A010027
Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 11;
1, 4, 18, 44, 53;
1, 5, 30, 110, 265, 309;
1, 6, 45, 220, 795, 1854, 2119;
1, 7, 63, 385, 1855, 6489, 14833, 16687;
1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329;
1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.
-
U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
-
t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
Original definition from David, Kendall and Barton restored by
N. J. A. Sloane, Apr 12 2014
A008276
Triangle of Stirling numbers of first kind, s(n, n-k+1), n >= 1, 1 <= k <= n. Also triangle T(n,k) giving coefficients in expansion of n!*binomial(x,n)/x in powers of x.
Original entry on oeis.org
1, 1, -1, 1, -3, 2, 1, -6, 11, -6, 1, -10, 35, -50, 24, 1, -15, 85, -225, 274, -120, 1, -21, 175, -735, 1624, -1764, 720, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 1, -36, 546, -4536, 22449, -67284, 118124, -109584, 40320, 1, -45
Offset: 1
3!*binomial(x,3) = x*(x-1)*(x-2) = x^3 - 3*x^2 + 2*x.
Triangle begins
1;
1, -1;
1, -3, 2;
1, -6, 11, -6;
1, -10, 35, -50, 24;
1, -15, 85, -225, 274, -120;
...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), p. 257.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- Yahia Djemmada, Abdelghani Mehdaoui, László Németh, and László Szalay, The Fibonacci-Fubini and Lucas-Fubini numbers, arXiv:2407.04409 [math.CO], 2024. See pp. 10, 12.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7
- Eric Weisstein's World of Mathematics, Stirling Number of the First Kind
- Wikipedia, Stirling numbers and exponential generating functions
See
A008275 and
A048994, which are the main entries for this triangle of numbers.
See
A008277 triangle of Stirling numbers of the second kind, S2(n,k).
Cf.
A054654,
A054655,
A084938,
A145324,
A094216,
A003422,
A000166,
A000110,
A000204,
A000045,
A000108.
-
a008276 n k = a008276_tabl !! (n-1) !! (k-1)
a008276_row n = a008276_tabl !! (n-1)
a008276_tabl = map init $ tail a054654_tabl
-- Reinhard Zumkeller, Mar 18 2014
-
seq(seq(coeff(expand(n!*binomial(x,n)),x,j),j=n..1,-1),n=1..15); # Robert Israel, Jan 24 2016
A008276 := proc(n, k): combinat[stirling1](n, n-k+1) end: seq(seq(A008276(n, k), k=1..n), n=1..9); # Johannes W. Meijer, Jun 17 2016
-
len = 47; m = Ceiling[Sqrt[2*len]]; t[n_, k_] = StirlingS1[n, n-k+1]; Flatten[Table[t[n, k], {n, 1, m}, {k, 1, n}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011 *)
Flatten@Table[CoefficientList[Product[1-k x, {k, 1, n}], x], {n, 0, 8}] (* Oliver Seipel, Jun 14 2024 *)
Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Reverse@Range[n]], {n, Range[9]}] (* Oliver Seipel, Jun 14 2024, after Ralf Stephan *)
-
T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),n-k+1))
-
T(n,k)=if(n<1,0,n!*polcoeff(polcoeff(y*(1+y*x+x*O(x^n))^(1/y),n),k))
-
def T(n,k): return falling_factorial(x,n).expand().coefficient(x,n-k+1) # Ralf Stephan, Dec 11 2016
A000153
a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 7, 32, 181, 1214, 9403, 82508, 808393, 8743994, 103459471, 1328953592, 18414450877, 273749755382, 4345634192131, 73362643649444, 1312349454922513, 24796092486996338, 493435697986613143, 10315043624498196944
Offset: 0
Necklaces and 2 cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1,binomial(4,3)*sf(3)*c2(1), (binomial(4,2)*sf(2))*c2(2), and 1*c2(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c2(n):=(n+1)! numbers for the pure 2 cord problem (see the above given remark on the e.g.f. for the k cords problem; here for k=2: 1/(1-x)^2). This adds up as 9 + 4*2*2 + (6*1)*6 + 120 = 181 = b(4) = A000153(5). - _Wolfdieter Lang_, Jun 02 2010
G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 181*x^5 + 1214*x^6 + 9403*x^7 + 82508*x^8 + ...
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Anders Claesson, Giulio Cerbai, Dana C. Ernst, and Hannah Golab, Pattern-avoiding Cayley permutations via combinatorial species, arXiv:2407.19583 [math.CO], 2024.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 41.
- Simon Plouffe, Exact formulas for integer sequences.
- Ed Sandifer, Divergent Series, How Euler Did It, MAA Online, June 2006. - From _Johannes W. Meijer_, Oct 16 2009
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), 197-210.
-
a000153 n = a000153_list !! n
a000153_list = 0 : 1 : zipWith (+)
(zipWith (*) [0..] a000153_list) (zipWith (*) [2..] $ tail a000153_list)
-- Reinhard Zumkeller, Mar 05 2012
-
f:= n-> floor(((n+1)!+1)/e): g:=n-> (n*f(n+1)-(n+1)*f(n))/(2*n*(n-1)*(n+1)):seq( g(n), n=2..20); # Gary Detlefs, Nov 06 2010
a := n -> `if`(n=0,0,hypergeom([3,-n+1],[],1))*(-1)^(n+1); seq(simplify(a(n)), n=0..20); # Peter Luschny, Sep 20 2014
0, seq(simplify(KummerU(-n + 1, -n - 1, -1)), n = 1..20); # Peter Luschny, May 10 2022
-
nn = 20; Prepend[Range[0, nn]!CoefficientList[Series[Exp[-x]/(1 - x)^3, {x, 0, nn}], x], 0] (* Geoffrey Critzer, Oct 28 2012 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n a[n-1]+(n-2)a[n-2]},a,{n,20}] (* Harvey P. Dale, May 08 2013 *)
a[ n_] := If[ n < 1, 0, (n - 1)! SeriesCoefficient[ Exp[ -x] / (1 - x)^3, {x, 0, n - 1}]]; (* Michael Somos, Jun 01 2013 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 3}, {}, x / (x + 1)] x / (x + 1), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
-
x='x+O('x^66); concat([0],Vec(x*serlaplace(exp(-x)/(1-x)^3))) \\ Joerg Arndt, May 08 2013
-
it = sloane.A000153.gen(0,1,2); [next(it) for i in range(21)] # Zerinvary Lajos, May 15 2009
A061547
Number of 132 and 213-avoiding derangements of {1,2,...,n}.
Original entry on oeis.org
1, 0, 1, 2, 6, 10, 26, 42, 106, 170, 426, 682, 1706, 2730, 6826, 10922, 27306, 43690, 109226, 174762, 436906, 699050, 1747626, 2796202, 6990506, 11184810, 27962026, 44739242, 111848106, 178956970, 447392426, 715827882, 1789569706, 2863311530, 7158278826
Offset: 0
a(4)=6 because the only 132 and 213-avoiding permutations of {1,2,3,4} without fixed points are: 2341, 3412, 3421, 4123, 4312 and 4321.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- F. Al-Kharousi, R. Kehinde and A. Umar, Combinatorial results for certain semigroups of partial isometries of a finite chain, The Australasian Journal of Combinatorics, Volume 58 (3) (2014), 363-375.
- J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869 (contains the sequence of the odd-subscripted terms and that of the even-subscripted terms).
- Emeric Deutsch, Derangements That Don't Rise Too Fast: 10902, Amer. Math. Monthly, Vol. 110, No. 7 (2003), pp. 639-640.
- K. Dilcher and K. B. Stolarsky, Stern polynomials and double-limit continued fractions, Acta Arithmetica 140 (2009), 119-134
- R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.0049 [math.GR], 2010.
- T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, arXiv:math/0204005 [math.CO], 2002
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4).
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4), this sequence (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Oct 31 2011
A000023
Expansion of e.g.f. exp(-2*x)/(1-x).
Original entry on oeis.org
1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0
G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Simon Plouffe, Table of n, a(n) for n = 0..250
- A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
- A. R. Kräuter, Über die Permanente gewisser zirkulanter Matrizen und damit zusammenhängender Toeplitz-Matrizen, Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
-
a000023 n = foldl g 1 [1..n]
where g n m = n*m + (-2)^m
-- James Spahlinger, Oct 08 2012
-
a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
-
FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
-
my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
-
from sympy import exp, uppergamma
def A000023(n):
return exp(-2) * uppergamma(n + 1, -2) # David Radcliffe, Aug 20 2025
-
@CachedFunction
def A000023(n):
if n == 0: return 1
return n * A000023(n-1) + (-2)**n
[A000023(i) for i in range(23)] # Peter Luschny, Oct 17 2012
A000354
Expansion of e.g.f. exp(-x)/(1-2*x).
Original entry on oeis.org
1, 1, 5, 29, 233, 2329, 27949, 391285, 6260561, 112690097, 2253801941, 49583642701, 1190007424825, 30940193045449, 866325405272573, 25989762158177189, 831672389061670049, 28276861228096781665, 1017967004211484139941, 38682746160036397317757
Offset: 0
G.f. = 1 + x + 5*x^2 + 29*x^3 + 233*x^4 + 2329*x^5 + 27949*x^6 + 391285*x^7 + ... - _Michael Somos_, Apr 14 2018
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Chak-On Chow, On derangement polynomials of type B, Séminaire Lotharingien de Combinatoire 55 (2006), Article B55b.
- Gary Gordon and Elizabeth McMahon, Moving faces to other places: Facet derangements, arXiv:0906.4253 [math.CO], 2009.
- Gary Gordon and Elizabeth McMahon, Moving faces to other places: facet derangements, Amer. Math. Monthly, 117 (2010), 865-88.
- Édouard Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 223.
- Édouard Lucas, Théorie des nombres (annotated scans of a few selected pages)
- István Mezo, Victor H. Moll, José L. Ramírez, and Diego Villamizar, On the r-Derangements of type B, arXiv:2103.04151 [math.CO], 2021.
- István Mező, Victor H. Moll, José Ramírez, and Diego Villamizar, On the r-derangements of type B, Online Journal of Analytic Combinatorics, Issue 16 (2021), #05.
- Jean-Christophe Pain, A sum rule for r-derangements obtained from the Cauchy product of exponential generating functions, arXiv:2408.15927 [math.CO], 2024.
- Simon Plouffe, Exact formulas for integer sequences
- L. W. Shapiro & N. J. A. Sloane, Correspondence, 1976
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
-
a := n -> (-1)^n*(1-2*n*hypergeom([1,1-n],[],2)):
seq(simplify(a(n)), n=0..18); # Peter Luschny, May 09 2017
a := n -> 2^n*add((n!/k!)*(-1/2)^k, k=0..n):
seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020
seq(simplify(2^n*KummerU(-n, -n, -1/2)), n = 0..19); # Peter Luschny, May 10 2022
-
FunctionExpand @ Table[ Gamma[ n+1, -1/2 ]*2^n/Exp[ 1/2 ], {n, 0, 24}]
With[{nn=20},CoefficientList[Series[Exp[-x]/(1-2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 22 2013 *)
a[n_] := 2^n n! Sum[(-1)^i/(2^i i!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Gerry Martens, May 06 2016 *)
a[ n_] := If[ n < 1, Boole[n == 0], (2 n - 1) a[n - 1] + (2 n - 2) a[n - 2]]; (* Michael Somos, Sep 28 2017 *)
a[ n_] := Sum[ (-1)^(n + k) Binomial[n, k] k! 2^k, {k, 0, n}]; (* Michael Somos, Apr 14 2018 *)
a[ n_] := If[ n < 0, 0, (2^n Gamma[n + 1, -1/2]) / Sqrt[E] // FunctionExpand]; (* Michael Somos, Apr 14 2018 *)
a[n_] := n! 2^n Hypergeometric1F1[-n, -n, -1/2];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 28 2024 *)
-
my(x='x+O('x^66)); Vec(serlaplace(exp(-x)/(1-2*x))) \\ Joerg Arndt, Apr 15 2013
-
vector(100, n, n--; sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k)) \\ Altug Alkan, Oct 30 2015
-
{a(n) = if( n<1, n==0, (2*n - 1) * a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Sep 28 2017 */
A010842
Expansion of e.g.f.: exp(2*x)/(1-x).
Original entry on oeis.org
1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.
- T. D. Noe, Table of n, a(n) for n = 0..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
-
m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
-
G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
-
With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
a[n_] := n! Sum[2^i/i!, {i, 0, n}]
Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
-
x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
A053871
a(0)=1; a(1)=0; a(n) = 2*(n-1)*(a(n-1) + a(n-2)).
Original entry on oeis.org
1, 0, 2, 8, 60, 544, 6040, 79008, 1190672, 20314880, 387099936, 8148296320, 187778717632, 4702248334848, 127140703364480, 3691602647581184, 114562300528369920, 3784124901630435328, 132555364873399378432, 4908221631901073295360, 191549525877429961604096
Offset: 0
- R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
- Michael De Vlieger, Table of n, a(n) for n = 0..404 (First 100 terms from _T. D. Noe_)
- A. Ayyer, Determinants and Perfect Matchings, arXiv:1106.1465 [math.CO], 2011.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Bela Bollobas, The number of 1-factors in 2k-connected graphs, J. Combin. Theory Ser. B 25 (1978), no. 3, 363--366. MR0516268 (80m:05060) - _N. J. A. Sloane_, Mar 26 2012
- James N. Brawner, Dinner, Dancing and Tennis, Anyone?, Mathematics Magazine, Vol. 73, No 1 (2000).
- M. A. Brodie, Avoiding your spouse at a party leads to war, Math. Mag., 75 (2002), 203-208.
- Davi B. Costa, Bogdan A. Dobrescu, and Patrick J. Fox, Chiral Abelian gauge theories with few fermions, arXiv:2001.11991 [hep-ph], 2020.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, Avoiding your spouse at a bridge party, Math. Mag., 74 (2001), 33-41.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
See
A289191 for when rotational symmetries of the tiles are taken into account. -
Marko Riedel, Jun 28 2017
Cf.
A165968, number of pairings of 2n things disjoint to a given pairing, and containing a given pair not in the given pairing. It is given by a(n)/(2n-2). - Lewis Mammel (l_mammel(AT)att.net), Oct 07 2009
-
a053871 n = a053871_list !! n
a053871_list = 1 : 0 : zipWith (*)
[2,4..] (zipWith (+) a053871_list $ tail a053871_list)
-- Reinhard Zumkeller, Mar 07 2012
-
f:= gfun:-rectoproc({a(0) = 1, a(1) = 0, a(n) = 2*(n - 1)*(a(n - 1) + a(n - 2))},a(n),remember):
map(f, [$0..30]); # Robert Israel, May 10 2016
-
RecurrenceTable[{a[0]==1,a[1]==0,a[n]==2(n-1)(a[n-1]+a[n-2])}, a[n],{n,20}] (* Harvey P. Dale, Sep 15 2011 *)
CoefficientList[Assuming[{Element[x, Reals], x>0}, Series[Sqrt[Pi/2] * (I + Erfi[Sqrt[(1+1/x)/2]]) / (E^((1+x)/(2*x)) * Sqrt[x*(x+1)]), {x, 0, 20}]], x] (* Vaclav Kotesovec, Feb 15 2015 *)
Range[0, 20]! CoefficientList[Series[1/(Exp[x] Sqrt[1 - 2 x]), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 15 2017 *)
Table[(-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
Table[I (-1)^n HypergeometricU[1/2, 3/2 + n, -1/2]/Sqrt[2], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
-
a(n)=(-1)^(n+1)*sum(k=0,n,(-1)^k*binomial(n,k)*prod(i=0,k,2*i-1))
A001909
a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.
Original entry on oeis.org
0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, 10146321, 128718044, 1764651461, 25992300894, 409295679481, 6860638482424, 121951698034461, 2291179503374234, 45361686034627361, 943892592746534964, 20592893110265899381, 470033715095287415734
Offset: 2
Necklaces and four cords problem. For n=4 one considers the following weak 2 part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively sf(4)*1, binomial(4,3)*sf(3)*c4(1), (binomial(4,2)*sf(2))*c4(2), and 1*c4(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there) and the c4(n):=A001715(n+3) = (n+3)!/3! numbers for the pure 4 cord problem (see the remark on the e.g.f. for the k cords problem in A000153; here for k=4: 1/(1-x)^4). This adds up as 9 + 4*2*4 + (6*1)*20 + 840 = 1001 = b(4) = A001909(7). - _Wolfdieter Lang_, Jun 02 2010
x^3 + 4*x^4 + 21*x^5 + 134*x^6 + 1001*x^7 + 8544*x^8 + 81901*x^9 + 870274*x^10 + ...
- Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..100
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.
-
a := n -> `if`(n<4,n-2,hypergeom([5,-n+3],[],1))*(-1)^(n+1);
seq(round(evalf(a(n), 100)), n=2..22); # Peter Luschny, Sep 20 2014
-
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] + (n-4)*t[[-2]]], {n, 4, 20}]; t (* T. D. Noe, Aug 17 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b(n+1)+a(n-3)}; NestList[nxt,{3,0,1},20][[All,2]] (* Harvey P. Dale, Jul 17 2018 *)
-
{a(n) = if( n<2, 0, -contfracpnqn( matrix(2, n, i, j, j - 4*(i==1))) [1, 1])} /* Michael Somos, Feb 19 2003 */
A003471
Number of permutations with no hits on 2 main diagonals.
Original entry on oeis.org
1, 0, 0, 0, 4, 16, 80, 672, 4752, 48768, 440192, 5377280, 59245120, 839996160, 10930514688, 176547098112, 2649865335040, 48047352500224, 817154768973824, 16438490531536896, 312426715251262464, 6906073926286725120, 145060238642780180480, 3495192502897779875840
Offset: 0
G.f. = 1 + 4*x^4 + 16*x^5 + 80*x^6 + 672*x^7 + 4752*x^8 + ... - _Michael Somos_, Jun 17 2023
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
- Todd Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 0..200
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- S. Hertzsprung, Løsning og Udvidelse af Opgave 402, Tidsskrift for Math., 4 (1879), 134-140.
- Mathematics Stack Exchange, Derivation of integral formula for even n and for odd n.
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages]. See Vol. 3 page 468. There may have been some confusion here of this sequence with A002777.
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- Todd Simpson, Letter to N. J. A. Sloane, Mar. 1992
- Todd Simpson, Permutations with unique fixed and reflected points, Preprint. (Annotated scanned copy)
-
a:= proc(n) option remember; `if`(n<5, [1, 0$3, 4][n+1],
(n-1)*a(n-1)+2*`if`(n::even, (n-2)*a(n-4), (n-1)*a(n-2)))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Jun 27 2020
-
a[n_] := Integrate[m = Mod[n, 2]; k = (n-m)/2; (x^2-4*x+2)^k*(x-1)^m*Exp[-x], {x, 0, Infinity}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Sep 09 2013, after Felix A. Pahl *)
nmax=20; b=ConstantArray[0,nmax+1]; b[[1]]=1; b[[2]]=0; b[[3]]=0; b[[4]]=0; b[[5]]=4; Do[b[[n+1]] = (n-1)*b[[n]] + If[EvenQ[n],2*(n-2)*b[[n-3]],2*(n-1)*b[[n-1]]],{n,5,nmax}]; b (* Vaclav Kotesovec, Mar 07 2014 *)
a[ n_] = If[n<4, Boole[n==0], With[{m =2-Mod[n, 2]}, a[n-1]*(n-1) + 2*(n-m)*a[n-2*m]]]; (* Michael Somos, Jun 17 2023 *)
-
{a(n) = if(n<4, n==0, my(m = 2-n%2); a(n-1)*(n-1) + 2*(n-m)*a(n-2*m))}; /* Michael Somos, Jun 17 2023 */
More terms from Larry Reeves (larryr(AT)acm.org), Sep 24 2001
Comments