cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 274 results. Next

A003154 Centered 12-gonal numbers, or centered dodecagonal numbers: numbers of the form 6*k*(k-1) + 1.

Original entry on oeis.org

1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361, 9841, 10333, 10837, 11353, 11881, 12421
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 12, 0, 0, 0, ...]. Narayana transform (A001263) of [1, 12, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
Numbers k such that 6*k+3 is a square, these squares are given in A016946. - Gary Detlefs and Vincenzo Librandi, Aug 08 2010
Odd numbers of the form floor(n^2/6). - Juri-Stepan Gerasimov, Jul 27 2011
Bisection of A032528. - Omar E. Pol, Aug 20 2011
Sequence found by reading the line from 1, in the direction 1, 13, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033581 in the same spiral. - Omar E. Pol, Sep 08 2011
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered triangular numbers A005448(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
1. Classic illustration of initial terms of the star numbers:
.
.                                     o
.                                    o o
.                  o            o o o o o o o
.               o o o o          o o o o o o
.     o          o o o            o o o o o
.               o o o o          o o o o o o
.                  o            o o o o o o o
.                                    o o
.                                     o
.
.     1            13                 37
.
2. Alternative illustration of initial terms using n-1 concentric hexagons around a central element:
.
.                                 o o o o o
.                                o         o
.                o o o          o   o o o   o
.               o     o        o   o     o   o
.     o        o   o   o      o   o   o   o   o
.               o     o        o   o     o   o
.                o o o          o   o o o   o
.                                o         o
.                                 o o o o o
(End)
		

References

  • Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(1+10*x+x^2)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = 1 + Sum_{j=0..n} (12*j). E.g., a(2)=37 because 1 + 12*0 + 12*1 + 12*2 = 37. - Xavier Acloque, Oct 06 2003
a(n) = numerator in B_2(x) = (1/2)x^2 - (1/2)x + 1/12 = Bernoulli polynomial of degree 2. - Gary W. Adamson, May 30 2005
a(n) = 12*(n-1) + a(n-1), with n>1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = A049598(n-1) + 1. - Omar E. Pol, Oct 03 2011
Sum_{n>=1} 1/a(n) = A306980 = Pi * tan(Pi/(2*sqrt(3))) / (2*sqrt(3)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 7*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 7/e - 1. (End)
a(n) = 2*A003215(n-1) - 1. - Leo Tavares, Jul 30 2021
E.g.f.: exp(x)*(1 + 6*x^2) - 1. - Stefano Spezia, Aug 19 2022

Extensions

More terms from Michael Somos

A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.

Original entry on oeis.org

1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0

Views

Author

Clark Kimberling, Jun 01 2012

Keywords

Comments

In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014

Examples

			a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 50]]   (* A212959 *)
  • PARI
    a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021

A001840 Expansion of g.f. x/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570, 590
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of aperiodic necklaces (Lyndon words) with 3 black beads and n-3 white beads.
Number of triangular partitions (see Almkvist).
Consists of arithmetic progression quadruples of common difference n+1 starting at A045943(n). Refers to the least number of coins needed to be rearranged in order to invert the pattern of a (n+1)-rowed triangular array. For instance, a 5-rowed triangular array requires a minimum of a(4)=5 rearrangements (shown bracketed here) for it to be turned upside down.
.....{*}..................{*}*.*{*}{*}
.....*.*....................*.*.*.{*}
....*.*.*....---------\......*.*.*
..{*}*.*.*...---------/.......*.*
{*}{*}*.*{*}..................{*}
- Lekraj Beedassy, Oct 13 2003
Partial sums of 1,1,1,2,2,2,3,3,3,4,4,4,... - Jon Perry, Mar 01 2004
Sum of three successive terms is a triangular number in natural order starting with 3: a(n)+a(n+1)+a(n+2) = T(n+2) = (n+2)*(n+3)/2. - Amarnath Murthy, Apr 25 2004
Apply Riordan array (1/(1-x^3),x) to n. - Paul Barry, Apr 16 2005
Absolute values of numbers that appear in A145919. - Matthew Vandermast, Oct 28 2008
In the Moree definition, (-1)^n*a(n) is the 3rd Witt transform of A033999 and (-1)^n*A004524(n) with 2 leading zeros dropped is the 2nd Witt transform of A033999. - R. J. Mathar, Nov 08 2008
Column sums of:
1 2 3 4 5 6 7 8 9.....
1 2 3 4 5 6.....
1 2 3.....
........................
----------------------
1 2 3 5 7 9 12 15 18 - Jon Perry, Nov 16 2010
a(n) is the sum of the positive integers <= n that have the same residue modulo 3 as n. They are the additive counterpart of the triple factorial numbers. - Peter Luschny, Jul 06 2011
a(n+1) is the number of 3-tuples (w,x,y) with all terms in {0,...,n} and w=3*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is the number of pairs (x,y) with x and y in {0,...,n}, x-y = (1 mod 3), and x+y < n. - Clark Kimberling, Jul 02 2012
a(n+1) is the number of partitions of n into two sorts of part(s) 1 and one sort of (part) 3. - Joerg Arndt, Jun 10 2013
Arrange A004523 in rows successively shifted to the right two spaces and sum the columns:
1 2 2 3 4 4 5 6 6...
1 2 2 3 4 4 5...
1 2 2 3 4...
1 2 2...
1...
------------------------------
1 2 3 5 7 9 12 15 18... - L. Edson Jeffery, Jul 30 2014
a(n) = A258708(n+1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Also the number of triples of positive integers summing to n + 4, the first less than each of the other two. Also the number of triples of positive integers summing to n + 2, the first less than or equal to each of the other two. - Gus Wiseman, Oct 11 2020
Also the lower matching number of the (n+1)-triangular honeycomb king graph = n-triangular grid graph (West convention). - Eric W. Weisstein, Dec 14 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + 18*x^9 + ...
1+2+3=6=t(3), 2+3+5=t(4), 5+7+9=t(5).
[n] a(n)
--------
[1] 1
[2] 2
[3] 3
[4] 1 + 4
[5] 2 + 5
[6] 3 + 6
[7] 1 + 4 + 7
[8] 2 + 5 + 8
[9] 3 + 6 + 9
a(7) = floor(2/3) +floor(3/3) +floor(4/3) +floor(5/3) +floor(6/3) +floor(7/3) +floor(8/3) +floor(9/3) = 12. - _Bruno Berselli_, Aug 29 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Ulrich Faigle, Review of Gerhard Post and G.J. Woeginger, Sports tournaments, home-away assignments and the break minimization problem, MR2224983(2007b:90134), 2007.
  • Hansraj Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • Richard K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ordered union of triangular matchstick numbers A045943 and generalized pentagonal numbers A001318.
Cf. A058937.
A column of triangle A011847.
Cf. A258708.
A001399 counts 3-part partitions, ranked by A014612.
A337483 counts either weakly increasing or weakly decreasing triples.
A337484 counts neither strictly increasing nor strictly decreasing triples.
A014311 ranks 3-part compositions, with strict case A337453.

Programs

  • Haskell
    a001840 n = a001840_list !! n
    a001840_list = scanl (+) 0 a008620_list
    -- Reinhard Zumkeller, Apr 16 2012
  • Magma
    [ n le 2 select n else n*(n+1)/2-Self(n-1)-Self(n-2): n in [1..58] ];  // Klaus Brockhaus, Oct 01 2009
    
  • Maple
    A001840 := n->floor((n+1)*(n+2)/6);
    A001840:=-1/((z**2+z+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    seq(floor(binomial(n-1,2)/3), n=3..61); # Zerinvary Lajos, Jan 12 2009
    A001840 :=  n -> add(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A001840(n), n = 0 .. 58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[0]=0; a[1]=1; a[n_]:= a[n]= n(n+1)/2 -a[n-1] -a[n-2]; Table[a[n], {n,0,100}]
    f[n_] := Floor[(n + 1)(n + 2)/6]; Array[f, 59, 0] (* Or *)
    CoefficientList[ Series[ x/((1 + x + x^2)*(1 - x)^3), {x, 0, 58}], x] (* Robert G. Wilson v *)
    a[ n_] := With[{m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ x /((1 - x^3) (1 - x)^2), {x, 0, m}]]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},60] (* Harvey P. Dale, Jul 25 2011 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+4,{3}],#[[1]]<#[[2]]&&#[[1]]<#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = (n+1) * (n+2) \ 6}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [binomial(n, 2) // 3 for n in range(2, 61)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = (A000217(n+1) - A022003(n-1))/3;
a(n) = (A016754(n+1) - A010881(A016754(n+1)))/24;
a(n) = (A033996(n+1) - A010881(A033996(n+1)))/24.
Euler transform of length 3 sequence [2, 0, 1].
a(3*k-1) = k*(3*k + 1)/2;
a(3*k) = 3*k*(k + 1)/2;
a(3*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = floor( (n+1)*(n+2)/6 ) = floor( A000217(n+1)/3 ).
a(n+1) = a(n) + A008620(n) = A002264(n+3). - Reinhard Zumkeller, Aug 01 2002
From Michael Somos, Feb 11 2004: (Start)
G.f.: x / ((1-x)^2 * (1-x^3)).
a(n) = 1 + a(n-1) + a(n-3) - a(n-4).
a(-3-n) = a(n). (End)
a(n) = a(n-3) + n for n > 2; a(0)=0, a(1)=1, a(2)=2. - Paul Barry, Jul 14 2004
a(n) = binomial(n+3, 3)/(n+3) + cos(2*Pi*(n-1)/3)/9 + sqrt(3)sin(2*Pi*(n-1)/3)/9 - 1/9. - Paul Barry, Jan 01 2005
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3).
a(n) = Sum_{k=0..floor(n/3)} n-3*k. (End)
For n > 1, a(n) = A000217(n) - a(n-1) - a(n-2); a(0)=0, a(1)=1.
G.f.: x/(1 + x + x^2)/(1 - x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = (4 + 3*n^2 + 9*n)/18 + ((n mod 3) - ((n-1) mod 3))/9. - Klaus Brockhaus, Oct 01 2009
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Jul 25 2011
a(n) = A214734(n + 2, 1, 3). - Renzo Benedetti, Aug 27 2012
G.f.: x*G(0), where G(k) = 1 + x*(3*k+4)/(3*k + 2 - 3*x*(k+2)*(3*k+2)/(3*(1+x)*k + 6*x + 4 - x*(3*k+4)*(3*k+5)/(x*(3*k+5) + 3*(k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2013
Empirical: a(n) = floor((n+3)/(e^(6/(n+3))-1)). - Richard R. Forberg, Jul 24 2013
a(n) = Sum_{i=0..n} floor((i+2)/3). - Bruno Berselli, Aug 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = n/2 + floor(n^2/3 + 2/3)/2. - Bruno Berselli, Jan 23 2017
a(n) + a(n+1) = A000212(n+2). - R. J. Mathar, Jan 14 2021
Sum_{n>=1} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (exp(x)*(4 + 12*x + 3*x^2) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, Apr 05 2023

A001935 Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50, 64, 82, 105, 132, 166, 208, 258, 320, 395, 484, 592, 722, 876, 1060, 1280, 1539, 1846, 2210, 2636, 3138, 3728, 4416, 5222, 6163, 7256, 8528, 10006, 11716, 13696, 15986, 18624, 21666, 25169, 29190, 33808, 39104, 45164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n where no part appears more than three times.
a(n) satisfies Euler's pentagonal number (A001318) theorem, unless n is in A062717 (see Fink et al.).
Also number of partitions of n in which the least part and the differences between consecutive parts is at most 3. Example: a(5)=6 because we have [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1]. - Emeric Deutsch, Apr 19 2006
Equals A000009 convolved with its aerated variant, = polcoeff A000009 * A000041 * A010054 (with alternate signs). - Gary W. Adamson, Mar 16 2010
Equals left border of triangle A174715. - Gary W. Adamson, Mar 27 2010
The Cayley reference is actually to A083365. - Michael Somos, Feb 24 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A000009 and A035457. - Vaclav Kotesovec, Aug 23 2015
Convolution inverse is A082303. - Michael Somos, Sep 30 2017
The g.f. in the form Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1-x^k) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1+x^k-2*x^k) == Sum_{n >= 0} x^(n*(n+1)/2) (mod 2). It follows that a(n) is odd iff n = k*(k + 1)/2 for some nonnegative integer k. Cf. A333374. - Peter Bala, Jan 08 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 16*x^8 + 22*x^9 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 4*q^33 + 6*q^41 + 9*q^49 + 12*q^57 + 16*q^65 + 22*q^73 + ...
a(5)=6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.2).
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See ped page 303ff.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A010054. - Gary W. Adamson, Mar 16 2010
Cf. A174715. - Gary W. Adamson, Mar 27 2010
Cf. A082303.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a001935 = p a042968_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Sep 02 2012
  • Maple
    g:=product((1+x^j)*(1+x^(2*j)),j=1..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..48); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8), {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    CoefficientList[Series[Product[1+x^j+x^(2j)+x^(3j), {j,1,48}], {x,0,48}],x] (* Jean-François Alcover, May 26 2011, after Jon Perry *)
    QP = QPochhammer; CoefficientList[QP[q^4]/QP[q] + O[q]^50, q] (* Jean-François Alcover, Nov 24 2015 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n-j] DivisorSum[j, If[Divisible[#, 4], 0, #]&], {j, 1, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 49}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 8*n + 1) - 1)\2, prod(i=1, k, (1 + x^i) / (x^-i - 1), 1 + x * O(x^n))), n))}; /* Michael Somos, Jun 01 2004 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(1+(-x)^m+x*O(x^n))/m)),n)} \\ Paul D. Hanna, Jul 24 2013
    

Formula

Euler transform of period 4 sequence [ 1, 1, 1, 0, ...].
Expansion of q^(-1/8) * eta(q^4) / eta(q) in powers of q. - Michael Somos, Mar 19 2004
Expansion of psi(-x) / phi(-x) = psi(x) / phi(-x^2) = psi(x^2) / psi(-x) = chi(x) / chi(-x^2)^2 = 1 / (chi(x) * chi(-x)^2) = 1 / (chi(-x) * chi(-x^2)) = f(-x^4) / f(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 08 2011
G.f.: Product(j>=1, 1 + x^j + x^(2*j) + x^(3*j)). - Jon Perry, Mar 30 2004
G.f.: Product_{k>=1} (1+x^k)^(2-k%2). - Jon Perry, May 05 2005
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)) = 1 + Sum_{k>0}(Product_{i=1..k} (x^i + 1) / (x^-i - 1)).
G.f.: Sum_{n>=0} ( x^(n*(n+1)/2) * Product_{k=1..n} (1+x^k)/(1-x^k) ). - Joerg Arndt, Apr 07 2011
G.f.: P(x^4)/P(x) where P(x) = Product_{k>=1} 1-x^k. - Joerg Arndt, Jun 21 2011
A083365(n) = (-1)^n a(n). Convolution square is A001936. a(n) = A098491(n) + A098492(n). a(2*n) = A081055(n). a(2*n + 1) = A081056(n).
G.f.: (1+ 1/G(0))/2, where G(k) = 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 + (-x)^n) ). - Paul D. Hanna, Jul 24 2013
a(n) ~ Pi * BesselI(1, sqrt(8*n + 1)*Pi/4) / (2*sqrt(8*n + 1)) ~ exp(Pi*sqrt(n/2)) / (4 * (2*n)^(3/4)) * (1 + (Pi/(16*sqrt(2)) - 3/(4*Pi*sqrt(2))) / sqrt(n) + (Pi^2/1024 - 15/(64*Pi^2) - 15/128) / n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082303. - Michael Somos, Sep 30 2017

Extensions

More terms from James Sellers

A006950 G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 196, 236, 287, 350, 420, 501, 602, 722, 858, 1016, 1206, 1431, 1687, 1981, 2331, 2741, 3206, 3740, 4368, 5096, 5922, 6868, 7967, 9233, 10670, 12306, 14193, 16357, 18803, 21581
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n in which all odd parts are distinct. There is no restriction on the even parts. E.g., a(9)=13 because "9 = 8+1 = 7+2 = 6+3 = 6+2+1 = 5+4 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 4+2+2+1 = 3+2+2+2 = 2+2+2+2+1". - Noureddine Chair, Feb 03 2005
Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.
Also the number of partitions of n into parts not congruent to 2 mod 4. - James Sellers, Feb 08 2002
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras o(n) of skew-symmetric n X n matrices, n=0,1,2,3,... (the cases n=0,1 being degenerate). This sequence, A015128 and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=2.
Equals polcoeff inverse of A010054 with alternate signs. - Gary W. Adamson, Mar 15 2010
It appears that this sequence is related to the generalized hexagonal numbers (A000217) in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: this is 1 together with the row sums of triangle A195836, also column 1 of A195836, also column 2 of the square array A195825. - Omar E. Pol, Oct 09 2011
Since this is also column 2 of A195825 so the sequence contains only one plateau [1, 1, 1] of level 1 and length 3. For more information see A210843. - Omar E. Pol, Jun 27 2012
Convolution of A035363 and A000700. - Vaclav Kotesovec, Aug 17 2015
Also the number of ways to stack n triangles in a valley (pointing upwards or downwards depending on row parity). - Seiichi Manyama, Jul 07 2018

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
G.f. = q^-1 + q^7 + q^15 + 2*q^23 + 3*q^31 + 4*q^39 + 5*q^47 + 7*q^55 + 10*q^63 + ...
From _Seiichi Manyama_, Jul 07 2018: (Start)
n | the ways to stack n triangles in a valley
--+------------------------------------------------------
1 | *---*
  |  \ /
  |   *
  |
2 |   *
  |  / \
  | *---*
  |  \ /
  |   *
  |
3 |   *---*     *---*
  |  / \ /       \ / \
  | *---*         *---*
  |  \ /           \ /
  |   *             *
  |
4 |     *                       *
  |    / \                     / \
  |   *---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*
  |  \ /           \ /           \ /
  |   *             *             *
  |
5 |     *---*         *         *         *---*
  |    / \ /         / \       / \         \ / \
  |   *---*     *---*---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |
6 |       *
  |      / \
  |     *---*         *---*     *   *     *---*
  |    / \ /         / \ /     / \ / \     \ / \
  |   *---*     *---*---*     *---*---*     *---*---*
  |  / \ /       \ / \ /       \ / \ /       \ / \ /
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |   *
  |  / \
  | *---*
  |  \ / \
  |   *---*
  |    \ / \
  |     *---*
  |      \ /
  |       *
(End)
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See pod, page 297.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A163203.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 06 2013
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^(2k - 1))/(1 - x^(2k)), {k, 25}], {x, 0, 50}], x] (* Robert G. Wilson v, Jun 28 2012 *)
    CoefficientList[Series[x*QPochhammer[-1/x, x^2] / ((1+x)*QPochhammer[x^2, x^2]), {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    CoefficientList[Series[2*(-x)^(1/8) / EllipticTheta[2, 0, Sqrt[-x]], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-Mod[i, 2]]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Jul 22 2009
    (GW-BASIC)
    ' A program with two A-numbers (Note that here A000217 are the generalized hexagonal numbers):
    10 Dim A000217(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 51: For j = 1 to n
    30 If A000217(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A000217(j))
    40 Next j: Print a(n-1);: Next n ' Omar E. Pol, Jun 10 2012

Formula

a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*A002129(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/Sum_{k>=0} (-x)^(k*(k+1)/2). - Vladeta Jovovic, Sep 22 2002 [corrected by Vaclav Kotesovec, Aug 17 2015]
a(n) = A059777(n-1)+A059777(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: Product_{m>=1} (1+x^m)^(if A001511(m) > 1, A001511(m)-1 else A001511(m)). - Jon Perry, Apr 15 2005
Expansion of 1 / psi(-x) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(1/8) * eta(q^2) / (eta(q) * eta(q^4)) in powers of q.
Convolution inverse of A106459. - Michael Somos, Nov 02 2005
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ). - Paul D. Hanna, Jul 22 2009
a(n) ~ (8*n+1) * cosh(sqrt(8*n-1)*Pi/4) / (16*sqrt(2)*n^2) - sinh(sqrt(8*n-1)*Pi/4) / (2*Pi*n^(3/2)) ~ exp(Pi*sqrt(n/2))/(4*sqrt(2)*n) * (1 - (2/Pi + Pi/16)/sqrt(2*n) + (3/16 + Pi^2/1024)/n). - Vaclav Kotesovec, Aug 17 2015, extended Jan 09 2017
Can be computed recursively by Sum_{j>=0} (-1)^(ceiling(j/2)) a(n - j(j+1)/2) = 0, for n > 0. [Merca, Theorem 4.3] - Eric M. Schmidt, Sep 21 2017
a(n) = A000041(n) - A085642(n), for n >= 1. - Wouter Meeussen, Dec 20 2017

Extensions

G.f. and more terms from Vladeta Jovovic, Feb 05 2002

A033581 a(n) = 6*n^2.

Original entry on oeis.org

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 4-partite graph of order 4n, K_n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n. - Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n). - Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids. - Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral. - Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence. - Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices. - Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n). - Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k - 4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k - 4), ..., in the square spiral whose vertices are the generalized k-gonal numbers. In this case k = 5. - Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a match-made hexagon of size n. - John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars. - John King, Apr 04 2019

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
.                                 o o o o o o
.                                o           o
.              o o o o          o   o o o o   o
.             o       o        o   o       o   o
.   o o      o   o o   o      o   o   o o   o   o
.  o   o    o   o   o   o    o   o   o   o   o   o
.   o o      o   o o   o      o   o   o o   o   o
.             o       o        o   o       o   o
.              o o o o          o   o o o o   o
.                                o           o
.                                 o o o o o o
.
.    6            24                   54
.
(End)
		

Crossrefs

Bisection of A032528. Central column of triangle A001283.
Cf. A017593 (first differences).

Programs

Formula

a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001

A118277 Generalized 9-gonal (or enneagonal) numbers: m*(7*m - 5)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 6, 9, 19, 24, 39, 46, 66, 75, 100, 111, 141, 154, 189, 204, 244, 261, 306, 325, 375, 396, 451, 474, 534, 559, 624, 651, 721, 750, 825, 856, 936, 969, 1054, 1089, 1179, 1216, 1311, 1350, 1450, 1491, 1596, 1639, 1749, 1794, 1909, 1956, 2076, 2125, 2250
Offset: 0

Views

Author

T. D. Noe, Apr 21 2006

Keywords

Comments

Partial sums of A195140. - Omar E. Pol, Sep 13 2011
The characteristic function starts 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0 , ... and has the generating function f(x,x^6) in terms of Ramanujan's two-variable theta function. See A080995, A010054, A133100 etc. - Omar E. Pol, Jul 13 2012
Also A179986 and positive terms of A001106 interleaved. - Omar E. Pol, Aug 04 2012
Sequence provides all integers m such that 56*m + 25 is a square. - Bruno Berselli, Oct 07 2015

Crossrefs

Cf. A001106 (9-gonal numbers).
Column 5 of A195152.
Cf. A195140.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), this sequence (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8): n in [0..50]]; // Vincenzo Librandi, Oct 10 2011
    
  • Mathematica
    n=9; Union[Table[i((n-2)i-(n-4))/2, {i,-30,30}]]
    LinearRecurrence[{1,2,-2,-1,1},{0,1,6,9,19},60] (* Harvey P. Dale, Jun 08 2016 *)
  • PARI
    a(n)=7*n*(n+1)/8-3/16+3*(-1)^n*(1+2*n)/16 \\ Charles R Greathouse IV, Jan 18 2012

Formula

a(n) = n*(7*n-5)/2 for positive and negative n.
a(n) = (1/16)*(14*n^2 + 14*n - 3 + 3*(-1)^n*(2*n + 1)). - R. J. Mathar, Oct 08 2011
G.f.: x*(1+5*x+x^2) / ( (1+x)^2*(1-x)^3 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} 1/a(n) = 2*(7 + 5*Pi*tan(3*Pi/14))/25. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (1/16)*(3*(1 - 2*x)*exp(-x) + (-3 + 28*x + 14*x^2)*exp(x)). - G. C. Greubel, Aug 19 2017

Extensions

Extended Name by Omar E. Pol, Jul 28 2018

A195162 Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ...

Original entry on oeis.org

0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145, 156, 204, 217, 273, 288, 352, 369, 441, 460, 540, 561, 649, 672, 768, 793, 897, 924, 1036, 1065, 1185, 1216, 1344, 1377, 1513, 1548, 1692, 1729, 1881, 1920, 2080, 2121, 2289, 2332, 2508, 2553, 2737, 2784, 2976, 3025
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Also generalized dodecagonal numbers.
Second 12-gonal numbers (A135705) and positive terms of A051624 interleaved. - Omar E. Pol, Aug 04 2012
The characteristic function of this sequence is A205988. - Jason Kimberley, Nov 15 2012
Also, integer values of m*(m+4)/5. - Bruno Berselli, Dec 05 2012
Also, numbers h such that 5*h + 4 is a square. - Bruno Berselli, Oct 10 2013
Exponents in expansion of Product_{n >= 1} (1 + x^(10*n-9))*(1 + x^(10*n-1))*(1 - x^(10*n)) = 1 + x + x^9 + x^12 + x^28 + .... - Peter Bala, Dec 10 2020

Crossrefs

Partial sums of A195161.
Column 8 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), this sequence (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • GAP
    List([0..50], n-> (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8); # G. C. Greubel, Jul 04 2019
  • Magma
    [0] cat &cat[[5*n^2-4*n, 5*n^2+4*n]: n in [1..25]]; // Vincenzo Librandi, Sep 26 2011
    
  • Mathematica
    nn = 25; Sort[Table[n*(5*n - 4), {n, -nn, nn}]] (* T. D. Noe, Sep 23 2011 *)
  • PARI
    vector(50, n, n--; (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8) \\ G. C. Greubel, Jul 04 2019
    
  • Sage
    [(10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8 for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Sep 24 2011: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A008805(n-1) + A008805(n-3) + 8*A008805(n-2). (End)
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(1+8*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (10*n*(n+1) + 3*(2*n+1)*(-1)^n - 3)/8.
a(n) = a(-n-1). (End)
Sum_{n>=1} 1/a(n) = (5 + 4*sqrt(1 + 2/sqrt(5))*Pi)/16. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (3*(1 - 2*x)*exp(-x) + (-3 +20*x +10*x^2)*exp(x))/8. - G. C. Greubel, Jul 04 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5)/8 + sqrt(5)*log(phi)/4 - 5/16, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 28 2022

A195160 Generalized 11-gonal (or hendecagonal) numbers: m*(9*m - 7)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 8, 11, 25, 30, 51, 58, 86, 95, 130, 141, 183, 196, 245, 260, 316, 333, 396, 415, 485, 506, 583, 606, 690, 715, 806, 833, 931, 960, 1065, 1096, 1208, 1241, 1360, 1395, 1521, 1558, 1691, 1730, 1870, 1911, 2058, 2101, 2255, 2300, 2461, 2508, 2676
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Exponents of q in the expansion of Product_{n >= 1} (1 - q^(9*n))*(1 + q^(9*n-1))*(1 + q^(9*n-8)) = 1 + q + q^8 + q^11 + q^25 + q^30 + .... - Peter Bala, Nov 21 2024

Crossrefs

Partial sums of A195159.
Column 7 of A195152.
Cf. A316672.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), this sequence (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    I:=[0, 1, 8, 11, 25]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    CoefficientList[Series[x (1 + 7 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Apr 09 2013 *)
  • PARI
    a(n)=(18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Bruno Berselli, Sep 14 2011: (Start)
G.f.: x*(1+7*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16.
a(2n) = A062728(n), a(2n-1) = A051682(n). (End)
Sum_{n>=1} 1/a(n) = 18/49 + 2*Pi*cot(2*Pi/9)/7. - Vaclav Kotesovec, Oct 05 2016

A195313 Generalized 13-gonal numbers: m*(11*m-9)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160, 171, 225, 238, 301, 316, 388, 405, 486, 505, 595, 616, 715, 738, 846, 871, 988, 1015, 1141, 1170, 1305, 1336, 1480, 1513, 1666, 1701, 1863, 1900, 2071, 2110, 2290, 2331, 2520, 2563, 2761, 2806, 3013, 3060, 3276
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also generalized tridecagonal numbers or generalized triskaidecagonal numbers.
Also A211013 and positive terms of A051865 interleaved. - Omar E. Pol, Aug 04 2012
Numbers k for which 88*k + 81 is a square. - Bruno Berselli, Jul 10 2018

Crossrefs

Partial sums of A195312.
Column 9 of A195152.
Cf. A316672.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), this sequence (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(22*n*(n+1)+7*(2*n+1)*(-1)^n-7)/16: n in [0..50]]; // Vincenzo Librandi, Sep 16 2011
    
  • Magma
    A195313:=func; [0] cat [A195313(n*m): m in [1,-1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
    
  • Maple
    a:= n-> (m-> m*(11*m-9)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    lim = 50; Sort[Table[n*(11*n - 9)/2, {n, -lim, lim}]] (* T. D. Noe, Sep 15 2011 *)
    Accumulate[With[{nn=30},Riffle[9Range[0,nn],Range[1,2nn+1,2]]]] (* Harvey P. Dale, Sep 24 2011 *)
  • PARI
    a(n)=(22*n*(n+1)+7*(2*n+1)*(-1)^n-7)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Bruno Berselli, Sep 15 2011: (Start)
G.f.: x*(1 + 9*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = (22*n*(n + 1) + 7*(2*n + 1)*(-1)^n - 7)/16.
a(n) - a(n-2) = A175885(n). (End)
Sum_{n>=1} 1/a(n) = 22/81 + 2*Pi*cot(2*Pi/11)/9. - Vaclav Kotesovec, Oct 05 2016
Previous Showing 41-50 of 274 results. Next