1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1
Offset: 1
Triangle starts:
{1},
{2,1},
{8,6,1},
{48,44,12,1},
...
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned triangle [1/(1-2x),log(1/sqrt(1-2x))] has production matrix:
2, 1,
4, 4, 1,
8, 12, 6, 1,
16, 32, 24, 8, 1,
32, 80, 80, 40, 10, 1,
64, 192, 240, 160, 60, 12, 1
which is A007318^{2} beheaded. (End)
A094216
Triangle read by rows giving the coefficients of formulas generating each variety of S1(n,k) (unsigned Stirling numbers of first kind). The p-th row (p>=1) contains T(i,p) for i=1 to 2*p, where T(i,p) satisfies Sum_{i=1..2*p} T(i,p) * C(n,i).
Original entry on oeis.org
1, 1, 2, 7, 8, 3, 6, 38, 93, 111, 65, 15, 24, 226, 874, 1821, 2224, 1600, 630, 105, 120, 1524, 8200, 24860, 47185, 58465, 47474, 24430, 7245, 945, 720, 11628, 81080, 326712, 852690, 1522375, 1905168, 1676325, 1018682, 407925, 97020, 10395, 5040
Offset: 1
Row 5 contains 120,1524,8200,24860,47185,58465,47474,24430,7245,945, so the formula generating S1(n+5,n) numbers { A053567 } will be the following : 120*n +1524*C(n,2) +8200*C(n,3) +24860*C(n,4) +47185*C(n,5) +58465*C(n,6) +47474*C(n,7) +24430*C(n,8) +7245*C(n,9) +945*C(n,10). And then substituting for the 10th number of such a S1(n+p,n) gives S1(15,10) = 37312275.
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964, 9th Printing (1970), pp. 833-834.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Francis L. Miksa (1901-1975), Stirling numbers of the first kind, "27 leaves reproduced from typewritten manuscript on deposit in the UMT File", Mathematical Tables and Other Aids to Computation, vol. 10, no. 53, January 1956, pp. 37-38 (Reviews and Descriptions of Tables and Books, 7[I]).
- Dragoslav S. Mitrinovic (1908-1995), Sur les nombres de Stirling de première espèce et les polynômes de Stirling, AMS 11B73_05A19, Publications de la Faculté d'Electrotechnique de l'Université de Belgrade, Série Mathématiques et Physique (ISSN 0522-8441), no. 23, 1959 (5.V.1959), pp. 1-20.
- John J. O'Connor and Edmund F. Robertson, James Stirling (1692-1770), (September 1998).
- Eric Weisstein's World of Mathematics, Stirling numbers of the first kind.
- Stephen Wolfram, Wolfram Research, Mathematica 5.2, webMathematica 2.
-
row[m_] := Module[{eq, t}, eq[n_] := Array[t, 2 m].Table[Binomial[n, k], {k, 1, 2 m}] == Abs[StirlingS1[n + m, n]]; Array[t, 2 m] /. Solve[ Array[ eq, 2 m]] // First];
Array[row, 7] // Flatten (* Jean-François Alcover, Nov 14 2019 *)
A024199
a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1).
Original entry on oeis.org
0, 1, 2, 13, 76, 789, 7734, 110937, 1528920, 28018665, 497895210, 11110528485, 241792844580, 6361055257725, 163842638377950, 4964894559637425, 147721447995130800, 5066706567801827025, 171002070002301095250, 6548719685561840296125, 247199273204273879989500
Offset: 0
a(3) = (2*3 - 1)!! * Sum_{k=0..2} (-1)^k/(2k + 1) = 5!! * (1/(2*0 + 1) - 1/(2*1 + 1) + 1/(2*2 + 1)) = 5*3*1*(1/1 - 1/3 + 1/5) = 15 - 5 + 3 = 13. Notice that the first factor always cancels the common denominator of the sum. - _Michael B. Porter_, Jul 22 2016
- A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.
Equals first right hand column of
A167594.
(End)
-
[0] cat [ n le 2 select (n) else 2*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 17 2015
-
a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 else 2*a(n-1)+(2*n-3)^2* a(n-2) fi end: seq(a(n), n=0..20); # Peter Luschny, Nov 16 2016 after N. J. A. Sloane
-
f[k_] := (2 k - 1) (-1)^(k + 1)
t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}] (* A024199 signed *)
(* Clark Kimberling, Dec 30 2011 *)
RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1],a[0] == 0, a[1] == 1},a,{n,0,20}] (* Vaclav Kotesovec, Mar 18 2014 *)
CoefficientList[Series[Pi/4/Sqrt[1-2*x] - 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)
A049209
a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
Original entry on oeis.org
1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0
Row sums of triangle
A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6), this sequence (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
[ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
-
m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A052502
Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.
Original entry on oeis.org
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.
First column of array
A091752 (also negative of second column).
Trisection of column k=3 of
A261430.
-
List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
-
[Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
-
{a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
-
[factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
A104443
Square of P(n,t) read by antidiagonals. P(n,t) = number of ways to split [t*n] into n arithmetic progressions each with t terms.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 2, 15, 1, 1, 2, 5, 105, 1, 1, 2, 4, 15, 945, 1, 1, 2, 4, 11, 55, 10395, 1, 1, 2, 4, 10, 23, 232, 135135, 1, 1, 2, 4, 10, 21, 68, 1161, 2027025, 1, 1, 2, 4, 10, 20, 59, 161, 6643, 34459425, 1, 1, 2, 4, 10, 20, 57, 125, 488, 44566, 654729075, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 2, 2, 2, 2, 2, 2, ...
1, 15, 5, 4, 4, 4, 4, 4, 4, ...
1, 105, 15, 11, 10, 10, 10, 10, 10, ...
1, 945, 55, 23, 21, 20, 20, 20, 20, ...
1, 10395, 232, 68, 59, 57, 56, 56, 56, ...
1, 135135, 1161, 161, 125, 119, 117, 116, 116, ...
1, 2027025, 6643, 488, 349, 329, 323, 321, 320, ...
1, 34459425, 44566, 1249, 848, 760, 745, 739, 737, ...
...
A002135
Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.
Original entry on oeis.org
1, 1, 2, 5, 17, 73, 388, 2461, 18155, 152531, 1436714, 14986879, 171453343, 2134070335, 28708008128, 415017867707, 6416208498137, 105630583492969, 1844908072865290, 34071573484225549, 663368639907213281, 13580208904207073801
Offset: 0
For n = 3, the a(3) = 5 ways to deal out the deck {1, 1, 2, 2, 3, 3} into three two-card hands are {11, 22, 33}, {12, 12, 33}, {13, 13, 22}, {11, 23, 23}, {12, 13, 23}. - _Joel B. Lewis_, Sep 30 2012
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a_n.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.9 and Problem 5.22.
- T. D. Noe, Table of n, a(n) for n=0..100
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5. [Annotated scanned copy]
- Art of Problem Solving, Partitioning a deck with 2 cards in n types into pairs
- A. Cayley, On the number of distinct terms in a symmetrical or partially symmetrical determinant, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, pp. 185-190. [Annotated scanned copy]
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - _N. J. A. Sloane_, May 01 2012
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- P. A. MacMahon, Combinations derived from m identical sets of n different letters and their connexion with general magic squares, Proc. London Math. Soc., 17 (1917), 25-41.
- Toufik Mansour, The length of the initial longest increasing sequence in a permutation, Art Disc. Appl. Math. (2023).
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages]
- K. Phillips, R functions to symbolically compute the central moments of the multivariate normal distribution, Journal of Statistical Software, Feb 2010.
- Kem Phillips, Proof for multivariate normal moments
- Richard Stanley and J. Riordan, Problem E2297, Amer. Math. Monthly, 79 (1972), 519-520.
-
G:=proc(n) option remember; if n <= 1 then 1 elif n=2 then
2 else n*G(n-1)-binomial(n-1,2)*G(n-3); fi; end;
-
a[x_]:=Log[1/(1-x)^(1/2)]+x/2+x^2/4;Range[0, 20]! CoefficientList[Series[Exp[a[x]], {x, 0, 20}], x]
RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-1]-(n-1)(n-2)* a[n-3]/2}, a,{n,30}] (* Harvey P. Dale, Dec 16 2011 *)
Table[Sum[Binomial[k, i] Binomial[i - 1/2, n - k] (3^(k - i) n!)/(4^k k!) (-1)^(n - k - i), {k, 0, n}, {i, 0, k}], {n, 0, 12}] (* Emanuele Munarini, Aug 25 2017 *)
-
a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i),i,0,k),k,0,n);
makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
-
a(n) = if(n<3, [1,1,2][n+1], n*a(n-1) - (n-1)*(n-2)*a(n-3)/2 ); /* Joerg Arndt, Apr 07 2013 */
Comments