cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 241 results. Next

A096231 Number of n-th generation triangles in the tiling of the hyperbolic plane by triangles with angles {Pi/2, Pi/3, 0}.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081
Offset: 0

Views

Author

Bellovin, Kennedy, Stansifer, Wong (chrkenn(AT)bergen.org), Jul 29 2004

Keywords

Comments

Or, coordination sequence for (2,3,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The generation of a triangle is defined such that exactly one triangle has generation 0 and a triangle has generation n, n > 0, if it is next to a triangle with generation n-1 but not to one with lower generation.
The recursions were found by examining empirical data and have not been proved to be accurate for all n. The generating function was found by assuming that the recursions were accurate; it can be calculated from either recursion. We created a specialized program in Java for finding the sequences of generations for triangles with angles {Pi/p, Pi/q, Pi/r}, p, q, r > 1, that tile the Euclidean or hyperbolic plane; this program was used to calculate the sequence.
The g.f. (1+X)^2 * (1+X+X^2) / (1-X^2-X^3) follows from the Cannon-Wagreich paper, Prop. 3.1, so the g.f. and the recurrence are now a theorem, no longer conjectures, and the additional terms and the Mma program are now justified. - N. J. A. Sloane, Dec 29 2015

Examples

			a(1)=3 because exactly three triangles have generation 1, i.e., are adjacent to the triangle with generation 0.
		

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Equals A000931(n+10).

Programs

  • Magma
    I:=[1,3,5,7,9,12,16]; [n le 7 select I[n] else Self(n-1)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-2)+a(n-3),
    a(0)=1, a(1)=3, a(2)=5, a(3)=7, a(4)=9, a(5)=12}, a(n), remember):
    seq(f(n),n=0..50); # Robert Israel, Jan 13 2016
  • Mathematica
    CoefficientList[ Series[(x + 1)^2*(1 + x + x^2)/(1 - x^2 - x^3), {x, 0, 45}], x] (* Robert G. Wilson v, Jul 31 2004 *)
    Join[{1, 3, 5}, LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50]] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    a(n)=if(n>2,([0,1,0; 0,0,1; 1,1,0]^n*[1;3;5])[1,1],1) \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = a(n-1) + a(n-5) = a(n-2) + a(n-3), for n > 6.
G.f.: (x+1)^2*(1+x+x^2) / (1-x^2-x^3).

Extensions

More terms from Robert G. Wilson v, Jul 31 2004

A005314 For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to {1,2} mod 4. - Vladeta Jovovic, Mar 10 2005
a(n)/a(n-1) tends to A109134; an eigenvalue of the matrix M and a root to the characteristic polynomial. - Gary W. Adamson, May 25 2007
Starting with offset 1 = INVERT transform of (1, 1, 0, 0, 1, 1, 0, 0, ...). - Gary W. Adamson, May 04 2009
a(n-2) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 0; 0, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [0, 0, 1; 1, 1, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+2) at a vertex of a unidirectional triangle containing a loop on remaining two vertices. - David Neil McGrath, Sep 15 2014
Also the number of binary words of length n that begin with 1 and avoid the subword 101. a(5) = 9: 10000, 10001, 10010, 10011, 11000, 11001, 11100, 11110, 11111. - Alois P. Heinz, Jul 21 2016
Also the number of binary words of length n-1 such that every two consecutive 0s are immediately followed by at least two consecutive 1s. a(4) = 5: 010, 011, 101, 110, 111. - Jerrold Grossman, May 03 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ...
From _Gus Wiseman_, Nov 25 2019: (Start)
a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are:
  {1}  {2}    {3}      {4}        {5}
       {1,2}  {2,3}    {1,4}      {1,5}
              {1,2,3}  {3,4}      {2,5}
                       {2,3,4}    {4,5}
                       {1,2,3,4}  {1,2,5}
                                  {1,4,5}
                                  {3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals row sums of triangle A099557.
Equals row sums of triangle A224838.
Cf. A011973 (starting with offset 1 = Falling diagonal sums of triangle with rows displayed as centered text).
First differences of A005251, shifted twice to the left.

Programs

  • Haskell
    a005314 n = a005314_list !! n
    a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list
       (tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // Marius A. Burtea, Oct 24 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // Marius A. Burtea, Oct 24 2019
    
  • Maple
    A005314 := proc(n)
        option remember ;
        if n <=2 then
            n;
        else
            2*procname(n-1)-procname(n-2)+procname(n-3) ;
        end if;
    end proc:
    seq(A005314(n),n=0..20) ; # R. J. Mathar, Feb 25 2024
  • Mathematica
    LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
    Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* John Molokach, Jul 21 2013 *)
    Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* John Molokach, Jul 25 2013 *)
    a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* Harvey P. Dale, May 13 2018 *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{_,x_,y_,_}/;x+2==y]&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    {a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))}
    
  • PARI
    {a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • SageMath
    def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) )
    [A005314(n) for n in range(51)] # G. C. Greubel, Nov 10 2023

Formula

From Paul D. Hanna, Oct 22 2004: (Start)
G.f.: x/(1-2*x+x^2-x^3).
a(n) = Sum_{k=0..[(2n-1)/3]} binomial(n-1-[k/2], k), where [x]=floor(x). (End)
a(n) = Sum_{k=0..n} binomial(n-k, 2*k+1).
23*a_n = 3*P_{2n+2} + 7*P_{2n+1} - 2*P_{2n}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
G.f. (1-z)*(1+z^2)/(1-2*z+z^2-z^3) for the augmented version 1, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, ... was given in Simon Plouffe's thesis of 1992.
a(n) = a(n-1) + a(n-2) + a(n-4) = a(n-2) + A049853(n-1) = a(n-1) + A005251(n) = Sum_{i <= n} A005251(i).
a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k, 2*k+1). - Richard L. Ollerton, May 12 2004
M^n*[1,0,0] = [a(n-2), a(n-1), a]; where M = the 3 X 3 matrix [0,1,0; 0,0,1; 1,-1,2]. Example M^5*[1,0,0] = [3,5,9]. - Gary W. Adamson, May 25 2007
a(n) = A000931(2*n + 4). - Michael Somos, Sep 18 2012
a(n) = A077954(-n - 2). - Michael Somos, Sep 18 2012
G.f.: 1/( 1 - Sum_{k>=0} x*(x-x^2+x^3)^k ) - 1. - Joerg Arndt, Sep 30 2012
a(n) = Sum_{k=0..n} binomial( n-floor((k+1)/2), n-floor((3k-1)/2) ). - John Molokach, Jul 21 2013
a(n) = Sum_{k=1..floor((2*n+2)/3)} binomial(n - floor((4*n+15-6*k+(-1)^k)/12), n - floor((4*n+15-6*k+(-1)^k)/12) - floor((2*n-1)/3) + k - 1). - John Molokach, Jul 24 2013
a(n) = round(A001608(2n+1)*r) where r is the real root of 23*x^3 - 23*x^2 + 8*x - 1 = 0, r = 0.4114955... - Richard Turk, Oct 24 2019
a(n+2) = n + 2 + Sum_{k=0..n} (n-k)*a(k). - Greg Dresden and Yichen P. Wang, Sep 16 2021
a(n) ~ (19 - r + 11*r^2) / (23 * r^(n-1)), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 14 2024
a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3;-n,3/2;27/4). - R. J. Mathar, Jun 27 2024
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = p^(n+1)/((p-q)*(p-r)) + q^(n+1)/((q-p)*(q-r)) + r^(n+1)/((r-p)*(r-q)). Compare to similar formula for A005251. - Greg Dresden and AnXing Yang, Aug 19 2025

Extensions

More terms and additional formulas from Henry Bottomley, Jul 21 2000
Plouffe's g.f. edited by R. J. Mathar, May 12 2008

A182097 Expansion of 1/(1-x^2-x^3).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537, 1618192, 2143648, 2839729, 3761840, 4983377, 6601569, 8745217
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2012

Keywords

Comments

Number of compositions (ordered partitions) into parts 2 and 3. - Joerg Arndt, Aug 21 2013
a(n) is the top left entry of the n-th power of any of the 3X3 matrices [0, 1, 1; 0, 0, 1; 1, 0, 0], [0, 1, 0; 1, 0, 1; 1, 0, 0], [0, 1, 1; 1, 0, 0; 0, 1, 0] or [0, 0, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Conjectured values of d(n), the dimension of a Z-module in MZV(conv). See the Waldschmidt link. - Michael Somos, Mar 14 2014
Shannon et al. (2006) call these the Van der Laan numbers. - N. J. A. Sloane, Jan 11 2022

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
		

References

  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See R_n.
  • Michel Waldschmidt, "Multiple Zeta values and Euler-Zagier numbers", in Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000).

Crossrefs

The following are basically all variants of the same sequence: A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3))); // G. C. Greubel, Aug 11 2018
  • Mathematica
    a[ n_] := If[n < 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, -n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
    CoefficientList[Series[1/(1-x^2-x^3),{x,0,60}],x] (* or *) LinearRecurrence[ {0,1,1},{1,0,1},70] (* Harvey P. Dale, Dec 04 2014 *)
  • PARI
    {a(n) = if( n<0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Dec 13 2013 */
    
  • PARI
    Vec(1/(1-x^2-x^3) + O(x^99)) \\ Altug Alkan, Sep 02 2016
    

Formula

G.f.: 1 / (1 - x^2 - x^3).
a(n) = A000931(n+3).
From Michael Somos, Dec 13 2013: (Start)
a(n) = A176971(-n).
a(n) = a(n-2) + a(n-3) for all n in Z.
a(n-7) = A133034(n).
a(n-5) = A078027(n).
a(n-3) = A000931(n).
a(n+2) = A134816(n).
a(n+4) = A164001(n) if n > 1. - (End)
a(n) = (A001608(n) - A000931(n))/2. - Elmo R. Oliveira, Dec 31 2022

A008346 a(n) = Fibonacci(n) + (-1)^n.

Original entry on oeis.org

1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577, 5702888, 9227464, 14930353, 24157816, 39088170, 63245985, 102334156
Offset: 0

Views

Author

Keywords

Comments

Diagonal sums of A059260. - Paul Barry, Oct 25 2004
The absolute value of the Euler characteristic of the Boolean complex of the Coxeter group A_n. - Bridget Tenner, Jun 04 2008
a(n) is the number of compositions (ordered partitions) of n into two sorts of 2's and one sort of 3's. Example: the a(5)=4 compositions of 5 are 2+3, 2'+3, 3+2 and 3+2'. - Bob Selcoe, Jun 21 2013
Let r = 0.70980344286129... denote the rabbit constant A014565. The sequence 2^a(n) gives the simple continued fraction expansion of the constant r/2 = 0.35490172143064565732 ... = 1/(2^1 + 1/(2^0 + 1/(2^2 + 1/(2^1 + 1/(2^4 + 1/(2^4 + 1/(2^9 + 1/(2^12 + ... )))))))). Cf. A099925. - Peter Bala, Nov 06 2013
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
a(n) is the number of growing self-avoiding walks with n+3 edges on the grid graph of integer points (x,y) with x >= 0 and y in {0, 1} and with a trapped endpoint. - Jay Pantone, Jul 26 2024

Examples

			The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
		

Crossrefs

Programs

Formula

G.f.: 1/(1 - 2*x^2 - x^3).
a(n) = 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)binomial(j, k). Diagonal sums of A059260. - Paul Barry, Sep 23 2004
From Paul Barry, Oct 04 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^(3k-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^k(1/2)^(n-2k). (End)
From Paul Barry, Oct 25 2004: (Start)
G.f.: 1/((1+x)*(1-x-x^2)).
a(n) = Sum_{k=0..n} binomial(n-k-1, k). (End)
a(n) = |1 + (-1)^(n-1)*Fibonacci(n-1)|. - Bridget Tenner, Jun 04 2008
a(n) = A000045(n) + A033999(n). - Michel Marcus, Nov 14 2013
a(n) = Fibonacci(n+1) - a(n-1), with a(0) = 1. - Franklin T. Adams-Watters, Mar 26 2014
a(n) = b(n+1) where b(n) = b(n-1) + b(n-2) + (-1)^(n+1), b(0) = 0, b(1) = 1. See also A098600. - Richard R. Forberg, Aug 30 2014
a(n) = b(n+2) where b(n) = Sum_{k=1..n} b(n-k)*A000931(k+1), b(0) = 1. - J. Conrad, Apr 19 2017
a(n) = Sum_{j=n+1..2*n+1} F(j) mod Sum_{j=0..n} F(j) for n > 2 and F(j)=A000045(j). - Art Baker, Jan 20 2019

A095263 a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).

Original entry on oeis.org

1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

a(n+1) = number of n-tuples over {0,1,2} without consecutive digits. For the general case see A096261.
Diagonal sums of Riordan array (1/(1-x)^3, x/(1-x^3)), A127893. - Paul Barry, Jan 07 2008
The signed variant (-1)^(n+1)*a(n+1) is the bottom right entry of the n-th power of the matrix [[0,1,0],[0,0,1],[-1,-2,-3]]. - Roger L. Bagula, Jul 01 2007
a(n) is the number of generalized compositions of n+1 when there are i^2/2-i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.1) gives a bijection between colored compositions of n, where each part k has one of binomial(k,2) colors, and 0,1,2 strings of length n-2 without sequential digits (i.e., avoiding 01 and 12). Cf. A052529. - Peter Bala, Sep 17 2013
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^2 - S^3; see A291000. - Clark Kimberling, Aug 24 2017
For n>1, a(n-1) is the number of ways to split [n] into an unspecified number of intervals and then choose 2 blocks (i.e., subintervals) from each interval. For example, for n=6, a(5)=37 since the number of ways to split [6] into intervals and then select 2 blocks from each interval is C(6,2) + C(4,2)*C(2,2) + C(3,2)*C(3,2) + C(2,2)*C(4,2) + C(2,2)*C(2,2)*C(2,2). - Enrique Navarrete, May 20 2022

Examples

			a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
		

Crossrefs

Cf. A052921 (first differences), A137229 (partial sums).
Column k=3 of A277666.

Programs

  • Magma
    I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
    
  • Maple
    A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
    seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
  • Mathematica
    a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
    a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
    RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
  • Sage
    [sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021

Formula

Let M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 -2 3]; then M^n *[1 0 0] = [a(n-2) a(n-1) a(n)].
a(n)/a(n-1) tends to 2.3247179572..., an eigenvalue of M and a root of the characteristic polynomial. [Is that constant equal to 1 + A060006? - Michel Marcus, Oct 11 2014] [Yes, the limit is the root of the equation -1 + 2*x - 3*x^2 + x^3 = 0, after substitution x = y + 1 we have the equation for y: -1 - y + y^3 = 0, y = A060006. - Vaclav Kotesovec, Jan 27 2015]
Related to the Padovan sequence A000931 as follows : a(n)=A000931(3n+4). Also the binomial transform of A000931(n+4).
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, n-2*k+1).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 3*k-1). (End)
From Paul Barry, Jan 07 2008: (Start)
G.f.: x/(1 -3*x +2*x^2 -x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k+2,3*k+2).
a(n) = Sum_{k=0..n} binomial(n,k) * Sum_{j=0..floor((k+4)/2)} binomial(j,k-2j+4). (End)
If p[i]=i(i-1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=det A. - Milan Janjic, May 02 2010
a(n) = A000931(3*n + 4). - Michael Somos, Sep 18 2012

Extensions

Edited by Paul Barry, Jul 06 2004
Corrected and extended by Robert G. Wilson v, Jun 05 2004

A134816 Padovan's spiral numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2007

Keywords

Comments

a(n) is the length of the edge of the n-th equilateral triangle in the Padovan triangle spiral.
Partial sums of A000931. - Juri-Stepan Gerasimov, Jul 17 2009
Rising diagonal sums of triangle A152198. - John Molokach, Jul 09 2013
a(n) is the number of pairs of rabbits living at month n with the following rules: a pair of rabbits born in month n begins to procreate in month n + 2, procreates again in month n + 3, and dies at the end of this month (each pair therefore gives birth to 2 pairs); the first pair is born in month 1. - Robert FERREOL, Oct 16 2017

Examples

			a(6)=3 because 6+4=10 and A000931(10)=3.
G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Aug 12 2018
    
  • Maple
    a:=proc(n, p, q) option remember:
    if n<=p then 1
    elif n<=q then a(n-1, p, q)+a(n-p, p, q)
    else add(a(n-k, p, q), k=p..q) fi end:
    seq(a(n, 2, 3), n=0..100); # Robert FERREOL, Oct 16 2017
  • Mathematica
    Drop[ CoefficientList[ Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 52}], x], 5] (* Robert G. Wilson v, Sep 30 2009 *)
    a[n_]=Round[Root[23#^3-5#-1&,1]Root[#^3-#-1&,1]^n ];a[Range[100]] (* OR *)
    LinearRecurrence[{0, 1, 1}, {1, 1, 1}, 100] (* Federico Provvedi, Feb 12 2025 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( (x + x^2) / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( (x + x^2) / (1 + x - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jan 01 2019 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x*(1+x)/(1-x^2-x^3)) \\ Joerg Arndt, Feb 07 2025

Formula

a(n) = A000931(n+4).
G.f.: x * (1 + x) / (1 - x^2 - x^3) = x / (1 - x / (1 - x^2 / (1 + x / (1 - x / (1 + x))))). - Michael Somos, Jan 03 2013
a(1)=a(2)=a(3)=1, a(n) = a(n-2) + a(n-3) for n > 3. - Robert FERREOL, Oct 16 2017
a(n) = round(x*rho^n), where the Silver constant rho = Limit_{n->oo} a(n+1)/a(n) = A060006, and x is the real solution of the cubic 23*x^3-5*x-1 = 0. - Federico Provvedi, Feb 12 2025

Extensions

More terms from Robert G. Wilson v, Sep 30 2009
First comment clarified by Omar E. Pol, Aug 12 2018

A079398 a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(n) = a(n-3) + a(n-4) for n > 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 8, 9, 12, 15, 17, 21, 27, 32, 38, 48, 59, 70, 86, 107, 129, 156, 193, 236, 285, 349, 429, 521, 634, 778, 950, 1155, 1412, 1728, 2105, 2567, 3140, 3833, 4672, 5707, 6973, 8505, 10379, 12680, 15478, 18884, 23059, 28158, 34362
Offset: 0

Views

Author

Benoit Cloitre, Feb 16 2003

Keywords

Comments

P(0)=P(1)=P(2)=P(3)=1, for m > 3: P(m) = P(m-3) + P(m-4) is the 3rd sequence in the series: Fibonacci sequence, Padovan sequence, ... The Padovan sequence (whose ratio of successive terms approaches the plastic constant) is similar to the Perrin sequence. - Jonathan Vos Post, Jan 23 2005
Binomial transform yields A079398 without the initial (0,1,1,1). - R. J. Mathar, Apr 09 2008
a(n+1) corresponds to the diagonal sums of "triangle": 1; 1; 1; 1,1; 1,1; 1,1; 1,2,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated three times. - Philippe Deléham, Dec 13 2008
a(n) is the number of pairs of rabbits living at month n with the following rules: a pair of rabbits born in month n begins to procreate in month n + 3, procreates again in month n + 4, and dies at the end of this month (each pair therefore gives birth to 2 pairs); warning! The first pair is born in month 2. - Robert FERREOL, Oct 24 2017

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x + x^2)/(1 - x^3 - x^4), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    LinearRecurrence[{0, 0, 1, 1}, {0, 1, 1, 1}, 60] (* Jean-François Alcover, Dec 05 2017 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+b}; NestList[nxt,{0,1,1,1},60][[;;,1]] (* Harvey P. Dale, Apr 27 2023 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0]^n*[0;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(1+x+x^2)/(1-x^3-x^4))) \\ G. C. Greubel, Apr 30 2017

Formula

a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(n) = a(n-3) + a(n-4) for n > 3. - Colin Barker, Sep 18 2013
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n-k-1)/3), k) (offset 0).
a(n) = (Sum_{k=0..floor(n/2)} binomial(floor((n-k-1)/3), k))-0^n (offset 0). (End)
For n > 1, a(n) = P(n-2) where P(n) is defined by: P(0)=P(1)=P(2)=P(3)=1, for m > 3: P(m) = P(m-3) + P(m-4). - Jonathan Vos Post, Jan 23 2005
The same sequence may be constructed as follows: Let M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}}; v[1] = {1, 1, 1, 1}; v[n] = M.v[n - 1]. Then a(n) = v[n][[1]]. - Roger L. Bagula, Sep 16 2006
O.g.f.: -x^2*(1+x+x^2)/(-1+x^3+x^4). a(n) = A017817(n-1) + A017817(n-2) + A017817(n-3). - R. J. Mathar, Apr 09 2008

Extensions

Recurrence corrected by Colin Barker, Sep 18 2013

A171861 Expansion of x*(1+x+x^2) / ( (x-1)*(x^3+x^2-1) ).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 25, 34, 46, 62, 83, 111, 148, 197, 262, 348, 462, 613, 813, 1078, 1429, 1894, 2510, 3326, 4407, 5839, 7736, 10249, 13578, 17988, 23830, 31569, 41821, 55402, 73393, 97226, 128798, 170622, 226027, 299423, 396652, 525453, 696078, 922108
Offset: 1

Views

Author

Ed Pegg Jr, Oct 16 2010

Keywords

Comments

Number of wins in Penney's game if the two players start HHT and TTT and HHT beats TTT.
HHT beats TTT 70% of the time. - Geoffrey Critzer, Mar 01 2014

Examples

			a(n) enumerates length n+2 sequences on {H,T} that end in HHT but do not contain the contiguous subsequence TTT.
a(3)=4 because we have: TTHHT, THHHT, HTHHT, HHHHT.
a(4)=6 because we have: TTHHHT, THTHHT, THHHHT, HTTHHT, HTHHHT, HHHHHT. - _Geoffrey Critzer_, Mar 01 2014
		

Crossrefs

Related sequences are A000045 (HHH beats HHT, HTT beats TTH), A006498 (HHH beats HTH), A023434 (HHH beats HTT), A000930 (HHH beats THT, HTH beats HHT), A000931 (HHH beats TTH), A077868 (HHT beats HTH), A002620 (HHT beats HTT), A000012 (HHT beats THH), A004277 (HHT beats THT), A070550 (HTH beats HHH), A000027 (HTH beats HTT), A097333 (HTH beats THH), A040000 (HTH beats TTH), A068921 (HTH beats TTT), A054405 (HTT beats HHH), A008619 (HTT beats HHT), A038718 (HTT beats THT), A128588 (HTT beats TTT).
Cf. A164315 (essentially the same sequence).

Programs

  • Maple
    A171861 := proc(n) option remember; if n <=4 then op(n,[1,2,4,6]); else procname(n-1)+procname(n-2)-procname(n-4) ; end if; end proc:
  • Mathematica
    nn=44;CoefficientList[Series[x(1+x+x^2)/(1-x-x^2+x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 01 2014 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^(n-1)*[1;2;4;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = a(n-1) +a(n-2) -a(n-4) = A000931(n+10)-3 = A134816(n+6)-3 = A078027(n+12)-3.
a(n) = A164315(n-1). - Alois P. Heinz, Oct 12 2017

A219866 Number A(n,k) of tilings of a k X n rectangle using dominoes and straight (3 X 1) trominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 2, 7, 14, 7, 2, 1, 1, 2, 15, 41, 41, 15, 2, 1, 1, 3, 30, 143, 184, 143, 30, 3, 1, 1, 4, 60, 472, 1069, 1069, 472, 60, 4, 1, 1, 5, 123, 1562, 5624, 9612, 5624, 1562, 123, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			A(2,3) = A(3,2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
  .___.   .___.   .___.   .___.
  | | |   |___|   | | |   |___|
  | | |   |___|   |_|_|   | | |
  |_|_|   |___|   |___|   |_|_|
Square array A(n,k) begins:
  1,  1,  1,    1,     1,      1,        1,         1, ...
  1,  0,  1,    1,     1,      2,        2,         3, ...
  1,  1,  2,    4,     7,     15,       30,        60, ...
  1,  1,  4,   14,    41,    143,      472,      1562, ...
  1,  1,  7,   41,   184,   1069,     5624,     29907, ...
  1,  2, 15,  143,  1069,   9612,    82634,    707903, ...
  1,  2, 30,  472,  5624,  82634,  1143834,  15859323, ...
  1,  3, 60, 1562, 29907, 707903, 15859323, 354859954, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A000931(n+3), A129682, A219867, A219862, A219868, A219869, A219870, A219871, A219872, A219873.
Main diagonal gives: A219874.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od;
             b(n, subsop(k=3, l))+ b(n, subsop(k=2, l))+
             `if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k, t}, If [Max[l] > n, 0, If[ n == 0 || l == {}, 1, If[Min[l] > 0, t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + b[n, ReplacePart[l, k -> 2]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

A103372 a(1) = a(2) = a(3) = a(4) = a(5) = 1 and for n>5: a(n) = a(n-4) + a(n-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613, 4163, 4824, 5684, 6697, 7776
Offset: 1

Views

Author

Jonathan Vos Post, Feb 03 2005

Keywords

Comments

k=4 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1) and k=3 case is A079398 (offset so as to begin 1,1,1,1).
The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1) and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]).
For this k=4 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the irreducible characteristic polynomial: x^5 - x - 1 = 0, A160155.
The sequence of prime values in this k=4 case is A103382; The sequence of semiprime values in this k=4 case is A103392.

Examples

			a(14) = 5 because a(14) = a(14-4) + a(14-5) = a(10) + a(9) = 3 + 2 = 5.
		

References

  • Zanten, A. J. van, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 61]
    LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},70] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,0,0,0]^(n-1)*[1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f. -x*(1+x)*(1+x^2) / ( -1+x^4+x^5 ). - R. J. Mathar, Aug 26 2011
a(n) = A124789(n-2)+A124798(n-1). - R. J. Mathar, Jun 30 2020

Extensions

Edited by Ray Chandler and Robert G. Wilson v, Feb 06 2005
Previous Showing 51-60 of 241 results. Next