cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 544 results. Next

A010027 Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1

Views

Author

Keywords

Comments

A "consecutive ascending pair" in a permutation p_1, p_2, ..., p_n is a pair p_i, p_{i+1} = p_i + 1.
From Emeric Deutsch, May 15 2010: (Start)
The same triangle, but with rows indexed differently, also arises as follows: U(n,k) = number of permutations of [n] having k blocks (1 <= k <= n), where a block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.
When seen as coefficients of polynomials with decreasing exponents: evaluations are A001339 (x=2), A081923 (x=3), A081924 (x=4), A087981 (x=-1).
The sum of the entries in row n is n!.
U(n,n) = A000255(n-1) = d(n-1) + d(n), U(n,n-1)=d(n), where d(j)=A000166(j) (derangement numbers). (End)
This is essentially the reversal of the exponential Riordan array [exp(-x)/(1-x)^2,x] (cf. A123513). - Paul Barry, Jun 17 2010
U(n-1, k-2) * n*(n-1)/k = number of permutations of [n] with k elements not fixed by the permutation. - Michael Somos, Aug 19 2018

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,   3;
  1, 3,   9,  11;
  1, 4,  18,  44,   53;
  1, 5,  30, 110,  265,   309;
  1, 6,  45, 220,  795,  1854,   2119;
  1, 7,  63, 385, 1855,  6489,  14833,  16687;
  1, 8,  84, 616, 3710, 17304,  59332, 133496,  148329;
  1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
  ...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Diagonals, reading from the right-hand edge: A000255, A000166, A000274, A000313, A001260, A001261. A045943 is another diagonal.
Cf. A123513 (mirror image).
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.

Programs

  • Maple
    U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
    T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)

Formula

E.g.f.: exp(x*(y-1))/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
From Emeric Deutsch, May 15 2010: (Start)
U(n,k) = binomial(n-1,k-1)*(k-1)!*Sum_{j=0..k-1} (-1)^(k-j-1)*(j+1)/(k-j-1)! (1 <= k <= n).
U(n,k) = (k+1)!*binomial(n,k)*(1/n)*Sum_{i=0..k+1} (-1)^i/i!.
U(n,k) = (1/n)*binomial(n,k)*d(k+1), where d(j)=A000166(j) (derangement numbers). (End)

Extensions

More terms from Vladeta Jovovic, Jan 03 2003
Original definition from David, Kendall and Barton restored by N. J. A. Sloane, Apr 12 2014

A008276 Triangle of Stirling numbers of first kind, s(n, n-k+1), n >= 1, 1 <= k <= n. Also triangle T(n,k) giving coefficients in expansion of n!*binomial(x,n)/x in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -6, 11, -6, 1, -10, 35, -50, 24, 1, -15, 85, -225, 274, -120, 1, -21, 175, -735, 1624, -1764, 720, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 1, -36, 546, -4536, 22449, -67284, 118124, -109584, 40320, 1, -45
Offset: 1

Views

Author

Keywords

Comments

n-th row of the triangle = charpoly of an (n-1) X (n-1) matrix with (1,2,3,...) in the diagonal and the rest zeros. - Gary W. Adamson, Mar 19 2009
From Daniel Forgues, Jan 16 2016: (Start)
For n >= 1, the row sums [of either signed or absolute values] are
Sum_{k=1..n} T(n,k) = 0^(n-1),
Sum_{k=1..n} |T(n,k)| = T(n+1,1) = n!. (End)
The moment generating function of the probability density function p(x, m=q, n=1, mu=q) = q^q*x^(q-1)*E(x, q, 1)/(q-1)!, with q >= 1, is M(a, m=q, n=1, mu=q) = Sum_{k=0..q}(A000312(q) / A000142(q-1)) * A008276(q, k) * polylog(k, a) / a^q , see A163931 and A274181. - Johannes W. Meijer, Jun 17 2016
Triangle of coefficients of the polynomial x(x-1)(x-2)...(x-n+1), also denoted as falling factorial (x)n, expanded into decreasing powers of x. - _Ralf Stephan, Dec 11 2016

Examples

			3!*binomial(x,3) = x*(x-1)*(x-2) = x^3 - 3*x^2 + 2*x.
Triangle begins
  1;
  1,  -1;
  1,  -3,   2;
  1,  -6,  11,   -6;
  1, -10,  35,  -50,  24;
  1, -15,  85, -225, 274, -120;
...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), p. 257.

Crossrefs

See A008275 and A048994, which are the main entries for this triangle of numbers.
See A008277 triangle of Stirling numbers of the second kind, S2(n,k).

Programs

  • Haskell
    a008276 n k = a008276_tabl !! (n-1) !! (k-1)
    a008276_row n = a008276_tabl !! (n-1)
    a008276_tabl = map init $ tail a054654_tabl
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Maple
    seq(seq(coeff(expand(n!*binomial(x,n)),x,j),j=n..1,-1),n=1..15); # Robert Israel, Jan 24 2016
    A008276 := proc(n, k): combinat[stirling1](n, n-k+1) end: seq(seq(A008276(n, k), k=1..n), n=1..9); # Johannes W. Meijer, Jun 17 2016
  • Mathematica
    len = 47; m = Ceiling[Sqrt[2*len]]; t[n_, k_] = StirlingS1[n, n-k+1]; Flatten[Table[t[n, k], {n, 1, m}, {k, 1, n}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011 *)
    Flatten@Table[CoefficientList[Product[1-k x, {k, 1, n}], x], {n, 0, 8}] (* Oliver Seipel, Jun 14 2024 *)
    Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Reverse@Range[n]], {n, Range[9]}] (* Oliver Seipel, Jun 14 2024, after  Ralf Stephan *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),n-k+1))
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff(y*(1+y*x+x*O(x^n))^(1/y),n),k))
    
  • Sage
    def T(n,k): return falling_factorial(x,n).expand().coefficient(x,n-k+1) # Ralf Stephan, Dec 11 2016

Formula

n!*binomial(x, n) = Sum_{k=1..n-1} T(n, k)*x^(n-k).
|A008276(n, k)| = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]; A008276(n, k) = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, ...]. Here DELTA is the operator defined in A084938. - Philippe Deléham, Dec 30 2003
|T(n, k)| = Sum_{m=0..n} A008517(k, m+1)*binomial(n+m, 2*(k-1)), n >= k >= 1. A008517 is the second-order Eulerian triangle. See the Graham et al. reference p. 257, eq. (6.44).
A094638 formula for unsigned T(n, k).
|T(n, k)| = Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*binomial(n-1, k-1+m) if n >= k >= 1, else 0. - Wolfdieter Lang, Sep 12 2005, see A112486.
|T(n, k)| = (f(n-1, k-1)/(2*(k-1))!)* Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*f(2*(k-1), k-1-m)*f(n-k, m) if n >= k >= 1, else 0, where f(n, k) stands for the falling factorial n*(n-1)*...*(n-(k-1)) and f(n, 0):=1. - Wolfdieter Lang, Sep 12 2005, see A112486.
With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = (1-t)*(1-2*t)*...*(1-(n-1)t) and P(0,t) = 1, exp(P(.,t)*x) = (1+t*x)^(1/t) . Compare A094638. T(n,k+1) = (1/k!) (D_t)^k (D_x)^n ( (1+t*x)^(1/t) - 1 ) evaluated at t=x=0 . - Tom Copeland, Dec 09 2007
Product_{i=1..n} (x-i) = Sum_{k=0..n} T(n,k)*x^k. - Reinhard Zumkeller, Dec 29 2007
E.g.f.: Sum_{n>=0} (Sum_{k=0..n} T(n,n-k)*t^k)/n!) = Sum_{n>=0} (x)n * t^k/n! = exp(x * log(1+t)), with (x)_n the n-th falling factorial polynomial. - _Ralf Stephan, Dec 11 2016
Sum_{j=0..m} T(m, m-j)*s2(j+k+1, m) = m^k, where s2(j, m) are Stirling numbers of the second kind. - Tony Foster III, Jul 25 2019
For n>=2, Sum_{k=1..n} k*T(n,k) = (-1)^(n-1)*(n-2)!. - Zizheng Fang, Dec 27 2020

A000153 a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 7, 32, 181, 1214, 9403, 82508, 808393, 8743994, 103459471, 1328953592, 18414450877, 273749755382, 4345634192131, 73362643649444, 1312349454922513, 24796092486996338, 493435697986613143, 10315043624498196944
Offset: 0

Views

Author

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=2 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Starting (1, 2, 7, 32, ...) = inverse binomial transform of A001710 starting (1, 3, 12, 60, 360, 2520, ...). - Gary W. Adamson, Dec 25 2008
This sequence appears in Euler's analysis of the divergent series 1 - 1! + 2! - 3! + 4! ..., see Sandifer. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n+1)=:b(n), n>=1, enumerates the ways to distribute n beads labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and two indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords contribute each a factor 1 in the counting, e.g., b(0):= 1*1 = 1. See A000255 for the description of a fixed cord with beads.
This produces for b(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and {(n+1)!}={A000042(n+1)}. This follows from the general problem with only k indistinguishable, ordered, fixed cords which has e.g.f. 1/(1-x)^k, and the pure necklace problem (no necklaces with one bead allowed) with e.g.f. for the subfactorials. Therefore also the recurrence b(n) = (n+1)*b(n-1) + (n-1)*b(n-2) with b(-1)=0 and b(0)=1 holds.
This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) is a function of the subfactorials..sf... A000166(n) a(n) = (n*sf(n+1) - (n+1)*sf(n))/(2*n*(n-1)*(n+1)),n>1, with offset 1. - Gary Detlefs, Nov 06 2010
For even k the sequence a(n) (mod k) is purely periodic with exact period a divisor of k, while for odd k the sequence a(n) (mod k) is purely periodic with exact period a divisor of 2*k. See A047974. - Peter Bala, Dec 04 2017

Examples

			Necklaces and 2 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1,binomial(4,3)*sf(3)*c2(1), (binomial(4,2)*sf(2))*c2(2), and 1*c2(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c2(n):=(n+1)! numbers for the pure 2 cord problem (see the above given remark on the e.g.f. for the k cords problem; here for k=2: 1/(1-x)^2). This adds up as 9 + 4*2*2 + (6*1)*6 + 120 = 181 = b(4) = A000153(5). - _Wolfdieter Lang_, Jun 02 2010
G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 181*x^5 + 1214*x^6 + 9403*x^7 + 82508*x^8 + ...
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001710. - Gary W. Adamson, Dec 25 2008
a(n) = A086764(n + 1, 2). A000255 (necklaces with one cord). - Wolfdieter Lang, Jun 02 2010

Programs

  • Haskell
    a000153 n = a000153_list !! n
    a000153_list = 0 : 1 : zipWith (+)
       (zipWith (*) [0..] a000153_list) (zipWith (*) [2..] $ tail a000153_list)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    f:= n-> floor(((n+1)!+1)/e): g:=n-> (n*f(n+1)-(n+1)*f(n))/(2*n*(n-1)*(n+1)):seq( g(n), n=2..20); # Gary Detlefs, Nov 06 2010
    a := n -> `if`(n=0,0,hypergeom([3,-n+1],[],1))*(-1)^(n+1); seq(simplify(a(n)), n=0..20); # Peter Luschny, Sep 20 2014
    0, seq(simplify(KummerU(-n + 1, -n - 1, -1)), n = 1..20); # Peter Luschny, May 10 2022
  • Mathematica
    nn = 20; Prepend[Range[0, nn]!CoefficientList[Series[Exp[-x]/(1 - x)^3, {x, 0, nn}], x], 0]  (* Geoffrey Critzer, Oct 28 2012 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n a[n-1]+(n-2)a[n-2]},a,{n,20}] (* Harvey P. Dale, May 08 2013 *)
    a[ n_] := If[ n < 1, 0, (n - 1)! SeriesCoefficient[ Exp[ -x] / (1 - x)^3, {x, 0, n - 1}]]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 3}, {}, x / (x + 1)] x / (x + 1), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(x*serlaplace(exp(-x)/(1-x)^3)))  \\ Joerg Arndt, May 08 2013
  • Sage
    it = sloane.A000153.gen(0,1,2); [next(it) for i in range(21)] # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: ( 1 - x )^(-3)*exp(-x), for offset 1.
a(n) = round(1/2*(n^2 + 3*n + 1)*n!/exp(1))/n , n>=1. - Simon Plouffe, Mar 1993
a(n) = (1/2) * A055790(n). - Gary Detlefs, Jul 12 2010
G.f.: hypergeom([1,3],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
G.f.: (1+x)^2/(2*x*Q(0)) - 1/(2*x) - 1, where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: -1/G(0), where G(k) = 1 + 1/(1 - (1+x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
G.f.: x/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
a(n) = hypergeom([3, -n+1], [], 1)*(-1)^(n+1) for n>=1. - Peter Luschny, Sep 20 2014
a(n) = KummerU(-n + 1, -n - 1, -1) for n >= 1. - Peter Luschny, May 10 2022
a(n) = (n^2 + 3*n + 1)*Gamma(n,-1)/(2*exp(1)) + (1 + n/2)*(-1)^n for n >= 1. - Martin Clever, Apr 06 2023

A061547 Number of 132 and 213-avoiding derangements of {1,2,...,n}.

Original entry on oeis.org

1, 0, 1, 2, 6, 10, 26, 42, 106, 170, 426, 682, 1706, 2730, 6826, 10922, 27306, 43690, 109226, 174762, 436906, 699050, 1747626, 2796202, 6990506, 11184810, 27962026, 44739242, 111848106, 178956970, 447392426, 715827882, 1789569706, 2863311530, 7158278826
Offset: 0

Views

Author

Emeric Deutsch, May 16 2001

Keywords

Comments

Or, number of permutations with no fixed points avoiding 213 and 132.
Number of derangements of {1,2,...,n} having ascending runs consisting of consecutive integers. Example: a(4)=6 because we have 234/1, 34/12, 34/2/1, 4/123, 4/3/12, 4/3/2/1, the ascending runs being as indicated. - Emeric Deutsch, Dec 08 2004
Let c be twice the sequence A002450 interlaced with itself (from the second term), i.e., c = 2*(0, 1, 1, 5, 5, 21, 21, 85, 85, 341, 341, ...). Let d be powers of 4 interlaced with the zero sequence: d = (1, 0, 4, 0, 16, 0, 64, 0, 256, 0, ...). Then a(n+1) = c(n) + d(n). - Creighton Dement, May 09 2005
Inverse binomial transform of A094705 (0, 1, 4, 15). - Paul Curtz, Jun 15 2008
Equals row sums of triangle A177993. - Gary W. Adamson, May 16 2010
a(n-1) is also the number of order preserving partial isometries (of an n-chain) of fix 1 (fix of alpha equals the number of fixed points of alpha). - Abdullahi Umar, Dec 28 2010
a(n+1) <= A218553(n) is also the Moore lower bound on the order of a (5,n)-cage. - Jason Kimberley, Oct 31 2011
For n > 0, a(n) is the location of the n-th new number to make a first appearance in A087230. E.g., the 17th number to make its first appearance in A087230 is 18 and this occurs at A087230(43690) and a(17)=43690. - K D Pegrume, Jan 26 2022
Position in A002487 of 2 adjacent terms of A000045. E.g., 3/5 at 10, 5/8 at 26, 8/13 at 42, ... - Ed Pegg Jr, Dec 27 2022

Examples

			a(4)=6 because the only 132 and 213-avoiding permutations of {1,2,3,4} without fixed points are: 2341, 3412, 3421, 4123, 4312 and 4321.
		

Crossrefs

Cf. A177993. - Gary W. Adamson, May 16 2010
Cf. A183158, A183159. - Abdullahi Umar, Dec 28 2010
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), this sequence (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 31 2011

Programs

Formula

a(n) = (3/8)*2^n + (1/24)*(-2)^n - 2/3 for n>=1.
a(n) = 4*a(n-2) + 2, a(0)=1, a(1)=0, a(2)=1.
G.f: (5*z^3-3*z^2-z+1)/((z-1)*(4*z^2-1)).
a(n) = A020989((n-2)/2) for n=2, 4, 6, ... and A020988((n-3)/2) for n=3, 5, 7, ... .
a(n+1)-2*a(n) = A078008 signed. Differences: doubled A000302. - Paul Curtz, Jun 15 2008
a(2i+1) = 2*Sum_{j=0..i-1} 4^j = string "2"^i read in base 4.
a(2i+2) = 4^i + 2*Sum_{j=0..i-1} 4^j = string "1"*"2"^i read in base 4.
a(n+2) = Sum_{k=0..n} A144464(n,k)^2 = Sum_{k=0..n} A152716(n,k). - Philippe Deléham and Michel Marcus, Feb 26 2014
a(2*n-1) = A176965(2*n), a(2*n) = A176965(2*n-1) for n>0. - Yosu Yurramendi, Dec 23 2016
a(2*n-1) = A020988(k-1), a(2*n)= A020989(n-1) for n>0. - Yosu Yurramendi, Jan 03 2017
a(n+2) = 2*A086893(n), n > 0. - Yosu Yurramendi, Mar 07 2017
E.g.f.: (15 - 8*cosh(x) + 5*cosh(2*x) - 8*sinh(x) + 4*sinh(2*x))/12. - Stefano Spezia, Apr 07 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 27 2022

A000023 Expansion of e.g.f. exp(-2*x)/(1-x).

Original entry on oeis.org

1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0

Views

Author

Keywords

Comments

A010843, A000023, A000166, A000142, A000522, A010842, A053486, A053487 are successive binomial transforms with the e.g.f. exp(k*x)/(1-x) and recurrence b(n) = n*b(n-1)+k^n and are related to incomplete gamma functions at k. In this case k=-2, a(n) = n*a(n-1)+(-2)^n = Gamma(n+1,k)*exp(k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*i^(n-i)*(i+k)^i. - Vladeta Jovovic, Aug 19 2002
a(n) is the permanent of the n X n matrix with -1's on the diagonal and 1's elsewhere. - Philippe Deléham, Dec 15 2003

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000023 n = foldl g 1 [1..n]
      where g n m = n*m + (-2)^m
    -- James Spahlinger, Oct 08 2012
    
  • Maple
    a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
  • Mathematica
    FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
    With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
    
  • PARI
    my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
    
  • Python
    from sympy import exp, uppergamma
    def A000023(n):
        return exp(-2) * uppergamma(n + 1, -2)  # David Radcliffe, Aug 20 2025
  • Sage
    @CachedFunction
    def A000023(n):
        if n == 0: return 1
        return n * A000023(n-1) + (-2)**n
    [A000023(i) for i in range(23)]   # Peter Luschny, Oct 17 2012
    

Formula

a(n) = Sum_{k=0..n} A008290(n,k)*(-1)^k. - Philippe Deléham, Dec 15 2003
a(n) = Sum_{k=0..n} (-2)^(n-k)*n!/(n-k)! = Sum_{k=0..n} binomial(n, k)*k!*(-2)^(n-k). - Paul Barry, Aug 26 2004
a(n) = exp(-2)*Gamma(n+1,-2) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = b such that (-1)^n*Integral_{x=0..2} x^n*exp(x) dx = c + b*exp(2). - Francesco Daddi, Aug 01 2011
G.f.: hypergeom([1,k],[],x/(1+2*x))/(1+2*x) with k=1,2,3 is the generating function for A000023, A087981, and A052124. - Mark van Hoeij, Nov 08 2011
D-finite with recurrence: - a(n) + (n-2)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
E.g.f.: 1/E(0) where E(k) = 1 - x/(1-2/(2-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n, k)*!k, where !k is the subfactorial A000166. a(n) = (-2)^n*hypergeom([1, -n], [], 1/2). - Vladimir Reshetnikov, Oct 18 2015
For n >= 3, a(n) = r - (-1)^n mod((-1)^n r, 2^(n - floor((2/n) + log_2(n)))) where r = {n! * e^(-2) - (-2)^(n+1)/(n+1)}. - Stan Wagon, May 02 2016
0 = +a(n)*(+4*a(n+1) -2*a(n+3)) + a(n+1)*(+4*a(n+1) +3*a(n+2) -a(n+3)) +a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Nov 20 2018
a(n) = KummerU(-n, -n, -2). - Peter Luschny, May 10 2022

A000354 Expansion of e.g.f. exp(-x)/(1-2*x).

Original entry on oeis.org

1, 1, 5, 29, 233, 2329, 27949, 391285, 6260561, 112690097, 2253801941, 49583642701, 1190007424825, 30940193045449, 866325405272573, 25989762158177189, 831672389061670049, 28276861228096781665, 1017967004211484139941, 38682746160036397317757
Offset: 0

Views

Author

Keywords

Comments

a(n) is the permanent of the n X n matrix with 1's on the diagonal and 2's elsewhere. - Yuval Dekel, Nov 01 2003. Compare A157142.
Starting with offset 1 = lim_{k->infinity} M^k, where M = a tridiagonal matrix with (1,0,0,0,...) in the main diagonal, (1,3,5,7,...) in the subdiagonal and (2,4,6,8,...) in the subsubdiagonal. - Gary W. Adamson, Jan 13 2009
a(n) is also the number of (n-1)-dimensional facet derangements for the n-dimensional hypercube. - Elizabeth McMahon, Gary Gordon (mcmahone(AT)lafayette.edu), Jun 29 2009
a(n) is the number of ways to write down each n-permutation and underline some (possibly none or all) of the elements that are not fixed points. a(n) = Sum_{k=0..n} A008290(n,k)*2^(n-k). - Geoffrey Critzer, Dec 15 2012
Type B derangement numbers: the number of fixed point free permutations in the n-th hyperoctahedral group of signed permutations of {1,2,...,n}. See Chow 2006. See A000166 for type A derangement numbers. - Peter Bala, Jan 30 2015

Examples

			G.f. = 1 + x + 5*x^2 + 29*x^3 + 233*x^4 + 2329*x^5 + 27949*x^6 + 391285*x^7 + ... - _Michael Somos_, Apr 14 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A320032.

Programs

  • Maple
    a := n -> (-1)^n*(1-2*n*hypergeom([1,1-n],[],2)):
    seq(simplify(a(n)), n=0..18); # Peter Luschny, May 09 2017
    a := n -> 2^n*add((n!/k!)*(-1/2)^k, k=0..n):
    seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020
    seq(simplify(2^n*KummerU(-n, -n, -1/2)), n = 0..19); # Peter Luschny, May 10 2022
  • Mathematica
    FunctionExpand @ Table[ Gamma[ n+1, -1/2 ]*2^n/Exp[ 1/2 ], {n, 0, 24}]
    With[{nn=20},CoefficientList[Series[Exp[-x]/(1-2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 22 2013 *)
    a[n_] := 2^n n! Sum[(-1)^i/(2^i i!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Gerry Martens, May 06 2016 *)
    a[ n_] := If[ n < 1, Boole[n == 0], (2 n - 1) a[n - 1] + (2 n - 2) a[n - 2]]; (* Michael Somos, Sep 28 2017 *)
    a[ n_] := Sum[ (-1)^(n + k) Binomial[n, k] k! 2^k, {k, 0, n}]; (* Michael Somos, Apr 14 2018 *)
    a[ n_] := If[ n < 0, 0, (2^n Gamma[n + 1, -1/2]) / Sqrt[E] // FunctionExpand]; (* Michael Somos, Apr 14 2018 *)
    a[n_] := n! 2^n Hypergeometric1F1[-n, -n, -1/2];
    Table[a[n], {n, 0, 19}]   (* Peter Luschny, Jul 28 2024 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(-x)/(1-2*x))) \\ Joerg Arndt, Apr 15 2013
    
  • PARI
    vector(100, n, n--; sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k)) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = if( n<1, n==0, (2*n - 1) * a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Sep 28 2017 */

Formula

Inverse binomial transform of double factorials A000165. - Paul Barry, May 26 2003
a(n) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*k!*2^k. - Paul Barry, May 26 2003
a(n) = Sum_{k=0..n} A008290(n, k)*2^(n-k). - Philippe Deléham, Dec 13 2003
a(n) = 2*n*a(n-1) + (-1)^n, n > 0, a(0)=1. - Paul Barry, Aug 26 2004
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + (2*n-2)*a(n-2). - Elizabeth McMahon, Gary Gordon (mcmahone(AT)lafayette.edu), Jun 29 2009
From Groux Roland, Jan 17 2011: (Start)
a(n) = (1/(2*sqrt(exp(1))))*Integral_{x>=-1} exp(-x/2)*x^n dx;
Sum_{k>=0} 1/(k!*2^(k+1)*(n+k+1)) = (-1)^n*(a(n)*sqrt(exp(1))-2^n*n!). (End)
a(n) = round(2^n*n!/exp(1/2)), x >= 0. - Simon Plouffe, Mar 1993
G.f.: 1/Q(0), where Q(k) = 1 - x*(4*k+1) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
From Peter Bala, Jan 30 2015: (Start)
a(n) = Integral_{x = 0..inf} (2*x - 1)^n*exp(-x) dx.
b(n) := 2^n*n! satisfies the recurrence b(n) = (2*n - 1)*b(n-1) + (2*n - 2)*b(n-2), the same recurrence as satisfied by a(n). This leads to the continued fraction representation a(n) = 2^n*n!*( 1/(1 + 1/(1 + 2/(3 + 4/(5 +...+ (2*n - 2)/(2*n - 1) ))))) for n >= 2, which in the limit gives the continued fraction representation sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). (End)
For n > 0, a(n) = 1 + 4*Sum_{k=0..n-1} A263895(n). - Vladimir Reshetnikov, Oct 30 2015
a(n) = (-1)^n*(1-2*n*hypergeom([1,1-n],[],2)). - Peter Luschny, May 09 2017
a(n+1) >= A113012(n). - Michael Somos, Sep 28 2017
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (2*k - 1) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(n) = 2^n*KummerU(-n, -n, -1/2). - Peter Luschny, May 10 2022
a(n) = 2^n*n!*hypergeom([-n], [-n], -1/2). - Peter Luschny, Jul 28 2024

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A053871 a(0)=1; a(1)=0; a(n) = 2*(n-1)*(a(n-1) + a(n-2)).

Original entry on oeis.org

1, 0, 2, 8, 60, 544, 6040, 79008, 1190672, 20314880, 387099936, 8148296320, 187778717632, 4702248334848, 127140703364480, 3691602647581184, 114562300528369920, 3784124901630435328, 132555364873399378432, 4908221631901073295360, 191549525877429961604096
Offset: 0

Views

Author

Cris Moore (moore(AT)santafe.edu) and Christian G. Bower, Mar 29 2000

Keywords

Comments

Number of deranged matchings of 2n people with partners (of either sex) other than their spouse. 2n objects are initially paired in some way and then are re-paired so that no object is with its original partner (the dancing problem in the article).
Of interest in the "collision problem", where, given a 2-to-1 function f, we are asked for x, y such that f(x)=f(y).
2^n*n!*a(n) = (2n)! b(n) where b(n) are the probabilities that appear in Margolis (2001). One interpretation is in terms of matchings or 1-factors of the complete graph on 2n vertices. The number of these is (2n)!/2^{n}n!. The number of 1-factors being disjoint from (that is, having no edges in common with) a given 1-factor is then a(n); and then b(n) is the probability of picking such a disjoint one factor at random.
Also n!*a(n) = 2^n * c(n) where c(n) = A001499(n). If we define d(n,k) = k(n-1)(d(n-1,k) + d(n-2,k)), with d(0,k) = 1 and d(1,k) = 0, so d(n,1) are the derangement numbers A000166, then a(n) = d(n,2) (cf. A033030, A088991). On the other hand, taking d*(n,k) = d(n,k)/k^{n}, we have d*(n,k) = (n-1)(d*(n-1,k) + d*(n-2,k)/k), with d*(0,k) = 1 and d*(1,k) = 0 and it is easy to see from Bricard's recurrence for c(n) that c(n)/n! satisfies this for k = 2.
A proof that the description in the first comment as "number of deranged matchings" implies the defining recursion relation: let (x_1, y_1), (x_2, y_2), ..., (x_n, y_n) be the given pairs. In a deranged matching x_1 will be paired with any of the 2(n-1) objects x_2, y_2, x_3, y_3, ..., x_n, y_n. It is sufficient to count only those deranged matchings in which x_1, is matched with x_2. They are of two kinds: (i) y_1 is not matched with y_2; their number is a(n-1); (ii) y_1 is matched with y_2; their number is a(n-2). - Emeric Deutsch, Jan 23 2009
Inverse binomial transform of the odd double factorials (A001147). - David Callan, Aug 25 2009
From Lewis Mammel (l_mammel(AT)att.net), Oct 07 2009: (Start)
The formula is given directly by the Principle of Inclusion and Exclusion.
The first term includes all pairings, the second term excludes all pairings containing each pair, the third term includes all pairings containing each pair of pairs, and so on.
Based on n-a -> n for large n, the ratio a(n)/(2n-1)!! -> exp(-1/2) ~= 0.60653.
We find a(n)/(2n-1)!! for n= 100, 200, 300, 400 ~= 0.6050124904, 0.6057720290, 0.6060250088, 0.6061514604. (End)
This is a subset of the set of pairings of the first 2n integers (A001147) in another way: forbidding pairs of the form (2k,2k+1) for all k as well as the pair (1,2n) (seeing the constraint as circular by opposition to the linear A165968). - Olivier Gérard, Feb 08 2011
a(n) is the n-th central moment of a central chi-squared distribution (with 1 degree of freedom), i.e., a(n) = E[ (Y- E[Y] )^n ] = E[ (X^2 - 1 )^n ] where Y is chi-squared, X is std normal, X~N(0,1), and the expectation operator is E[]. - David Fioramonti, May 11 2016
Exponential self-convolution of a(n)/2^n gives subfactorials (A000166). - Vladimir Reshetnikov, Oct 09 2016
For n > 1, also the number of maximum matchings in the n-cocktail party graph. - Eric W. Weisstein, Jun 15 2017
Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side (cf. A289191, A289269 for nonisomorphic tiles under rotational and rotational and reflectional symmetries). - Marko Riedel, Jun 28 2017
Number of ways n people can hold hands (every hand is holding another hand) where no one is holding their own hand. - Harry Richman, Aug 29 2023

References

  • R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.

Crossrefs

See A289191 for when rotational symmetries of the tiles are taken into account. - Marko Riedel, Jun 28 2017
Cf. A165968, number of pairings of 2n things disjoint to a given pairing, and containing a given pair not in the given pairing. It is given by a(n)/(2n-2). - Lewis Mammel (l_mammel(AT)att.net), Oct 07 2009

Programs

  • Haskell
    a053871 n = a053871_list !! n
    a053871_list = 1 : 0 : zipWith (*)
       [2,4..] (zipWith (+) a053871_list $ tail a053871_list)
    -- Reinhard Zumkeller, Mar 07 2012
  • Maple
    f:= gfun:-rectoproc({a(0) = 1, a(1) = 0, a(n) = 2*(n - 1)*(a(n - 1) + a(n - 2))},a(n),remember):
    map(f, [$0..30]); # Robert Israel, May 10 2016
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==0,a[n]==2(n-1)(a[n-1]+a[n-2])}, a[n],{n,20}] (* Harvey P. Dale, Sep 15 2011 *)
    CoefficientList[Assuming[{Element[x, Reals], x>0}, Series[Sqrt[Pi/2] * (I + Erfi[Sqrt[(1+1/x)/2]]) / (E^((1+x)/(2*x)) * Sqrt[x*(x+1)]), {x, 0, 20}]], x] (* Vaclav Kotesovec, Feb 15 2015 *)
    Range[0, 20]! CoefficientList[Series[1/(Exp[x] Sqrt[1 - 2 x]), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 15 2017 *)
    Table[(-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
    Table[I (-1)^n HypergeometricU[1/2, 3/2 + n, -1/2]/Sqrt[2], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
  • PARI
    a(n)=(-1)^(n+1)*sum(k=0,n,(-1)^k*binomial(n,k)*prod(i=0,k,2*i-1))
    

Formula

a(n) = A054479(n)/A001147(n).
E.g.f.: 1/(exp(x)*sqrt(1-2x)).
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n, k)*(2*k-1)!!. - Benoit Cloitre, May 01 2003; corrected by David Fioramonti, May 17 2016
a(n) = Integral_{x>=0} (x-1)^n * (exp(-x/2)/sqrt(2*Pi*x)) dt. - Paul Barry, Apr 12 2010
Conjectured g.f.: T(0)/(1+x), where T(k) = 1 - x*(k+1)/(x*(k+1) - (1+x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) ~ 2^(n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Mar 11 2014
G.f.: Sum_{k>=0} (2*k - 1)!!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
Conjecture: if m == n (mod q) for q odd, then (-1)^m*a(m) == (-1)^n*a(n) (mod q). - Harry Richman, Aug 29 2023

Extensions

More terms from James Sellers, Apr 08 2000

A001909 a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.

Original entry on oeis.org

0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, 10146321, 128718044, 1764651461, 25992300894, 409295679481, 6860638482424, 121951698034461, 2291179503374234, 45361686034627361, 943892592746534964, 20592893110265899381, 470033715095287415734
Offset: 2

Views

Author

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=4 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
a(n+3)=:b(n), n>=1, enumerates the ways to distribute n beads labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and four indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as a beadless cords contribute each a factor 1 in the counting, e.g., b(0):= 1*1 =1. See A000255 for the description of a fixed cord with beads.
This produces for b(n) the exponential (aka binomial) convolution of the subfactorial sequence {A000166(n)} and the sequence {A001715 (n+3)}. See the necklaces and cords problem comment in A000153. Therefore also the recurrence b(n) = (n+3)*b(n-1) + (n-1)*b(n-2) with b(-1)=0 and b(0)=1 holds. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010

Examples

			Necklaces and four cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1, binomial(4,3)*sf(3)*c4(1), (binomial(4,2)*sf(2))*c4(2), and 1*c4(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c4(n):=A001715(n+3) = (n+3)!/3! numbers for the pure 4 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=4: 1/(1-x)^4). This adds up as 9 + 4*2*4 + (6*1)*20 + 840 = 1001 = b(4) = A001909(7). - _Wolfdieter Lang_, Jun 02 2010
x^3 + 4*x^4 + 21*x^5 + 134*x^6 + 1001*x^7 + 8544*x^8 + 81901*x^9 + 870274*x^10 + ...
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000255, A000153, A000261, A001910, A090010, A055790, A090012-A090016, A086764. A000261 (necklaces and three cords).

Programs

  • Maple
    a := n -> `if`(n<4,n-2,hypergeom([5,-n+3],[],1))*(-1)^(n+1);
    seq(round(evalf(a(n), 100)), n=2..22); # Peter Luschny, Sep 20 2014
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, n*t[[-1]] + (n-4)*t[[-2]]], {n, 4, 20}]; t (* T. D. Noe, Aug 17 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b(n+1)+a(n-3)}; NestList[nxt,{3,0,1},20][[All,2]] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    {a(n) = if( n<2, 0, -contfracpnqn( matrix(2, n, i, j, j - 4*(i==1))) [1, 1])} /* Michael Somos, Feb 19 2003 */

Formula

a(n) = A086764(n+1,4), n>=2.
E.g.f.: exp(-x) / (1 - x)^5 = Sum_{k>=0} a(k+3) * x^k / k!. - Michael Somos, Feb 19 2003
G.f.: x*hypergeom([1,5],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
a(n) = hypergeom([5,-n+3],[],1)*(-1)^(n+1) for n>=3. - Peter Luschny, Sep 20 2014

A003471 Number of permutations with no hits on 2 main diagonals.

Original entry on oeis.org

1, 0, 0, 0, 4, 16, 80, 672, 4752, 48768, 440192, 5377280, 59245120, 839996160, 10930514688, 176547098112, 2649865335040, 48047352500224, 817154768973824, 16438490531536896, 312426715251262464, 6906073926286725120, 145060238642780180480, 3495192502897779875840
Offset: 0

Views

Author

Keywords

Comments

Permanent of the binary matrix with an entry equal to 0 iff the entry is on the main diagonal or the main antidiagonal. - Simone Severini, Oct 14 2004
From Toby Gottfried, Dec 05 2008: (Start)
Suppose you have a group of married couples (plus perhaps one other person).
You wish to organize a gift exchange so that:
- each person gives and receives one gift.
- no one gives himself a gift.
- no one gives his/her spouse a gift.
Then the sequence gives the number of ways that this can be done. (End)

Examples

			G.f. = 1 + 4*x^4 + 16*x^5 + 80*x^6 + 672*x^7 + 4752*x^8 + ... - _Michael Somos_, Jun 17 2023
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
  • Todd Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A335872.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 0$3, 4][n+1],
          (n-1)*a(n-1)+2*`if`(n::even, (n-2)*a(n-4), (n-1)*a(n-2)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 27 2020
  • Mathematica
    a[n_] := Integrate[m = Mod[n, 2]; k = (n-m)/2; (x^2-4*x+2)^k*(x-1)^m*Exp[-x], {x, 0, Infinity}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Sep 09 2013, after Felix A. Pahl *)
    nmax=20; b=ConstantArray[0,nmax+1]; b[[1]]=1; b[[2]]=0; b[[3]]=0; b[[4]]=0; b[[5]]=4; Do[b[[n+1]] = (n-1)*b[[n]] + If[EvenQ[n],2*(n-2)*b[[n-3]],2*(n-1)*b[[n-1]]],{n,5,nmax}]; b  (* Vaclav Kotesovec, Mar 07 2014 *)
    a[ n_] = If[n<4, Boole[n==0], With[{m =2-Mod[n, 2]}, a[n-1]*(n-1) + 2*(n-m)*a[n-2*m]]]; (* Michael Somos, Jun 17 2023 *)
  • PARI
    {a(n) = if(n<4, n==0, my(m = 2-n%2); a(n-1)*(n-1) + 2*(n-m)*a(n-2*m))}; /* Michael Somos, Jun 17 2023 */

Formula

a(n) = (n-1)*a(n-1) + 2*(n-d)*a(n-e), where (d, e) = (2, 4) if n even, (1, 2) if n odd.
a(n) = Integral_{ x = 0..oo} (x^2-4*x+2)^k * (x-1)^m * exp(-x) dx, where n=2*k+m, m=n mod 2. - Felix A. Pahl, Dec 27 2011
Recurrence: (n-3)*(3*n^3 - 36*n^2 + 137*n - 162)*a(n) = (n-5)*(3*n^3 - 27*n^2 + 71*n - 50)*a(n-1) + (n-2)*(3*n^5 - 45*n^4 + 248*n^3 - 606*n^2 + 608*n - 156)*a(n-2) - 2*(n-3)*(3*n^3 - 28*n^2 + 87*n - 94)*a(n-3) + 2*(3*n^5 - 51*n^4 + 334*n^3 - 1060*n^2 + 1650*n - 1028)*a(n-4) - 4*(n-4)*(n^2 + n - 14)*a(n-5) - 4*(n-5)*(n-4)*(n-2)*(3*n^3 - 27*n^2 + 74*n - 58)*a(n-6). - Vaclav Kotesovec, Mar 07 2014
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Mar 07 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 24 2001
Previous Showing 61-70 of 544 results. Next