A096231
Number of n-th generation triangles in the tiling of the hyperbolic plane by triangles with angles {Pi/2, Pi/3, 0}.
Original entry on oeis.org
1, 3, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081
Offset: 0
Bellovin, Kennedy, Stansifer, Wong (chrkenn(AT)bergen.org), Jul 29 2004
a(1)=3 because exactly three triangles have generation 1, i.e., are adjacent to the triangle with generation 0.
- Robert Israel, Table of n, a(n) for n = 0..8110
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
-
I:=[1,3,5,7,9,12,16]; [n le 7 select I[n] else Self(n-1)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
-
f:= gfun:-rectoproc({a(n) = a(n-2)+a(n-3),
a(0)=1, a(1)=3, a(2)=5, a(3)=7, a(4)=9, a(5)=12}, a(n), remember):
seq(f(n),n=0..50); # Robert Israel, Jan 13 2016
-
CoefficientList[ Series[(x + 1)^2*(1 + x + x^2)/(1 - x^2 - x^3), {x, 0, 45}], x] (* Robert G. Wilson v, Jul 31 2004 *)
Join[{1, 3, 5}, LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50]] (* Vincenzo Librandi, Dec 30 2015 *)
-
a(n)=if(n>2,([0,1,0; 0,0,1; 1,1,0]^n*[1;3;5])[1,1],1) \\ Charles R Greathouse IV, Feb 09 2017
A005314
For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).
Original entry on oeis.org
0, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046
Offset: 0
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ...
From _Gus Wiseman_, Nov 25 2019: (Start)
a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are:
{1} {2} {3} {4} {5}
{1,2} {2,3} {1,4} {1,5}
{1,2,3} {3,4} {2,5}
{2,3,4} {4,5}
{1,2,3,4} {1,2,5}
{1,4,5}
{3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..400
- Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Hung Viet Chu and Zachary Louis Vasseur, Schreier Sets of Multiples of an Integer, Linear Recurrence, and Pascal Triangle, arXiv:2506.14312 [math.CO], 2025. See Table 1 p. 2.
- Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See pp. 8, 10.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 426
- L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013, preprint Annals of Combinatorics, March 2016, Volume 20, Issue 1, pp 125-138.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Equals row sums of triangle
A099557.
Equals row sums of triangle
A224838.
Cf.
A011973 (starting with offset 1 = Falling diagonal sums of triangle with rows displayed as centered text).
First differences of
A005251, shifted twice to the left.
-
a005314 n = a005314_list !! n
a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list
(tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // Marius A. Burtea, Oct 24 2019
-
R:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // Marius A. Burtea, Oct 24 2019
-
A005314 := proc(n)
option remember ;
if n <=2 then
n;
else
2*procname(n-1)-procname(n-2)+procname(n-3) ;
end if;
end proc:
seq(A005314(n),n=0..20) ; # R. J. Mathar, Feb 25 2024
-
LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* John Molokach, Jul 21 2013 *)
Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* John Molokach, Jul 25 2013 *)
a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* Harvey P. Dale, May 13 2018 *)
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{_,x_,y_,_}/;x+2==y]&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
{a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))}
-
{a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
-
def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) )
[A005314(n) for n in range(51)] # G. C. Greubel, Nov 10 2023
A182097
Expansion of 1/(1-x^2-x^3).
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537, 1618192, 2143648, 2839729, 3761840, 4983377, 6601569, 8745217
Offset: 0
G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See R_n.
- Michel Waldschmidt, "Multiple Zeta values and Euler-Zagier numbers", in Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Hoffman, The algebra of multiharmonic series, Journ. of Alg., Vol. 192, Issue 2 (Aug 1997), 477-495.
- I. E. Leonard and A. C. F. Liu, A familiar recurrence occurs again, Amer. Math. Monthly, 119 (2012), 333-336.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (32).
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Michel Waldschmidt, Multiple Zeta values and Euler-Zagier numbers, Slides, Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000).
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3))); // G. C. Greubel, Aug 11 2018
-
a[ n_] := If[n < 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, -n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
CoefficientList[Series[1/(1-x^2-x^3),{x,0,60}],x] (* or *) LinearRecurrence[ {0,1,1},{1,0,1},70] (* Harvey P. Dale, Dec 04 2014 *)
-
{a(n) = if( n<0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Dec 13 2013 */
-
Vec(1/(1-x^2-x^3) + O(x^99)) \\ Altug Alkan, Sep 02 2016
A008346
a(n) = Fibonacci(n) + (-1)^n.
Original entry on oeis.org
1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577, 5702888, 9227464, 14930353, 24157816, 39088170, 63245985, 102334156
Offset: 0
The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Bilgici, Generalized order-k Pell-Padovan-like numbers by matrix methods, Pure and Applied Mathematics Journal, 2013; 2(6): 174-178.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, Predators and altruists arriving on jammed Riviera, arXiv:2401.01225 [math.CO], 2024. See p. 14.
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 13.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 445
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
- K. Ragnarsson and B. E. Tenner, Homotopy type of the Boolean complex of a Coxeter system, arXiv:0806.0906 [math.CO], 2008-2009.
- Index entries for linear recurrences with constant coefficients, signature (0,2,1).
-
List([0..50], n-> Fibonacci(n) + (-1)^n); # G. C. Greubel, Jul 13 2019
-
[Fibonacci(n) + (-1)^n: n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
-
with(combinat): f := n->fibonacci(n)+(-1)^n; seq(f(n), n=0..40);
-
Table[Fibonacci[n]+(-1)^n,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)
CoefficientList[Series[1/(1-2x^2-x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *)
LinearRecurrence[{0,2,1}, {1,0,2}, 51] (* Ray Chandler, Sep 08 2015 *)
-
a(n)=fibonacci(n)+(-1)^n \\ Charles R Greathouse IV, Feb 03 2014
-
[fibonacci(n)+(-1)^n for n in (0..50)] # G. C. Greubel, Jul 13 2019
A095263
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).
Original entry on oeis.org
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
-
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
-
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
-
[sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
A134816
Padovan's spiral numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655
Offset: 1
a(6)=3 because 6+4=10 and A000931(10)=3.
G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + ... - _Michael Somos_, Jan 01 2019
- Muniru A Asiru, Table of n, a(n) for n = 1..1500
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016).
- Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
- Alain Faisant, On the Padovan sequence, arXiv:1905.07702 [math.NT], 2019.
- Ed Harris, Pete McPartlan and Brady Haran, The Plastic Ratio, Numberphile video (2019).
- Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, On the Construction of 3D Fibonacci Spirals, Mathematics (2024) Vol. 12, No. 2, 201.
- Christian Richter, Tilings of convex polygons by equilateral triangles of many different sizes, Discrete Mathematics 343.3 (2020): 111745. (See Section 2.1.)
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- S. J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., 57:4 (2019), 291-298.
- Wikipedia, Padovan triangles
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
-
a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Aug 12 2018
-
a:=proc(n, p, q) option remember:
if n<=p then 1
elif n<=q then a(n-1, p, q)+a(n-p, p, q)
else add(a(n-k, p, q), k=p..q) fi end:
seq(a(n, 2, 3), n=0..100); # Robert FERREOL, Oct 16 2017
-
Drop[ CoefficientList[ Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 52}], x], 5] (* Robert G. Wilson v, Sep 30 2009 *)
a[n_]=Round[Root[23#^3-5#-1&,1]Root[#^3-#-1&,1]^n ];a[Range[100]] (* OR *)
LinearRecurrence[{0, 1, 1}, {1, 1, 1}, 100] (* Federico Provvedi, Feb 12 2025 *)
-
{a(n) = if( n>=0, polcoeff( (x + x^2) / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( (x + x^2) / (1 + x - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jan 01 2019 */
-
my(x='x+O('x^50)); Vec(x*(1+x)/(1-x^2-x^3)) \\ Joerg Arndt, Feb 07 2025
A079398
a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(n) = a(n-3) + a(n-4) for n > 3.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 8, 9, 12, 15, 17, 21, 27, 32, 38, 48, 59, 70, 86, 107, 129, 156, 193, 236, 285, 349, 429, 521, 634, 778, 950, 1155, 1412, 1728, 2105, 2567, 3140, 3833, 4672, 5707, 6973, 8505, 10379, 12680, 15478, 18884, 23059, 28158, 34362
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
- Eric Weisstein's World of Mathematics, Padovan Sequence.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1).
-
CoefficientList[Series[x (1 + x + x^2)/(1 - x^3 - x^4), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 16 2014 *)
LinearRecurrence[{0, 0, 1, 1}, {0, 1, 1, 1}, 60] (* Jean-François Alcover, Dec 05 2017 *)
nxt[{a_,b_,c_,d_}]:={b,c,d,a+b}; NestList[nxt,{0,1,1,1},60][[;;,1]] (* Harvey P. Dale, Apr 27 2023 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0]^n*[0;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
x='x+O('x^50); concat([0], Vec(x*(1+x+x^2)/(1-x^3-x^4))) \\ G. C. Greubel, Apr 30 2017
A171861
Expansion of x*(1+x+x^2) / ( (x-1)*(x^3+x^2-1) ).
Original entry on oeis.org
1, 2, 4, 6, 9, 13, 18, 25, 34, 46, 62, 83, 111, 148, 197, 262, 348, 462, 613, 813, 1078, 1429, 1894, 2510, 3326, 4407, 5839, 7736, 10249, 13578, 17988, 23830, 31569, 41821, 55402, 73393, 97226, 128798, 170622, 226027, 299423, 396652, 525453, 696078, 922108
Offset: 1
a(n) enumerates length n+2 sequences on {H,T} that end in HHT but do not contain the contiguous subsequence TTT.
a(3)=4 because we have: TTHHT, THHHT, HTHHT, HHHHT.
a(4)=6 because we have: TTHHHT, THTHHT, THHHHT, HTTHHT, HTHHHT, HHHHHT. - _Geoffrey Critzer_, Mar 01 2014
Related sequences are
A000045 (HHH beats HHT, HTT beats TTH),
A006498 (HHH beats HTH),
A023434 (HHH beats HTT),
A000930 (HHH beats THT, HTH beats HHT),
A000931 (HHH beats TTH),
A077868 (HHT beats HTH),
A002620 (HHT beats HTT),
A000012 (HHT beats THH),
A004277 (HHT beats THT),
A070550 (HTH beats HHH),
A000027 (HTH beats HTT),
A097333 (HTH beats THH),
A040000 (HTH beats TTH),
A068921 (HTH beats TTT),
A054405 (HTT beats HHH),
A008619 (HTT beats HHT),
A038718 (HTT beats THT),
A128588 (HTT beats TTT).
Cf.
A164315 (essentially the same sequence).
-
A171861 := proc(n) option remember; if n <=4 then op(n,[1,2,4,6]); else procname(n-1)+procname(n-2)-procname(n-4) ; end if; end proc:
-
nn=44;CoefficientList[Series[x(1+x+x^2)/(1-x-x^2+x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 01 2014 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^(n-1)*[1;2;4;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A219866
Number A(n,k) of tilings of a k X n rectangle using dominoes and straight (3 X 1) trominoes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 2, 7, 14, 7, 2, 1, 1, 2, 15, 41, 41, 15, 2, 1, 1, 3, 30, 143, 184, 143, 30, 3, 1, 1, 4, 60, 472, 1069, 1069, 472, 60, 4, 1, 1, 5, 123, 1562, 5624, 9612, 5624, 1562, 123, 5, 1
Offset: 0
A(2,3) = A(3,2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___. .___. .___. .___.
| | | |___| | | | |___|
| | | |___| |_|_| | | |
|_|_| |___| |___| |_|_|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 1, 1, 2, 2, 3, ...
1, 1, 2, 4, 7, 15, 30, 60, ...
1, 1, 4, 14, 41, 143, 472, 1562, ...
1, 1, 7, 41, 184, 1069, 5624, 29907, ...
1, 2, 15, 143, 1069, 9612, 82634, 707903, ...
1, 2, 30, 472, 5624, 82634, 1143834, 15859323, ...
1, 3, 60, 1562, 29907, 707903, 15859323, 354859954, ...
Columns (or rows) k=0-10 give:
A000012,
A000931(n+3),
A129682,
A219867,
A219862,
A219868,
A219869,
A219870,
A219871,
A219872,
A219873.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od;
b(n, subsop(k=3, l))+ b(n, subsop(k=2, l))+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, l_] := b[n, l] = Module[{k, t}, If [Max[l] > n, 0, If[ n == 0 || l == {}, 1, If[Min[l] > 0, t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + b[n, ReplacePart[l, k -> 2]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
A103372
a(1) = a(2) = a(3) = a(4) = a(5) = 1 and for n>5: a(n) = a(n-4) + a(n-5).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613, 4163, 4824, 5684, 6697, 7776
Offset: 1
a(14) = 5 because a(14) = a(14-4) + a(14-5) = a(10) + a(9) = 3 + 2 = 5.
- Zanten, A. J. van, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
- Indranil Ghosh, Table of n, a(n) for n = 1..14857
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Richard Padovan, Dom Hans van der Laan and the Plastic Number.
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
- J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988), 1-16.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1).
-
k = 4; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 61]
LinearRecurrence[{0,0,0,1,1},{1,1,1,1,1},70] (* Harvey P. Dale, Apr 22 2015 *)
-
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,0,0,0]^(n-1)*[1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
Comments