2016
Also numbers k with the property that in the symmetric representation of sigma(k) both Dyck paths have a central peak or both Dyck paths have a central valley. (Cf. A237593.) - Omar E. Pol, Aug 28 2018

Examples

			From _Boris Putievskiy_, Jan 14 2013: (Start)
Start of the sequence as a table (read by antidiagonals, right to left), where the k-th row corresponds to the k-th column of the triangle (shown thereafter):
   2,  4,  7, 11, 16, 22, 29, ...
   5,  8, 12, 17, 23, 30, 38, ...
   9, 13, 18, 24, 31, 39, 48, ...
  14, 19, 25, 32, 40, 49, 59, ...
  20, 26, 33, 41, 50, 60, 71, ...
  27, 34, 42, 51, 61, 72, 84, ...
  35, 43, 52, 62, 73, 85, 98, ...
  (...)
Start of the sequence as a triangle (read by rows), where the i elements of the i-th row are t(i) + 1 up to t(i+1) - 1, i >= 1:
   2;
   4,  5;
   7,  8,  9;
  11, 12, 13, 14;
  16, 17, 18, 19, 20;
  22, 23, 24, 25, 26, 27;
  29, 30, 31, 32, 33, 34, 35;
  (...)
Row number i contains i numbers, where t(i) = i*(i+1)/2:
  t(i) + 1, t(i) + 2, ..., t(i) + i = t(i+1) - 1
(End) [Edited by _Daniel Forgues_, Apr 11 2015]
		

Crossrefs

Cf. A000124 (left edge: quasi-triangular numbers), A000096 (right edge: almost-triangular numbers), A006002 (row sums), A001105 (central terms).
Cf. A242401 (subsequence).
Cf. A145397 (the non-tetrahedral numbers).

Programs

  • Haskell
    a014132 n = n + round (sqrt $ 2 * fromInteger n)
    a014132_list = filter ((== 0) . a010054) [0..]
    -- Reinhard Zumkeller, Dec 12 2012
    
  • Magma
    IsTriangular:=func< n | exists{ k: k in [1..Isqrt(2*n)] | n eq (k*(k+1) div 2)} >; [ n: n in [1..90] | not IsTriangular(n) ]; // Klaus Brockhaus, Jan 04 2011
    
  • Mathematica
    f[n_] := n + Round[Sqrt[2n]]; Array[f, 71] (* or *)
    Complement[ Range[83], Array[ #(# + 1)/2 &, 13]] (* Robert G. Wilson v, Oct 21 2005 *)
    DeleteCases[Range[80],?(OddQ[Sqrt[8#+1]]&)] (* _Harvey P. Dale, Jul 24 2021 *)
  • PARI
    a(n)=if(n<1,0,n+(sqrtint(8*n-7)+1)\2)
    
  • PARI
    isok(n) = !ispolygonal(n,3); \\ Michel Marcus, Mar 01 2016
    
  • Python
    from math import isqrt
    def A014132(n): return n+(isqrt((n<<3)-7)+1>>1) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + round(sqrt(2*n)).
a(a(n)) = n + 2*floor(1/2 + sqrt(2n)) + 1.
a(n) = a(n-1) + A035214(n), a(1)=2.
a(n) = A080036(n) - 1.
a(n) = n + A002024(n). - Vincenzo Librandi, Jul 08 2010
A010054(a(n)) = 0. - Reinhard Zumkeller, Dec 10 2012
From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A007401(n)+1.
a(n) = A003057(n)^2 - A114327(n).
a(n) = ((t+2)^2 + i - j)/2, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)
A248952(a(n)) < 0. - Reinhard Zumkeller, Oct 20 2014
a(n) = A256188(A004202(n)). - Reinhard Zumkeller, Mar 26 2015
From Robert Israel, Apr 20 2015 (Start):
a(n) = A118011(n) - n.
G.f.: x/(1-x)^2 + x/(1-x) * Sum(j>=0, x^(j*(j+1)/2)) = x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
G.f. as array: x*y*(2 - 2*y + x^2*y + y^2 - x*(1 + y))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Apr 22 2024

Extensions

Following Alford Arnold's comment: keyword tabl and correspondent crossrefs added by Reinhard Zumkeller, Dec 12 2012
I restored the original definition. - N. J. A. Sloane, Jan 27 2019

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
Rows are palindromic.
Are there only two zeros in the whole triangle?

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  2  1  1  2
  2  1  0  1  2
  3  1  1  1  1  3
  4  2  2  1  2  2  4
  5  2  2  2  2  2  2  5
  6  3  2  3  1  3  2  3  6
  8  3  3  4  3  3  4  3  3  8
Row n = 6 counts the following strict partitions:
  (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
  (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
  (4,2)                                                 (4,2)
  (3,2,1)                                               (3,2,1)
Row n = 10 counts the following strict partitions:
  A     91    82    73    64    532   64    73    82    91    A
  64    541   532   532   541   541   541   532   532   541   64
  73    631   721   631   631   4321  631   631   721   631   73
  82    721   4321  721   4321        4321  721   4321  721   82
  91    4321        4321                    4321        4321  91
  532                                                         532
  541                                                         541
  631                                                         631
  721                                                         721
  4321                                                        4321
		

Crossrefs

Columns k = 0 and k = n are A000009.
The non-strict complement is A046663, central column A006827.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]
Previous Showing 51-60 of 436 results. Next