A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0
Examples
Triangle begins: 1, 1,1, 1,0,1, 1,1,1,1, 1,0,0,0,1, 1,1,0,0,1,1, 1,0,1,0,1,0,1, 1,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,1, 1,1,0,0,0,0,0,0,1,1, 1,0,1,0,0,0,0,0,1,0,1, 1,1,1,1,0,0,0,0,1,1,1,1, 1,0,0,0,1,0,0,0,1,0,0,0,1, ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
- John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
- H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10584 [First 144 rows, flattened; first 50 rows from T. D. Noe].
- J.-P. Allouche and V. Berthe, Triangle de Pascal, complexité et automates, Bulletin of the Belgian Mathematical Society Simon Stevin 4.1 (1997): 1-24.
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Discrete Appl. Math. 66 (1996), 1-22.
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
- J. Baer, Explore patterns in Pascal's Triangle
- Valentin Bakoev, Fast Bitwise Implementation of the Algebraic Normal Form Transform, Serdica J. of Computing 11 (2017), No 1, 45-57.
- Valentin Bakoev, Properties and links concerning M_n
- Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
- Thomas Baruchel, A non-symmetric divide-and-conquer recursive formula for the convolution of polynomials and power series, arXiv:1912.00452 [math.NT], 2019.
- A. Bogomolny, Dot Patterns and Sierpinski Gasket
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, 2014.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 9.
- S. Butkevich, Pascal Triangle Applet
- David Callan, Sierpinski's triangle and the Prouhet-Thue-Morse word, arXiv:math/0610932 [math.CO], 2006.
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part I
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part II
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, arXiv:1411.1334 [math.NT], 2014; Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- Brady Haran, Chaos Game, Numberphile video, YouTube (April 27, 2017).
- I. Kobayashi et al., Pascal's Triangle
- Dr. Math, Regular polygon formulas [Broken link?]
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
- National Curve Bank, Sierpinski Triangles
- Hieu D. Nguyen, A Digital Binomial Theorem, arXiv:1412.3181 [math.NT], 2014.
- S. Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- F. Richman, Javascript for computing Pascal's triangle modulo n. Go to this page, then under "Modern Algebra and Other Things", click "Pascal's triangle modulo n".
- Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29. Also arXiv:1011.6083, 2010.
- N. J. A. Sloane, Illustration of rows 0 to 32 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 64 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 128 (encoignure style)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, Sierpiński Sieve, Rule 60, Rule 102
- Index entries for sequences related to cellular automata
- Index entries for triangles and arrays related to Pascal's triangle
- Index entries for sequences generated by sieves
Crossrefs
Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Cf. A007318, A054431, A001317, A008292, A083093, A034931, A034930, A008975, A034932, A166360, A249133, A064194, A227133.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Programs
-
Haskell
import Data.Bits (xor) a047999 :: Int -> Int -> Int a047999 n k = a047999_tabl !! n !! k a047999_row n = a047999_tabl !! n a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
-
Magma
A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >; [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
-
Maple
# Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016 ST:=[1,1,1]; a:=1; b:=2; M:=10; for n from 2 to M do ST:=[op(ST),1]; for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od: ST:=[op(ST),1]; a:=a+n; b:=a+n; od: ST; # N. J. A. Sloane # alternative A047999 := proc(n,k) modp(binomial(n,k),2) ; end proc: seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
-
Mathematica
Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *) rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *) Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *) A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0]; Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
-
PARI
\\ Recurrence for Pascal's triangle mod p, here p = 2. p = 2; s=13; T=matrix(s,s); T[1,1]=1; for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p )); for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
-
PARI
A011371(n)=my(s);while(n>>=1,s+=n);s T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
-
PARI
T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
-
Python
def A047999_T(n,k): return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
Formula
Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)
Extensions
Additional links from Lekraj Beedassy, Jan 22 2004
A056040 Swinging factorial, a(n) = 2^(n-(n mod 2))*Product_{k=1..n} k^((-1)^(k+1)).
1, 1, 2, 6, 6, 30, 20, 140, 70, 630, 252, 2772, 924, 12012, 3432, 51480, 12870, 218790, 48620, 923780, 184756, 3879876, 705432, 16224936, 2704156, 67603900, 10400600, 280816200, 40116600, 1163381400, 155117520, 4808643120, 601080390, 19835652870, 2333606220
Offset: 0
Keywords
Comments
a(n) is the number of 'swinging orbitals' which are enumerated by the trinomial n over [floor(n/2), n mod 2, floor(n/2)].
Similar to but different from A001405(n) = binomial(n, floor(n/2)), a(n) = lcm(A001405(n-1), A001405(n)) (for n>0).
Exactly p consecutive multiples of p follow the least positive multiple of p if p is an odd prime. Compare with the similar property of A100071. - Peter Luschny, Aug 27 2012
a(n) is the number of vertices of the polytope resulting from the intersection of an n-hypercube with the hyperplane perpendicular to and bisecting one of its long diagonals. - Didier Guillet, Jun 11 2018 [Edited by Peter Munn, Dec 06 2022]
Examples
a(10) = 10!/5!^2 = trinomial(10,[5,0,5]); a(11) = 11!/5!^2 = trinomial(11,[5,1,5]).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Didier Guillet, On swinging factorials and the lonely runner conjecture (Text in French).
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Orbitals.
- Peter Luschny, Swinging Factorial.
Crossrefs
Programs
-
Magma
[(Factorial(n)/(Factorial(Floor(n/2)))^2): n in [0..40]]; // Vincenzo Librandi, Sep 11 2011
-
Maple
SeriesCoeff := proc(s,n) series(s(w,n),w,n+2); convert(%,polynom); coeff(%,w,n) end; a1 := proc(n) local k; 2^(n-(n mod 2))*mul(k^((-1)^(k+1)),k=1..n) end: a2 := proc(n) option remember; `if`(n=0,1,n^irem(n,2)*(4/n)^irem(n+1,2)*a2(n-1)) end; a3 := n -> n!/iquo(n,2)!^2; g4 := z -> BesselI(0,2*z)*(1+z); a4 := n -> n!*SeriesCoeff(g4,n); g5 := z -> (1+z/(1-4*z^2))/sqrt(1-4*z^2); a5 := n -> SeriesCoeff(g5,n); g6 := (z,n) -> (1+z^2)^n+n*z*(1+z^2)^(n-1); a6 := n -> SeriesCoeff(g6,n); a7 := n -> combinat[multinomial](n,floor(n/2),n mod 2,floor(n/2)); h := n -> binomial(n,floor(n/2)); # A001405 a8 := n -> ilcm(h(n-1),h(n)); F := [a1, a2, a3, a4, a5, a6, a7, a8]; for a in F do seq(a(i), i=0..32) od;
-
Mathematica
f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; Array[f, 33, 0] (* Robert G. Wilson v, Aug 02 2010 *) f[n_] := If[OddQ@n, n*Binomial[n - 1, (n - 1)/2], Binomial[n, n/2]]; Array[f, 33, 0] (* Robert G. Wilson v, Aug 10 2010 *) sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; (* or, twice faster: *) sf[n_] := n!/Quotient[n, 2]!^2; Table[sf[n], {n, 0, 32}] (* Jean-François Alcover, Jul 26 2013, updated Feb 11 2015 *)
-
PARI
a(n)=n!/(n\2)!^2 \\ Charles R Greathouse IV, May 02 2011
-
Sage
def A056040(): r, n = 1, 0 while True: yield r n += 1 r *= 4/n if is_even(n) else n a = A056040(); [next(a) for i in range(36)] # Peter Luschny, Oct 24 2013
Formula
a(n) = n!/floor(n/2)!^2. [Essentially the original name.]
a(0) = 1, a(n) = n^(n mod 2)*(4/n)^(n+1 mod 2)*a(n-1) for n>=1.
E.g.f.: (1+x)*BesselI(0, 2*x). - Vladeta Jovovic, Jan 19 2004
O.g.f.: a(n) = SeriesCoeff_{n}((1+z/(1-4*z^2))/sqrt(1-4*z^2)).
P.g.f.: a(n) = PolyCoeff_{n}((1+z^2)^n+n*z*(1+z^2)^(n-1)).
a(2*n) = binomial(2*n,n); a(2*n+1) = (2*n+1)*binomial(2*n,n). Central terms of triangle A211226. - Peter Bala, Apr 10 2012
D-finite with recurrence: n*a(n) + (n-2)*a(n-1) + 4*(-2*n+3)*a(n-2) + 4*(-n+1)*a(n-3) + 16*(n-3)*a(n-4) = 0. - Alexander R. Povolotsky, Aug 17 2012
Sum_{n>=0} 1/a(n) = 4/3 + 8*Pi/(9*sqrt(3)). - Alexander R. Povolotsky, Aug 18 2012
E.g.f.: U(0) where U(k)= 1 + x/(1 - x/(x + (k+1)*(k+1)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
Central column of the coefficients of the swinging polynomials A162246. - Peter Luschny, Oct 22 2013
a(n) = hypergeometric([-n,-n-1,1/2],[-n-2,1],2)*2^(n-1)*(n+2). - Peter Luschny, Sep 22 2014
a(n) = 4^floor(n/2)*hypergeometric([-floor(n/2), (-1)^n/2], [1], 1). - Peter Luschny, May 19 2015
Sum_{n>=0} (-1)^n/a(n) = 4/3 - 4*Pi/(9*sqrt(3)). - Amiram Eldar, Mar 10 2022
Extensions
Extended and edited by Peter Luschny, Jun 28 2009
A037445 Number of infinitary divisors (or i-divisors) of n.
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1
Comments
A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023
Examples
For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4. For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
- Eric Weisstein's World of Mathematics, Infinitary Divisor
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a037445 = product . map (a000079 . a000120) . a124010_row -- Reinhard Zumkeller, Mar 19 2013
-
Maple
A037445 := proc(n) local a,p; a := 1 ; for p in ifactors(n)[2] do a := a*2^wt(p[2]) ; end do: a ; end proc: # R. J. Mathar, May 16 2016
-
Mathematica
Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}] bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]] y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1} divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *) a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]& /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
-
PARI
A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
-
Python
from sympy import factorint def wt(n): return bin(n).count("1") def a(n): f=factorint(n) return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
-
Scheme
(define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
Formula
Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
From Antti Karttunen, May 28 2017: (Start)
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023
Extensions
Corrected and extended by Naohiro Nomoto, Jun 21 2001
A031443 Digitally balanced numbers: positive numbers that in base 2 have the same number of 0's as 1's.
2, 9, 10, 12, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 195, 197, 198, 201, 202, 204, 209, 210, 212, 216, 225, 226, 228, 232, 240, 527, 535, 539, 541, 542, 551
Offset: 1
Comments
Also numbers k such that the binary digital mean dm(2, k) = (Sum_{i=1..d} 2*d_i - 1) / (2*d) = 0, where d is the number of digits in the binary representation of k and d_i the individual digits. - Reikku Kulon, Sep 21 2008
From Reikku Kulon, Sep 29 2008: (Start)
Each run of values begins with 2^(2k + 1) + 2^(k + 1) - 2^k - 1. The initial values increase according to the sequence {2^(k - 1), 2^(k - 2), 2^(k - 3), ..., 2^(k - k)}.
After this, the values follow a periodic sequence of increases by successive powers of two with single odd values interspersed.
Each run ends with an odd increase followed by increases of {2^(k - k), ..., 2^(k - 2), 2^(k - 1), 2^k}, finally reaching 2^(2k + 2) - 2^(k + 1).
Similar behavior occurs in other bases. (End)
A001700 gives number of terms having length 2*n in binary representation: A001700(n-1) = #{m: A070939(a(m))=2*n}. - Reinhard Zumkeller, Jun 08 2011
The number of terms below 2^k is A079309(floor(k/2)) for k > 1. - Amiram Eldar, Nov 21 2020
Examples
9 is a term because '1001' contains 2 '0's and 2 '1's.
Links
- Reikku Kulon, Table of n, a(n) for n = 1..10000
- Jason Bell, Thomas F. Lidbetter and Jeffrey Shallit, Additive number theory via approximation by regular languages, International Journal of Foundations of Computer Science, Vol. 31, No. 6 (2020), pp. 667-687; arXiv preprint, arXiv:1804.07996 [cs.FL], 2018.
- Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Master's Thesis, University of Waterloo, Ontario, Canada, 2018.
- Reinhard Zumkeller, Haskell Programs for Binary Digitally Balanced Numbers.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
-- See link, showing that Ulrich Schimkes formula provides a very efficient algorithm. Reinhard Zumkeller, Jun 15 2011
-
Magma
[ n: n in [2..250] | Multiplicity({* z: z in Intseq(n,2) *}, 0) eq &+Intseq(n,2) ]; // Bruno Berselli, Jun 07 2011
-
Maple
a:=proc(n) local nn, n1, n0: nn:=convert(n,base,2): n1:=add(nn[i],i=1..nops(nn)): n0:=nops(nn)-n1: if n0=n1 then n else end if end proc: seq(a(n), n = 1..240); # Emeric Deutsch, Jul 31 2008
-
Mathematica
Select[Range[250],DigitCount[#,2,1]==DigitCount[#,2,0]&] (* Harvey P. Dale, Jul 22 2013 *) FromDigits[#,2]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{},2n,{1,0}],{n,5}],1],?(#[[1]]==0&)]//Sort (* _Harvey P. Dale, May 30 2016 *)
-
PARI
for(n=1,100,b=binary(n); l=length(b); if(sum(i=1,l, component(b,i))==l/2,print1(n,",")))
-
PARI
is(n)=hammingweight(n)==hammingweight(bitneg(n,#binary(n))) \\ Charles R Greathouse IV, Mar 29 2013
-
PARI
is(n)=2*hammingweight(n)==exponent(n)+1 \\ Charles R Greathouse IV, Apr 18 2020
-
Perl
for my $half ( 1 .. 4 ) { my $N = 2 * $half; # only even widths apply my $vector = (1 << ($N-1)) | ((1 << ($N/2-1)) - 1); # first key my $n = 1; $n *= $_ for 2 .. $N; # N! my $d = 1; $d *= $_ for 2 .. $N/2; # (N/2)! for (1 .. $n/($d*$d*2)) { print "$vector, "; my ($v, $d) = ($vector, 0); until ($v & 1 or !$v) { $d = ($d << 1)|1; $v >>= 1 } $vector += $d + 1 + (($v ^ ($v + 1)) >> 2); # next key } } # Ruud H.G. van Tol, Mar 30 2014
-
Python
from sympy.utilities.iterables import multiset_permutations A031443_list = [int('1'+''.join(p),2) for n in range(1,10) for p in multiset_permutations('0'*n+'1'*(n-1))] # Chai Wah Wu, Nov 15 2019
Formula
a(n+1) = a(n) + 2^k + 2^(m-1) - 1 + floor((2^(k+m) - 2^k)/a(n))*(2^(2*m) + 2^(m-1)) where k is the largest integer such that 2^k divides a(n) and m is the largest integer such that 2^m divides a(n)/2^k+1. - Ulrich Schimke (UlrSchimke(AT)aol.com)
A145037(a(n)) = 0. - Reikku Kulon, Oct 02 2008
A001790 Numerators in expansion of 1/sqrt(1-x).
1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0
Comments
Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023
Examples
1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
References
- P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1666 (first 201 terms from T. D. Noe)
- Horst Alzer and Bent Fuglede, Normalized binomial mid-coefficients and power means, Journal of Number Theory, Volume 115, Issue 2, December 2005, Pages 284-294.
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993 (see V_n with N=1).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table [Annotated scanned copy].
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- S. Łukaszyk and W. Bieniawski, Assembly Theory of Binary Messages, Mathematics, 12(10) (2024), 1600.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages).
- Eric Weisstein's World of Mathematics, Binomial Series.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Wikipedia, Lorentz Factor.
Crossrefs
Programs
-
Magma
A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >; [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
-
Maple
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end; # From Peter Luschny, Aug 01 2009: (Start) swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))): a := n -> swing(2*n)/sigma(2*n); # (End) A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
-
Mathematica
Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]] Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}] (* John M. Campbell, Jul 04 2011 *) Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *) Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *) Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *) A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
-
PARI
a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
-
Sage
# uses[A000120] @CachedFunction def swing(n): if n == 0: return 1 return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n A001790 = lambda n: swing(2*n)/2^A000120(2*n) [A001790(n) for n in (0..25)] # Peter Luschny, Nov 19 2012
Formula
a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024
A006046 Total number of odd entries in first n rows of Pascal's triangle: a(0) = 0, a(1) = 1, a(2k) = 3*a(k), a(2k+1) = 2*a(k) + a(k+1). a(n) = Sum_{i=0..n-1} 2^wt(i).
0, 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, 57, 65, 81, 83, 87, 91, 99, 103, 111, 119, 135, 139, 147, 155, 171, 179, 195, 211, 243, 245, 249, 253, 261, 265, 273, 281, 297, 301, 309, 317, 333, 341, 357, 373, 405, 409, 417, 425, 441, 449, 465, 481, 513, 521
Offset: 0
Comments
The graph has a blancmange or Takagi appearance. For the asymptotics, see the references by Flajolet with "Mellin" in the title. - N. J. A. Sloane, Mar 11 2021
The following alternative construction of this sequence is due to Thomas Nordhaus, Oct 31 2000: For each n >= 0 let f_n be the piecewise linear function given by the points (k /(2^n), a(k) / 3^n), k = 0, 1, ..., 2^n. f_n is a monotonic map from the interval [0,1] into itself, f_n(0) = 0, f_n(1) = 1. This sequence of functions converges uniformly. But the limiting function is not differentiable on a dense subset of this interval.
I submitted a problem to the Amer. Math. Monthly about an infinite family of non-convex sequences that solve a recurrence that involves minimization: a(1) = 1; a(n) = max { ua(k) + a(n-k) | 1 <= k <= n/2 }, for n > 1; here u is any real-valued constant >= 1. The case u=2 gives the present sequence. Cf. A130665 - A130667. - Don Knuth, Jun 18 2007
a(n) = sum of (n-1)-th row terms of triangle A166556. - Gary W. Adamson, Oct 17 2009
From Gary W. Adamson, Dec 06 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 2, 0, 0, 0, ...) in every column shifted down twice:
1;
3;
2; 1;
0, 3;
0, 2, 1;
0, 0, 3;
0, 0, 2, 1;
0, 0, 0, 3;
0, 0, 0, 2, 1;
...
This sequence starting with "1" = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
a(n) is also the sum of all entries in rows 0 to n of Sierpiński's triangle A047999. - Reinhard Zumkeller, Apr 09 2012
The production matrix of Dec 06 2009 is equivalent to the following: Let p(x) = (1 + 3x + 2x^2). The sequence = P(x) * p(x^2) * p(x^4) * p(x^8) * .... The sequence divided by its aerated variant = (1, 3, 2, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2016
Also the total number of ON cells, rows 1 through n, for cellular automaton Rule 90 (Cf. A001316, A038183, also Mathworld Link). - Bradley Klee, Dec 22 2018
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.
- Flajolet, Philippe, and Mordecai Golin. "Mellin transforms and asymptotics." Acta Informatica 31.7 (1994): 673-696.
- Flajolet, Philippe, Mireille Régnier, and Robert Sedgewick. "Some uses of the Mellin integral transform in the analysis of algorithms." in Combinatorial algorithms on words. Springer, 1985. 241-254.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..16383 (first 1000 terms from T. D. Noe)
- L. Carlitz, The number of binomial coefficients divisible by a fixed power of a prime, Rend. Circ. Mat. Palermo (2) 16 (1967), pp. 299-320.
- K.-N. Chang and S.-C. Tsai, Exact solution of a minimal recurrence, Inform. Process. Lett. 75 (2000), 61-64.
- Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse, Transparency Beyond VNP in the Monotone Setting, arXiv:2202.13103 [cs.CC], 2022.
- S. R. Finch, P. Sebah, and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54:10 (1947), pp. 89-92.
- Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy, Mellin Transforms And Asymptotics: Digital Sums, Theoret. Computer Sci. 23 (1994), 291-314.
- Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: harmonic sums Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
- Philippe Flajolet and Robert Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice's integrals, Theoretical Computer Science 144.1-2 (1995): 101-124.
- P. J. Grabner and H.-K. Hwang, Digital sums and divide-and-conquer recurrences: Fourier expansions and absolute convergence, Constructive Approximation, Jan. 2005, Volume 21, Issue 2, pp 149-179.
- H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
- H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62.1 (1977), 19-22. (Annotated scanned copy)
- F. T. Howard, The number of binomial coefficients divisible by a fixed power of 2, Proceedings of the American Mathematical Society, Vol. 29:2 (Jul 1971), pp. 236-242.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 6, 27, 29-31.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
- Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & graphics 13.1 (1989): 59-62.
- Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-60. (Annotated scanned copy)
- A. Lakhtakia et al., Fractal sequences derived from the self-similar extensions of the Sierpinski gasket, J. Phys. A 21 (1988), 1925-1928.
- Giuseppe Lancia and Paolo Serafini, Computational Complexity and ILP Models for Pattern Problems in the Logical Analysis of Data, Algorithms (2021) Vol. 14, No. 8, 235.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., 32 (1977), 717-730. See B(n). - _N. J. A. Sloane_, Apr 05 2014
- Eric Weisstein's World of Mathematics, Pascal's Triangle
- Eric Weisstein's World of Mathematics, Rule 90
- Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a006046 = sum . concat . (`take` a047999_tabl) -- Reinhard Zumkeller, Apr 09 2012
-
Magma
[0] cat [n le 1 select 1 else 2*Self(Floor(n/2)) + Self(Floor(Ceiling(n/2))): n in [1..60]]; // Vincenzo Librandi, Aug 30 2016
-
Maple
f:=proc(n) option remember; if n <= 1 then n elif n mod 2 = 0 then 3*f(n/2) else 2*f((n-1)/2)+f((n+1)/2); fi; end; [seq(f(n),n=0..130)]; # N. J. A. Sloane, Jul 29 2014
-
Mathematica
f[n_] := Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ]; Table[ Sum[ f[k], {k, 0, n} ], {n, 0, 100} ] Join[{0},Accumulate[Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,60},{k,0,n}]]] (* _Harvey P. Dale, Dec 10 2014 *) FoldList[Plus, 0, Total /@ CellularAutomaton[90, Join[Table[0, {#}], {1}, Table[0, {#}]], #]][[2 ;; -1]] &@50 (* Bradley Klee, Dec 23 2018 *) Join[{0}, Accumulate[2^DigitCount[Range[0, 127], 2, 1]]] (* Paolo Xausa, Oct 24 2024 *) Join[{0}, Accumulate[2^Nest[Join[#, #+1]&, {0}, 7]]] (* Paolo Xausa, Oct 24 2024, after IWABUCHI Yu(u)ki in A000120 *)
-
PARI
A006046(n)={ n<2 & return(n); A006046(n\2)*3+if(n%2,1<
M. F. Hasler, May 03 2009 -
PARI
a(n) = if(!n, 0, my(r=0, t=1); forstep(i=logint(n, 2), 0, -1, r*=3; if(bittest(n, i), r+=t; t*=2)); r); \\ Ruud H.G. van Tol, Jul 06 2024
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A006046(n):return n if n<=1 else 2*A006046((n-1)//2)+A006046((n+1)//2)if n%2 else 3*A006046(n//2) # Guillermo Hernández, Dec 31 2023
-
Python
from math import prod def A006046(n): d = list(map(lambda x:int(x)+1,bin(n)[:1:-1])) return sum((b-1)*prod(d[a:])*3**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
Formula
a(n) = Sum_{k=0..n-1} 2^A000120(k). - Paul Barry, Jan 05 2005; simplified by N. J. A. Sloane, Apr 05 2014
For asymptotics see Stolarsky (1977). - N. J. A. Sloane, Apr 05 2014
a(n) = a(n-1) + A001316(n-1). a(2^n) = 3^n. - Henry Bottomley, Apr 05 2001
a(n) = n^(log_2(3))*G(log_2(n)) where G(x) is a function of period 1 defined by its Fourier series. - Benoit Cloitre, Aug 16 2002; formula modified by S. R. Finch, Dec 31 2007
G.f.: (x/(1-x))*Product_{k>=0} (1 + 2*x^2^k). - Ralf Stephan, Jun 01 2003; corrected by Herbert S. Wilf, Jun 16 2005
a(1) = 1, a(n) = 2*a(floor(n/2)) + a(ceiling(n/2)).
a(n) = 3*a(floor(n/2)) + (n mod 2)*2^A000120(n-1). - M. F. Hasler, May 03 2009
a(n) = Sum_{k=0..floor(log_2(n))} 2^k * A360189(n-1,k). - Alois P. Heinz, Mar 06 2023
Extensions
More terms from James Sellers, Aug 21 2000
Definition expanded by N. J. A. Sloane, Feb 16 2016
A001285 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and 2's.
1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1
Offset: 0
Comments
Or, follow a(0), ..., a(2^k-1) by its complement.
Equals limiting row of A161175. - Gary W. Adamson, Jun 05 2009
Parse A010060 into consecutive pairs: (01, 10, 10, 01, 10, 01, ...); then apply the rules: (01 -> 1; 10 ->2), obtaining (1, 2, 2, 1, 2, 1, 1, ...). - Gary W. Adamson, Oct 25 2010
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
- A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1023 from T. D. Noe)
- J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding. T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16.
- F. Axel et al., Vibrational modes in a one dimensional "quasi-alloy": the Morse case, J. de Physique, Colloq. C3, Supp. to No. 7, Vol. 47 (Jul 1986), pp. C3-181-C3-186; see Eq. (10).
- Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
- J. D. Currie, The Least Self-Shuffle of the Thue-Morse Sequence, J. Int. Seq. 17 (2014) # 14.10.2.
- Françoise Dejean, Sur un Théorème de Thue, J. Combinatorial Theory, vol. 13 A, iss. 1 (1972) 90-99.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- Arturas Dubickas, On the distance from a rational power to the nearest integer, Journal of Number Theory, Volume 117, Issue 1, March 2006, Pages 222-239.
- Arturas Dubickas, On a sequence related to that of Thue-Morse and its applications, Discrete Math. 307 (2007), no. 9-10, 1082--1093. MR2292537 (2008b:11086).
- Michael Gilleland, Some Self-Similar Integer Sequences
- G. A. Hedlund, Remarks on the work of Axel Thue on sequences, Nordisk Mat. Tid., 15 (1967), 148-150.
- A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.
- G. Siebert, Letter to N. J. A. Sloane, Sept. 1977
- N. J. A. Sloane, The first 1000 terms as a string
- N. J. A. Sloane, Handwritten notes on Self-Generating Sequences, 1970 (note that A1148 has now become A005282)
- N. J. A. Sloane, P. Flor, L. F. Meyers, G. A. Hedlund. M. Gardner, Collection of documents and notes related to A1285, A3270, A3324
- S. Wolfram, Source for short Thue-Morse generating code
- Index entries for "core" sequences
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Haskell
a001285 n = a001285_list !! n a001285_list = map (+ 1) a010060_list -- Reinhard Zumkeller, Oct 03 2012
-
Maple
A001285 := proc(n) option remember; if n=0 then 1 elif n mod 2 = 0 then A001285(n/2) else 3-A001285((n-1)/2); fi; end; s := proc(k) local i, ans; ans := [ 1,2 ]; for i from 0 to k do ans := [ op(ans),op(map(n->if n=1 then 2 else 1 fi, ans)) ] od; RETURN(ans); end; t1 := s(6); A001285 := n->t1[n]; # s(k) gives first 2^(k+2) terms
-
Mathematica
Nest[ Flatten@ Join[#, # /. {1 -> 2, 2 -> 1}] &, {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *) a[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Jul 02 2019 *) ThueMorse[Range[0,120]]+1 (* Harvey P. Dale, May 07 2021 *)
-
PARI
a(n)=1+subst(Pol(binary(n)),x,1)%2
-
PARI
a(n)=sum(k=0,n,binomial(n,k)%2)%3
-
PARI
a(n)=hammingweight(n)%2+1 \\ Charles R Greathouse IV, Mar 26 2013
-
Python
from itertools import islice def A001285_gen(): # generator of terms yield 1 blist = [1] while True: c = [3-d for d in blist] blist += c yield from c A001285_list = list(islice(A001285_gen(),30)) # Chai Wah Wu, Nov 13 2022
-
Python
def A001285(n): return 2 if n.bit_count()&1 else 1 # Chai Wah Wu, Mar 01 2023
Formula
a(2n) = a(n), a(2n+1) = 3 - a(n), a(0) = 1. Also, a(k+2^m) = 3 - a(k) if 0 <= k < 2^m.
a(n) = 1 + A010060(n).
a(n) = (Sum{k=0..n} binomial(n, k) mod 2) mod 3 = A001316(n) mod 3. - Benoit Cloitre, May 09 2004
G.f.: (3/(1 - x) - Product_{k>=0} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019
A286622 Restricted growth sequence computed for filter-sequence A278222, related to 1-runs in the binary representation of n.
1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 6, 5, 7, 2, 4, 4, 6, 4, 8, 6, 9, 3, 6, 6, 10, 5, 9, 7, 11, 2, 4, 4, 6, 4, 8, 6, 9, 4, 8, 8, 12, 6, 12, 9, 13, 3, 6, 6, 10, 6, 12, 10, 14, 5, 9, 9, 14, 7, 13, 11, 15, 2, 4, 4, 6, 4, 8, 6, 9, 4, 8, 8, 12, 6, 12, 9, 13, 4, 8, 8, 12, 8, 16, 12, 17, 6, 12, 12, 18, 9, 17, 13, 19, 3, 6, 6, 10, 6, 12, 10, 14, 6, 12, 12, 18, 10, 18
Offset: 0
Comments
When filtering sequences (by equivalence class partitioning), this sequence can be used instead of A278222, because for all i, j it holds that: a(i) = a(j) <=> A278222(i) = A278222(j).
For example, for all i, j: a(i) = a(j) => A000120(i) = A000120(j), and for all i, j: a(i) = a(j) => A001316(i) = A001316(j).
The sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of n. See the examples. - Antti Karttunen, Jun 04 2017
Examples
For n = 0, there are no 1-runs, thus the multiset is empty [], and it is allotted the number 1, thus a(0) = 1. For n = 1, in binary also "1", there is one 1-run of length 1, thus the multiset is [1], which has not been encountered before, and a new number is allotted for that, thus a(1) = 2. For n = 2, in binary "10", there is one 1-run of length 1, thus the multiset is [1], which was already encountered at n=1, thus a(2) = a(1) = 2. For n = 3, in binary "11", there is one 1-run of length 2, thus the multiset is [2], which has not been encountered before, and a new number is allotted for that, thus a(3) = 3. For n = 4, in binary "100", there is one 1-run of length 1, thus the multiset is [1], which was already encountered at n=1 for the first time, thus a(4) = a(1) = 2. For n = 5, in binary "101", there are two 1-runs, both of length 1, thus the multiset is [1,1], which has not been encountered before, and a new number is allotted for that, thus a(5) = 4.
Links
Crossrefs
Programs
-
PARI
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A278222(n) = A046523(A005940(1+n)); v286622 = rgs_transform(vector(1+65537, n, A278222(n-1))); A286622(n) = v286622[1+n];
Extensions
Example section added by Antti Karttunen, Jun 04 2017
A048883 a(n) = 3^wt(n), where wt(n) = A000120(n).
1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 9, 27, 27, 81, 27, 81, 81, 243, 27, 81, 81, 243, 81, 243, 243, 729, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81
Offset: 0
Comments
Or, a(n)=number of 1's ("live" cells) at stage n of a 2-dimensional cellular automata evolving by the rule: 1 if NE+NW+S=1, else 0.
This is the odd-rule cellular automaton defined by OddRule 013 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Or, start with S=[1]; replace S by [S, 3*S]; repeat ad infinitum.
Fixed point of the morphism 1 -> 13, 3 -> 39, 9 -> 9(27), ... = 3^k -> 3^k 3^(k+1), ... starting from a(0) = 1; 1 -> 13 -> 1339 -> = 1339399(27) -> 1339399(27)399(27)9(27)(27)(81) -> ..., . - Robert G. Wilson v, Jan 24 2006
Equals row sums of triangle A166453 (the square of Sierpiński's gasket, A047999). - Gary W. Adamson, Oct 13 2009
First bisection of A169697=1,5,3,19,3,. a(2n+2)+a(2n+3)=12,12,36,=12*A147610 ? Distribution of terms (in A000244): A011782=1,A000079 for first array, A000079 for second. - Paul Curtz, Apr 20 2010
a(A000225(n)) = A000244(n) and a(m) != A000244(n) for m < A000225(n). - Reinhard Zumkeller, Nov 14 2011
This sequence pertains to phenotype Punnett square mathematics. Start with X=1. Each hybrid cross involves the equation X:3X. Therefore, the ratio in the first (mono) hybrid cross is X=1:3X=3(1) or 3; or 3:1. When you move up to the next hybridization level, replace the previous cross ratio with X. X now represents 2 numbers-1:3. Therefore, the ratio in the second (di) hybrid cross is X=(1:3):3X=[3(1):3(3)] or (3:9). Put it together and you get 1:3:3:9. Each time you move up a hybridization level, replace the previous ratio with X, and use the same equation-X:3X to get its ratio. - John Michael Feuk, Dec 10 2011
Examples
From _Omar E. Pol_, Jun 07 2009: (Start) Triangle begins: 1; 3; 3,9; 3,9,9,27; 3,9,9,27,9,27,27,81; 3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243; 3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27,... Or 1; 3,3; 9,3,9,9; 27,3,9,9,27,9,27,27; 81,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81; 243,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,9,27,27,81,27,81,81,243,27... (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- Po-Yi Huang and Wen-Fong Ke, Sequences Derived from The Symmetric Powers of {1, 2, ..., k}, arXiv:2307.07733 [math.CO], 2023.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- Tanya Khovanova and Joshua Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 10. and J. Int. Seq. 17 (2014) # 14.7.8.
- T. Pisanski and T. W. Tucker, Growth in Repeated Truncations of Maps, Atti. Sem. Mat. Fis. Univ. Modena, Vol. 49 (2001), 167-176. (preprint)
- Omar E. Pol, Illustration of initial terms: Fig. 1. Neighbors of the vertices, Fig. 2. Overlapping squares, Fig. 3. One-step bishop, (Nov 06 2009).
- N. J. A. Sloane, Illustration of a(15) = 81 corresponding to number of ON cells in Odd-rule 013 CA at generation 15
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- Index entries for sequences related to cellular automata
- Index entries for sequences that are fixed points of mappings
Crossrefs
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Partial sums give A130665. - David Applegate, Jun 11 2009
Programs
-
Haskell
a048883 = a000244 . a000120 -- Reinhard Zumkeller, Nov 14 2011
-
Mathematica
Nest[ Join[#, 3#] &, {1}, 6] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014*) a[n_] := 3^DigitCount[n, 2, 1]; Array[a, 80, 0] (* Jean-François Alcover, Nov 15 2017 *)
-
PARI
a(n)=n=binary(n);3^sum(i=1,#n,n[i])
Formula
a(n) = Product_{k=0..log_2(n)} 3^b(n,k), where b(n,k) = coefficient of 2^k in binary expansion of n (offset 0). - Paul D. Hanna
a(n) = 3*a(n/2) if n is even, otherwise a(n) = a((n+1)/2).
G.f.: Product_{k>=0} (1+3*x^(2^k)). The generalization k^A000120 has generating function (1 + kx)*(1 + kx^2)*(1 + kx^4)*...
a(n+1) = Sum_{i=0..n} (binomial(n, i) mod 2) * Sum_{j=0..i} (binomial(i, j) mod 2). - Benoit Cloitre, Nov 16 2003
a(0)=1, a(n) = 3*a(n-A053644(n)) for n > 0. - Joe Slater, Jan 31 2016
G.f. A(x) satisfies: A(x) = (1 + 3*x) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019
Extensions
Corrected by Ralf Stephan, Jun 19 2003
Entry revised by N. J. A. Sloane, May 30 2009
Offset changed to 0, Jun 11 2009
A048896 a(n) = 2^(A000120(n+1) - 1), n >= 0.
1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4
Offset: 0
Comments
a(n) = 2^A048881 = 2^{maximal power of 2 dividing the n-th Catalan number (A000108)}. [Comment corrected by N. J. A. Sloane, Apr 30 2018]
Row sums of triangle A128937. - Philippe Deléham, May 02 2007
a(n) = sum of (n+1)-th row terms of triangle A167364. - Gary W. Adamson, Nov 01 2009
a(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2, A117972(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
a(n) = A261363(2*(n+1), n+1). - Reinhard Zumkeller, Aug 16 2015
From Gus Wiseman, Oct 30 2022: (Start)
Also the number of coarsenings of the (n+1)-th composition in standard order. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See link for sequences related to standard compositions. For example, the a(10) = 4 coarsenings of (2,1,1) are: (2,1,1), (2,2), (3,1), (4).
Also the number of times n+1 appears in A357134. For example, 11 appears at positions 11, 20, 33, and 1024, so a(10) = 4.
(End)
Examples
From _Omar E. Pol_, Jul 21 2009: (Start) If written as a triangle: 1; 1,2; 1,2,2,4; 1,2,2,4,2,4,4,8; 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16; 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32; ..., the first half-rows converge to Gould's sequence A001316. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Transactions (2021) Vol. 1, No. 1 Article 1.
- Neil J. Calkin, Eunice Y. S. Chan, Robert M. Corless, David J. Jeffrey, and Piers W. Lawrence, A Fractal Eigenvector, arXiv:2104.01116 [math.DS], 2021.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- OEIS Wiki, Montgomery's pair correlation conjecture
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
Programs
-
Haskell
a048896 n = a048896_list !! n a048896_list = f [1] where f (x:xs) = x : f (xs ++ [x,2*x]) -- Reinhard Zumkeller, Mar 07 2011
-
Haskell
import Data.List (transpose) a048896 = a000079 . a000120 a048896_list = 1 : concat (transpose [zipWith (-) (map (* 2) a048896_list) a048896_list, map (* 2) a048896_list]) -- Reinhard Zumkeller, Jun 16 2013
-
Magma
[Numerator(2^n / Factorial(n+1)): n in [0..100]]; // Vincenzo Librandi, Apr 12 2014
-
Maple
a := n -> 2^(add(i,i=convert(n+1,base,2))-1): seq(a(n), n=0..97); # Peter Luschny, May 01 2009
-
Mathematica
NestList[Flatten[#1 /. a_Integer -> {a, 2 a}] &, {1}, 4] // Flatten (* Robert G. Wilson v, Aug 01 2012 *) Table[Numerator[2^n / (n + 1)!], {n, 0, 200}] (* Vincenzo Librandi, Apr 12 2014 *) Denominator[Table[BernoulliB[2*n] / (Zeta[2*n]/Pi^(2*n)), {n, 1, 100}]] (* Terry D. Grant, May 29 2017 *) Table[Denominator[((2 n)!/2^(2 n + 1)) (-1)^n], {n, 1, 100}]/4 (* Terry D. Grant, May 29 2017 *) 2^IntegerExponent[CatalanNumber[Range[0,100]],2] (* Harvey P. Dale, Apr 30 2018 *)
-
PARI
a(n)=if(n<1,1,if(n%2,a(n/2-1/2),2*a(n-1)))
-
PARI
a(n) = 1 << (hammingweight(n+1)-1); \\ Kevin Ryde, Feb 19 2022
Formula
a(n) = 2^A048881(n).
It appears that a(n) = Sum_{k=0..n} binomial(2*(n+1), k) mod 2. - Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 20 2001
a(0) = 1; a(2*n) = 2*a(2*n-1); a(2*n+1) = a(n).
a(n) = (1/2) * A001316(n+1). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
It appears that a(n) = Sum_{k=0..2n} floor(binomial(2n+2, k+1)/2)(-1)^k = 2^n - Sum_{k=0..n+1} floor(binomial(n+1, k)/2). - Paul Barry, Dec 24 2004
a(n) = Sum_{k=0..n} (T(n,k) mod 2) where T = A039598, A053121, A052179, A124575, A126075, A126093. - Philippe Deléham, May 02 2007
a(n) = numerator(b(n)), where sin(x)^2/x = Sum_{n>0} b(n)*(-1)^n x^(2*n-1). - Vladimir Kruchinin, Feb 06 2013
a((2*n+1)*2^p-1) = A001316(n), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 12 2013
a(n) = numerator(2^n / (n+1)!). - Vincenzo Librandi, Apr 12 2014
a(2n) = (2n+1)!/(n!n!)/A001803(n). - Richard Turk, Aug 23 2017
a(2n-1) = (2n-1)!/(n!(n-1)!)/A001790(n). - Richard Turk, Aug 23 2017
Extensions
New definition from N. J. A. Sloane, Mar 01 2008
Comments