cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 160 results. Next

A085135 Numbers whose cyclic permutations are all 7-smooth (A002473).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 108, 200, 243, 300, 324, 400, 405, 432, 450, 486, 500, 504, 540, 567, 600, 648, 675, 700, 756, 800, 810, 864, 900, 1000, 1008, 2000, 3000, 4000
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 06 2003

Keywords

Comments

Sequence is infinite with trivial terms of the form k*10^r, k = 1 to 9. Conjecture: There are finitely many nontrivial terms (not of the form k*10^r). All the two-digit terms are the same as those of A085133.

Examples

			243 is a term as 243, 432 and 324 all are terms of A002473. 243 = 3^5, 432 = 2^4*3^3, 324 = 2^2*3^4.
		

Crossrefs

Extensions

More terms from David Wasserman, Jan 28 2005

A085904 Numbers k such that k, k+1 and k+2 are 7-smooth, i.e., all prime divisors <= 7 (A002473).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 14, 48
Offset: 1

Views

Author

Amarnath Murthy, Jul 09 2003

Keywords

Comments

No more terms < 3*10^7. Probably no more terms. - David Wasserman, Feb 10 2005
No more terms < 2^180. - Donovan Johnson, Oct 10 2012
There are no further terms: see A003032 (and maybe A002072). - Don Reble, Mar 14 2019

Examples

			48 is a member as 48, 49 and 50 have all prime divisors <= 7.
		

Crossrefs

Cf. A002473.

Programs

  • PARI
    mx=2^180+2; v=vector(4607193); c=0; for(e1=0, 180, x1=2^e1; for(e2=0, 113, x2=x1*3^e2; if(x2>mx, next(2)); for(e3=0, 77, x3=x2*5^e3; if(x3>mx, next(2)); for(e4=0, 64, x4=x3*7^e4; if(x4>mx, next(2)); c++; v[c]=x4)))); v=vecsort(v); for(i=1, 4607191, if(v[i+1]-v[i]==1, if(v[i+2]-v[i]==2, print1(v[i] ", ")))) /* Donovan Johnson, Oct 10 2012 */

Extensions

Offset corrected and missing term added by Donovan Johnson, Oct 10 2012

A002182 Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1

Views

Author

Keywords

Comments

Where record values of d(n) occur: d(n) > d(k) for all k < n.
A002183 is the RECORDS transform of A000005, i.e., lists the corresponding values d(n) for n in A002182.
Flammenkamp's page also has a copy of the missing Siano paper.
Highly composite numbers are the product of primorials, A002110. See A112779 for the number of primorial terms in the product of a highly composite number. - Jud McCranie, Jun 12 2005
Sigma and tau for highly composite numbers through the 146th entry conform to a power fit as follows: log(sigma)=A*log(tau)^B where (A,B) =~ (1.45,1.38). - Bill McEachen, May 24 2006
a(n) often corresponds to P(n,m) = number of permutations of n things taken m at a time. Specifically, if start=1, pointers 1-6, 9, 10, 13-15, 17-19, 22, 23, 28, 34, 37, 43, 52, ... An example is a(37)=665280, which is P(12,6)=12!/(12-6)!. - Bill McEachen, Feb 09 2009
Concerning the previous comment, if m=1, then P(n,m) can represent any number. So let's assume m > 1. Searching the first 1000 terms, the only indices of terms of the form P(n,m) are 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28, 31, 34, 37, 41, 43, 44, 47, 50, 52, and 54. Note that a(44) = 4324320 = P(2079,2). See A163264. - T. D. Noe, Jun 10 2009
A large number of highly composite numbers have 9 as their digit root. - Parthasarathy Nambi, Jun 07 2009
Because 9 divides all highly composite numbers greater than 1680, those numbers have digital root 9. - T. D. Noe, Jul 24 2009
See A181309 for highly composite numbers that are not highly abundant.
a(n) is also defined by the recurrence: a(1) = 1, a(n+1)/sigma(a(n+1)) < a(n) / sigma(a(n)). - Michel Lagneau, Jan 02 2012 [NOTE: This "definition" is wrong (a(20)=7560 does not satisfy this inequality) and incomplete: It does not determine a sequence uniquely, e.g., any subsequence would satisfy the same relation. The intended meaning is probably the definition of the (different) sequence A004394. - M. F. Hasler, Sep 13 2012]
Up to a(1000), the terms beyond a(5) = 12 resp. beyond a(9) = 60 are a multiples of these. Is this true for all subsequent terms? - M. F. Hasler, Sep 13 2012 [Yes: see EXAMPLE in A199337! - M. F. Hasler, Jan 03 2020]
Differs from the superabundant numbers from a(20)=7560 on, which is not in A004394. The latter is not a subsequence of A002182, as might appear from considering the displayed terms: The two sequences have only 449 terms in common, the largest of which is A002182(2567) = A004394(1023). See A166735 for superabundant numbers that are not highly composite, and A004394 for further information. - M. F. Hasler, Sep 13 2012
Subset of A067128 and of A025487. - David A. Corneth, May 16 2016, Jan 03 2020
It seems that a(n) +- 1 is often prime. For n <= 1000 there are 210 individual primes and 17 pairs of twin primes. See link to Lim's paper below. - Dmitry Kamenetsky, Mar 02 2019
There are infinitely many numbers in this sequence and a(n+1) <= 2*a(n), because it is sufficient to multiply a(n) by 2 to get a number having more divisors. (This proves Guess 0 in the Lim paper.) For n = (1, 2, 4, 5, 9, 13, 18, ...) one has equality in this bound, but asymptotically a(n+1)/a(n) goes to 1, cf. formula due to Erdős. See A068507 for the terms such that a(n)+-1 are twin primes. - M. F. Hasler, Jun 23 2019
Conjecture: For n > 7, a(n) is a Zumkeller number (A083207). Verified for n up to and including 48. If this conjecture is true, one may base on it an alternative proof of the fact that for n>7 a(n) is not a perfect square (see Fact 5, Rao/Peng arXiv link at A083207). - Ivan N. Ianakiev, Jun 29 2019
The conjecture above is true (see the proof in the "Links" section). - Ivan N. Ianakiev, Jan 31 2020
The first instance of omega(a(n)) < omega(a(n-1)) (omega = A001221: number of prime divisors) is at a(26) = 45360. Up to n = 10^4, 1759 terms have this property, but omega decreases by 2 only at indices n = 5857, 5914 and 5971. - M. F. Hasler, Jan 02 2020
Inequality (54) in Ramanujan (1915) implies that for any m there is n* such that m | a(n) for all n > n*: see A199337 for the proof. - M. F. Hasler, Jan 03 2020

Examples

			a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
		

References

  • CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
  • L. E. Dickson, History of Theory of Numbers, I, p. 323.
  • Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
  • Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Cf. A261100 (a left inverse).
Cf. A002808. - Peter J. Marko, Aug 16 2018
Cf. A279930 (highly composite and highly Brazilian).
Cf. A068507 (terms such that a(n)+-1 are twin primes).
Cf. A199337 (number of terms not divisible by n).

Programs

  • Mathematica
    a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}]
    (* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *)
    a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *)
    DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *)
    NestList[Function[last,
      Module[{d = DivisorSigma[0, last]},
       NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
  • PARI
    print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
    
  • PARI
    is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(tn, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022
    
  • Python
    from sympy import divisor_count
    A002182_list, r = [], 0
    for i in range(1,10**4):
        d = divisor_count(i)
        if d > r:
            r = d
            A002182_list.append(i) # Chai Wah Wu, Mar 23 2015

Formula

Also, for n >= 2, smallest values of p for which A006218(p)-A006318(p-1) = A002183(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) < a(n) * (1+log(a(n))^-c) for some positive c (see Erdős). - David A. Corneth, May 16 2016
a(n) = A108951(A329902(n)). - Antti Karttunen, Jan 08 2020
a(n+1) <= 2*a(n). For cases where the equal sign holds, see A072938. - A.H.M. Smeets, Jul 10 2021
Sum_{n>=1} 1/a(n) = A352418. - Amiram Eldar, Mar 24 2022

Extensions

Jun 19 1996: Changed beginning to start at 1.
Jul 10 1996: Matthew Conroy points out that these are different from the super-abundant numbers - see A004394. Last 8 terms sent by J. Lowell; checked by Jud McCranie.
Description corrected by Gerard Schildberger and N. J. A. Sloane, Apr 04 2001
Additional references from Lekraj Beedassy, Jul 24 2001

A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3072, 3456, 3888
Offset: 1

Views

Author

Paul Zimmermann, Dec 11 1996

Keywords

Comments

This sequence is easily confused with A033845, which gives numbers of the form 2^i*3^j with i, j >= 1. Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
These numbers were once called "harmonic numbers", see Lenstra links. - N. J. A. Sloane, Jul 03 2015
Successive numbers k such that phi(6k) = 2k. - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A088468: A160519(n) = A088468(a(n)). - Reinhard Zumkeller, May 16 2009
Also numbers that are divisible by neither 6k - 1 nor 6k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
Also numbers m such that the rooted tree with Matula-Goebel number m has m antichains. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. The vertices of a rooted tree can be regarded as a partially ordered set, where u<=v holds for two vertices u and v if and only if u lies on the unique path between v and the root. An antichain is a nonempty set of mutually incomparable vertices. Example: m=4 is in the sequence because the corresponding rooted tree is \/=ARB (R is the root) having 4 antichains (A, R, B, AB). - Emeric Deutsch, Jan 30 2012
A204455(3*a(n)) = 3, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
The number of terms less than or equal to n is Sum_{i=0..floor(log_2(n))} floor(log_3(n/2^i) + 1), or Sum_{i=0..floor(log_3(n))} floor(log_2(n/3^i) + 1), which requires fewer terms to compute. - Robert G. Wilson v, Aug 17 2012
Named 3-friables in French. - Michel Marcus, Jul 17 2013
In the 14th century Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1,2), (2,3), (3,4), and (8,9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Range of values of A000005(n) (and also A181819(n)) for cubefree numbers n. - Matthew Vandermast, May 14 2014
A036561 is a permutation of this sequence. - L. Edson Jeffery, Sep 22 2014
Also the sorted union of A000244 and A007694. - Lei Zhou, Apr 19 2017
The sum of the reciprocals of the 3-smooth numbers is equal to 3. Brief proof: 1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + ... = (Sum_{k>=0} 1/2^k) * (Sum_{m>=0} 1/3^m) = (1/(1-1/2)) * (1/(1-1/3)) = (2/(2-1)) * (3/(3-1)) = 3. - Bernard Schott, Feb 19 2019
Also those integers k for which, for every prime p > 3, p^(2k) - 1 == 0 (mod 24k). - Federico Provvedi, May 23 2022
For n>1, the exponents’ parity {parity(i), parity(j)} of one out of four consecutive terms is {odd, odd}. Therefore, for n>1, at least one out of every four consecutive terms is a Zumkeller number (A083207). If for the term whose parity is {even, odd}, even also means nonzero, then this term is also a Zumkeller number (as is the case with the last of the four consecutive terms 1296, 1458, 1536, 1728). - Ivan N. Ianakiev, Jul 10 2022
Except the initial terms 2, 3, 4, 8, 9 and 16, these are numbers k such that k^6 divides 6^k. Except the initial terms 2, 3, 4, 6, 8, 9, 16, 18 and 27, these are numbers k such that k^12 divides 12^k. - Mohammed Yaseen, Jul 21 2022
In music theory, a comma is a ratio, close to 1 (typically less than 1.04), between two natural numbers divisible by only small primes (typically single digit). In this sequence, a(131) / a(130) = 531441 / 524288 ~ 1.013643 is the Pythagorean comma (A221363), the difference between 12 perfect fifths and 7 octaves. - Hal M. Switkay, Mar 23 2025

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 654 pp. 85, 287-8, Ellipses Paris 2004.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.
  • R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A051037, A002473, A051038, A080197, A080681, A080682, A117221, A105420, A062051, A117222, A117220, A090184, A131096, A131097, A186711, A186712, A186771, A088468, A061987, A080683 (p-smooth numbers with other values of p), A025613 (a subsequence).
Cf. also A000244, A007694. - Lei Zhou, Apr 19 2017
Cf. A191475 (successive values of i), A191476 (successive values of j), A022330 (indices of the pure terms 2^i), A022331 (indices of the pure terms 3^j). - N. J. A. Sloane, May 26 2024
Cf. A221363.

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    smooth :: Set Integer -> [Integer]
    smooth s = x : smooth (insert (3*x) $ insert (2*x) s')
      where (x, s') = deleteFindMin s
    a003586_list = smooth (singleton 1)
    a003586 n = a003586_list !! (n-1)
    -- Reinhard Zumkeller, Dec 16 2010
    
  • Magma
    [n: n in [1..4000] | PrimeDivisors(n) subset [2,3]]; // Bruno Berselli, Sep 24 2012
  • Maple
    A003586 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) minus {2,3} ; if % = {} then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 28 2011
    with(numtheory): for i from 1 to 23328 do if(i/phi(i)=3)then print(i/6) fi od; # Gary Detlefs, Jun 28 2011
  • Mathematica
    a[1] = 1; j = 1; k = 1; n = 100; For[k = 2, k <= n, k++, If[2*a[k - j] < 3^j, a[k] = 2*a[k - j], {a[k] = 3^j, j++}]]; Table[a[i], {i, 1, n}] (* Hai He (hai(AT)mathteach.net) and Gilbert Traub, Dec 28 2004 *)
    aa = {}; Do[If[EulerPhi[6 n] == 2 n, AppendTo[aa, n]], {n, 1, 1000}]; aa (* Artur Jasinski, Nov 05 2008 *)
    fQ[n_] := Union[ MemberQ[{1, 5}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 6]] == {False}; fQ[1] = True; Select[ Range@ 4000, fQ] (* Robert G. Wilson v, Oct 26 2010 *)
    powerOfTwo = 12; Select[Nest[Union@Join[#, 2*#, 3*#] &, {1}, powerOfTwo-1], # < 2^powerOfTwo &] (* Robert G. Wilson v and T. D. Noe, Mar 03 2011 *)
    fQ[n_] := n == 3 EulerPhi@ n; Select[6 Range@ 4000, fQ]/6 (* Robert G. Wilson v, Jul 08 2011 *)
    mx = 4000; Sort@ Flatten@ Table[2^i*3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    f[n_] := Block[{p2, p3 = 3^Range[0, Floor@ Log[3, n] + 1]}, p2 = 2^Floor[Log[2, n/p3] + 1]; Min[ Select[ p2*p3, IntegerQ]]]; NestList[f, 1, 54] (* Robert G. Wilson v, Aug 22 2012 *)
    Select[Range@4000, Last@Map[First, FactorInteger@#] <= 3 &] (* Vincenzo Librandi, Aug 25 2016 *)
    Select[Range[4000],Max[FactorInteger[#][[All,1]]]<4&] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    test(n)=for(p=2,3, while(n%p==0, n/=p)); n==1;
    for(n=1,4000,if(test(n),print1(n",")))
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim\1+.5)\log(3),N=3^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    is_A003586(n)=n<5||vecmax(factor(n,5)[, 1])<5 \\ M. F. Hasler, Jan 16 2015
    
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1,3), N=3^n; while(N<=lim, listput(v, N); N<<=1)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from itertools import count, takewhile
    def aupto(lim):
        pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022
    
  • Python
    from sympy import integer_log
    def A003586(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A003586gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A003586gen(), 65))) # Michael S. Branicky, Sep 17 2024
    (C++) // Returns A003586 <= threshold without approximations nor sorting
    #include 
    std::forward_list A003586(const int threshold) {
        std::forward_list sequence;
        auto start_it = sequence.before_begin();
        for (int i = 1; i <= threshold; i *= 2) {
            for (int inc = 1; std::next(start_it) != sequence.end() && inc <= i; inc *= 3)
                ++start_it;
            auto it = start_it;
            for (int j = 1; i * j <= threshold; j *= 3) {
                sequence.emplace_after(it, i * j);
                for (int inc = 1; std::next(it) != sequence.end() && inc <= i; inc *= 2)
                    ++it;
            }
        }
        return sequence;
    } // Eben Gino Lester, Apr 17 2025
    
  • Sage
    def isA003586(n) :
        return not any(d != 2 and d != 3 for d in prime_divisors(n))
    @CachedFunction
    def A003586(n) :
        if n == 1 : return 1
        k = A003586(n-1) + 1
        while not isA003586(k) : k += 1
        return k
    [A003586(n) for n in (1..55)] # Peter Luschny, Jul 20 2012
    

Formula

An asymptotic formula for a(n) is roughly a(n) ~ 1/sqrt(6)*exp(sqrt(2*log(2)*log(3)*n)). - Benoit Cloitre, Nov 20 2001
A061987(n) = a(n + 1) - a(n), a(A084791(n)) = A084789(n), a(A084791(n) + 1) = A084790(n). - Reinhard Zumkeller, Jun 03 2003
Union of powers of 2 and 3 with n such that psi(n) = 2*n, where psi(n) = n*Product_(1 + 1/p) over all prime factors p of n = A001615(n). - Lekraj Beedassy, Sep 07 2004; corrected by Franklin T. Adams-Watters, Mar 19 2009
a(n) = 2^A022328(n)*3^A022329(n). - N. J. A. Sloane, Mar 19 2009
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} moebius(6*n)*x^n/(1 - x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A007694(n+1)/2. - Lei Zhou, Apr 19 2017

Extensions

Deleted claim that this sequence is union of 2^n (A000079) and 3^n (A000244) sequences -- this does not include the terms which are not pure powers. - Walter Roscello (wroscello(AT)comcast.net), Nov 16 2008

A007954 Product of decimal digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Moebius transform of A093811(n). a(n) = A093811(n) * A008683(n), where operation * denotes Dirichlet convolution, namely b(n) * c(n) = Sum_{d|n} b(d) * c(n/d). Simultaneously holds Dirichlet multiplication: a(n) * A000012(n) = A093811(n). - Jaroslav Krizek, Mar 22 2009
Apart from the 0's, all terms are in A002473. Further, for all m in A002473 there is some n such that a(n) = m, see A096867. - Charles R Greathouse IV, Sep 29 2013
a(n) = 0 asymptotically almost surely, namely for all n except for the set of numbers without digit '0'; this set is of density zero, since it is less and less probable to have no '0' as the number of digits of n grows. (See also A054054.) - M. F. Hasler, Oct 11 2015

Crossrefs

Cf. A031347 (different from A035930), A007953, A007602, A010888, A093811, A008683, A000012, A061076 (partial sums), A230099.
Cf. A051802 (ignoring zeros).

Programs

  • Haskell
    a007954 n | n < 10 = n
              | otherwise = m * a007954 n' where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Oct 26 2012, Mar 14 2011
    
  • Magma
    [0] cat [&*Intseq(n): n in [1..110]]; // Vincenzo Librandi, Jan 03 2020
    
  • Maple
    A007954 := proc(n::integer)
        if n = 0 then
            0;
        else
            mul( d,d=convert(n,base,10)) ;
        end if;
    end proc: # R. J. Mathar, Oct 02 2019
  • Mathematica
    Array[Times @@ IntegerDigits@ # &, 108, 0] (* Robert G. Wilson v, Mar 15 2011 *)
  • PARI
    A007954(n)= { local(resul = n % 10); n \= 10; while( n > 0, resul *= n %10; n \= 10; ); return(resul); } \\ R. J. Mathar, May 23 2006, edited by M. F. Hasler, Apr 23 2015
    
  • PARI
    A007954(n)=prod(i=1,#n=Vecsmall(Str(n)),n[i]-48) \\ (...eval(Vec(...)),n[i]) is about 50% slower; (...digits(n)...) about 6% slower. \\ M. F. Hasler, Dec 06 2009
    
  • PARI
    a(n)=if(n,factorback(digits(n)),0) \\ Charles R Greathouse IV, Apr 14 2020
    
  • Python
    from math import prod
    def a(n): return prod(map(int, str(n)))
    print([a(n) for n in range(108)]) # Michael S. Branicky, Jan 16 2022
  • Scala
    (0 to 99).map(.toString.toCharArray.map( - 48).scanRight(1)( * ).head) // Alonso del Arte, Apr 14 2020
    

Formula

A000035(a(A014261(n))) = 1. - Reinhard Zumkeller, Nov 30 2007
a(n) = abs(A187844(n)). - Reinhard Zumkeller, Mar 14 2011
a(n) > 0 if and only if A054054(n) > 0. a(n) = d in {1, ..., 9} if n = (10^k - 1)/9 + (d - 1)*10^m = A002275(k) + (d - 1)*A011557(m) for some k > m >= 0. The statement holds with "if and only if" for d in {1, 2, 3, 5, 7}. For d = 4, 6, 8 or 9, one has a(n) = d if n = (10^k - 1)/9 + (a - 1)*10^m + (b - 1)*10^p with integers k > m > p >= 0 and a, b > 0 such that d = a*b. - M. F. Hasler, Oct 11 2015
From Robert Israel, May 17 2016: (Start)
G.f.: Sum_{n >= 0} Product_{j = 0..n} Sum_{k = 1..9} k*x^(k*10^j).
G.f. satisfies A(x) = (x + 2*x^2 + ... + 9*x^9)*(1 + A(x^10)). (End)
a(n) <= 9^(1 + log_10(n/9)). - Lucas A. Brown, Jun 22 2023

Extensions

Error in term 25 corrected, Nov 15 1995

A051037 5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1

Views

Author

Keywords

Comments

Sometimes called the Hamming sequence, since Hamming asked for an efficient algorithm to generate the list, in ascending order, of all numbers of the form 2^i*3^j*5^k for i,j,k >= 0. The problem was popularized by Edsger Dijkstra.
Numbers k such that 8*k = EulerPhi(30*k). - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A165704: A165705(n) = A165704(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also called "harmonic whole numbers", see Howard and Longair, 1982, Table I, page 121. - Hugo Pfoertner, Jul 16 2020
Also called ugly numbers, although it is not clear why. - Gus Wiseman, May 21 2021
Some woody bamboo species have extraordinarily long and stable flowering intervals that belong to this sequence. The model by Veller, Nowak & Davis justifies this observation from the evolutionary point of view. - Andrey Zabolotskiy, Jun 27 2021
Also those integers k for which, for every prime p > 5, p^(4*k) - 1 == 0 (mod 240*k). - Federico Provvedi, May 23 2022
As noted in the comments to A085152, Størmer's theorem implies that the only pairs of consecutive integers that appear as consecutive terms of this sequence are (1,2), (2,3), (3,4), (4,5), (5,6), (8,9), (9,10), (15,16), (24,25), and (80,81). These all represent significant musical intervals. - Hal M. Switkay, Dec 05 2022

Examples

			From _Gus Wiseman_, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
      1: {}            25: {3,3}
      2: {1}           27: {2,2,2}
      3: {2}           30: {1,2,3}
      4: {1,1}         32: {1,1,1,1,1}
      5: {3}           36: {1,1,2,2}
      6: {1,2}         40: {1,1,1,3}
      8: {1,1,1}       45: {2,2,3}
      9: {2,2}         48: {1,1,1,1,2}
     10: {1,3}         50: {1,3,3}
     12: {1,1,2}       54: {1,2,2,2}
     15: {2,3}         60: {1,1,2,3}
     16: {1,1,1,1}     64: {1,1,1,1,1,1}
     18: {1,2,2}       72: {1,1,1,2,2}
     20: {1,1,3}       75: {2,3,3}
     24: {1,1,1,2}     80: {1,1,1,1,3}
(End)
		

Crossrefs

Subsequences: A003592, A003593, A051916 , A257997.
For p-smooth numbers with other values of p, see A003586, A002473, A051038, A080197, A080681, A080682, A080683.
The partitions with these Heinz numbers are counted by A001399.
The conjugate opposite is A033942, counted by A004250.
The opposite is A059485, counted by A004250.
The non-3-smooth case is A080193, counted by A069905.
The conjugate is A037144, counted by A001399.
The complement is A279622, counted by A035300.
Requiring the sum of prime indices to be even gives A344297.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a051037 n = a051037_list !! (n-1)
    a051037_list = f $ singleton 1 where
       f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    A051037 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                numtheory[factorset](a) minus {2, 3,5 } ;
                if % = {} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
  • Mathematica
    mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
    Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
    With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
  • PARI
    test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,500,if(test(n),print1(n",")))
    
  • PARI
    a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
    
  • PARI
    list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
    
  • PARI
    smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t);
    while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx);
    if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++);
    Vec(v)
    };
    smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
    
  • PARI
    is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
    
  • Python
    def isok(n):
      while n & 1 == 0: n >>= 1
      while n % 3 == 0: n //= 3
      while n % 5 == 0: n //= 5
      return n == 1 #  Darío Clavijo, Dec 30 2022
    
  • Python
    from sympy import integer_log
    def A051037(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(y:=x//5**i,3)[0]+1):
                    c -= (y//3**j).bit_length()
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A051037gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

Let s(n) = Card(k | a(k)Benoit Cloitre, Dec 30 2001
The characteristic function of this sequence is given by:
Sum_{n>=1} x^a(n) = Sum_{n>=1} -Möbius(30*n)*x^n/(1-x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A143207(n) / 30. - Reinhard Zumkeller, Sep 13 2011
A204455(15*a(n)) = 15, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
A006530(a(n)) <= 5. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = Product_{primes p <= 5} p/(p-1) = (2*3*5)/(1*2*4) = 15/4. - Amiram Eldar, Sep 22 2020

A192476 Monotonic ordering of set S generated by these rules: if x and y are in S then x^2 + y^2 is in S, and 1 is in S.

Original entry on oeis.org

1, 2, 5, 8, 26, 29, 50, 65, 68, 89, 128, 677, 680, 701, 740, 842, 845, 866, 905, 1352, 1517, 1682, 2501, 2504, 2525, 2564, 3176, 3341, 4226, 4229, 4250, 4289, 4625, 4628, 4649, 4688, 4901, 5000, 5066, 5300, 5465, 6725, 7124, 7922, 7925, 7946, 7985
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2011

Keywords

Comments

Let N denote the positive integers, and suppose that f(x,y): N x N->N. Let "start" denote a subset of N, and let S be the set of numbers defined by these rules: if x and y are in S, then f(x,y) is in S, and "start" is a subset of S. The monotonic increasing ordering of S is a sequence:
A192476: f(x,y)=x^2+y^2, start={1}
A003586: f(x,y)=x*y, start={1,2,3}
A051037: f(x,y)=x*y, start={1,2,3,5}
A002473: f(x,y)=x*y, start={1,2,3,5,7}
A003592: f(x,y)=x*y, start={2,5}
A009293: f(x,y)=x*y+1, start={2}
A009388: f(x,y)=x*y-1, start={2}
A009299: f(x,y)=x*y+2, start={3}
A192518: f(x,y)=(x+1)(y+1), start={2}
A192519: f(x,y)=floor(x*y/2), start={3}
A192520: f(x,y)=floor(x*y/2), start={5}
A192521: f(x,y)=floor((x+1)(y+1)/2), start={2}
A192522: f(x,y)=floor((x-1)(y-1)/2), start={5}
A192523: f(x,y)=2x*y-x-y, start={2}
A192525: f(x,y)=2x*y-x-y, start={3}
A192524: f(x,y)=4x*y-x-y, start={1}
A192528: f(x,y)=5x*y-x-y, start={1}
A192529: f(x,y)=3x*y-x-y, start={2}
A192531: f(x,y)=3x*y-2x-2y, start={2}
A192533: f(x,y)=x^2+y^2-x*y, start={2}
A192535: f(x,y)=x^2+y^2+x*y, start={1}
A192536: f(x,y)=x^2+y^2-floor(x*y/2), start={1}
A192537: f(x,y)=x^2+y^2-x*y/2, start={2}
A192539: f(x,y)=2x*y+floor(x*y/2), start={1}

Examples

			1^2+1^2=2, 1^2+2^2=5, 2^2+2^2=8, 1^2+5^2=26.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a192476 n = a192476_list !! (n-1)
    a192476_list = f [1] (singleton 1) where
       f xs s =
         m : f xs' (foldl (flip insert) s' (map (+ m^2) (map (^ 2) xs')))
         where xs' = m : xs
               (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Aug 15 2011
  • Mathematica
    start = {1}; f[x_, y_] :=  x^2 + y^2  (* start is a subset of t, and if x,y are in t then f(x,y) is in t. *)
    b[z_] :=  Block[{w = z}, Select[Union[Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < 30000 &]];
    t = FixedPoint[b, start] (* A192476 *)
    Differences[t]
    (* based on program by Robert G. Wilson v at A009293 *)

A034710 Positive numbers for which the sum of digits equals the product of digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 213, 231, 312, 321, 1124, 1142, 1214, 1241, 1412, 1421, 2114, 2141, 2411, 4112, 4121, 4211, 11125, 11133, 11152, 11215, 11222, 11251, 11313, 11331, 11512, 11521, 12115, 12122, 12151, 12212, 12221, 12511
Offset: 1

Views

Author

Keywords

Comments

Positive numbers k such that A007953(k) = A007954(k).
If k is a term, the digits of k are solutions of the equation x1*x2*...*xr = x1 + x2 + ... + xr; xi are from [1..9]. Permutations of digits (x1,...,xr) are different numbers k with the same property A007953(k) = A007954(k). For example: x1*x2 = x1 + x2; this equation has only 1 solution, (2,2), which gives the number 22. x1*x2*x3 = x1 + x2 + x3 has a solution (1,2,3), so the numbers 123, 132, 213, 231, 312, 321 have the property. - Ctibor O. Zizka, Mar 04 2008
Subsequence of A249334 (numbers for which the digital sum contains the same distinct digits as the digital product). With {0}, complement of A249335 with respect to A249334. Sequence of corresponding values of A007953(a(n)) = A007954(a(n)): 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ... contains only numbers from A002473. See A248794. - Jaroslav Krizek, Oct 25 2014
There are terms of the sequence ending in any term of A052382. - Robert Israel, Nov 02 2014
The number of digits which are not 1 in a(n) is O(log log a(n)) and tends to infinity as a(n) does. - Robert Dougherty-Bliss, Jun 23 2020

Examples

			1124 is a term since 1 + 1 + 2 + 4 = 1*1*2*4 = 8.
		

Crossrefs

Cf. A066306 (prime terms), A066307 (nonprimes).

Programs

  • Haskell
    import Data.List (elemIndices)
    a034710 n = a034710_list !! (n-1)
    a034710_list = elemIndices 0 $ map (\x -> a007953 x - a007954 x) [1..]
    -- Reinhard Zumkeller, Mar 19 2011
    
  • Magma
    [n: n in [1..10^6] | &*Intseq(n) eq &+Intseq(n)] // Jaroslav Krizek, Oct 25 2014
    
  • Mathematica
    Select[Range[12512], (Plus @@ IntegerDigits[ # ]) == (Times @@ IntegerDigits[ # ]) &] (* Alonso del Arte, May 16 2005 *)
  • PARI
    is(n)=my(d=digits(n)); vecsum(d)==factorback(d) \\ Charles R Greathouse IV, Feb 06 2017

Extensions

Corrected by Larry Reeves (larryr(AT)acm.org), Jun 27 2001
Definition changed by N. J. A. Sloane to specifically exclude 0, Sep 22 2007

A051038 11-smooth numbers: numbers whose prime divisors are all <= 11.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140
Offset: 1

Views

Author

Keywords

Comments

A155182 is a finite subsequence. - Reinhard Zumkeller, Jan 21 2009
From Federico Provvedi, Jul 09 2022: (Start)
In general, if p=A000040(k) is the k-th prime, with k>1, p-smooth numbers are also those positive integers m such that A000010(A002110(k))*m == A000010(A002110(k)*m).
With k=5, p = A000040(5) = 11, the primorial p# = A002110(5) = 2310, and its Euler totient is A000010(2310) = 480, so the 11-smooth numbers are also those positive integers m such that 480*m == A000010(2310*m). (End)

Crossrefs

Subsequence of A033620.
For p-smooth numbers with other values of p, see A003586, A051037, A002473, A080197, A080681, A080682, A080683.

Programs

  • Magma
    [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(11)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    mx = 150; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}] (* Robert G. Wilson v, Aug 17 2012 *)
    aQ[n_]:=Max[First/@FactorInteger[n]]<=11; Select[Range[140],aQ[#]&] (* Jayanta Basu, Jun 05 2013 *)
    Block[{k=5,primorial:=Times@@Prime@Range@#&},Select[Range@200,#*EulerPhi@primorial@k==EulerPhi[#*primorial@k]&]] (* Federico Provvedi, Jul 09 2022 *)
  • PARI
    test(n)=m=n; forprime(p=2,11, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=11)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=11): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 67))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A051038(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 11} p/(p-1) = (2*3*5*7*11)/(1*2*4*6*10) = 77/16. - Amiram Eldar, Sep 22 2020

A085153 All prime factors of n and n+1 are <= 7. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

The ABC conjecture would imply that if the prime factors of A, B, C are prescribed in advance, then there is only a finite number of solutions to the equation A + B = C with gcd(A,B,C)=1 (indeed it would bound C to be no more than "roughly" the product of those primes). So in particular there ought to be only finitely many pairs of adjacent integers whose prime factors are limited to {2, 3, 5, 7} (D. Rusin).
This sequence is complete by a theorem of Stormer. See A002071. - T. D. Noe, Mar 03 2008
This is the 4th row of the table A138180. It has 23=A002071(4)=A145604(1)+...+ A145604(4) terms and ends with A002072(4)=4374. It is the union of all terms in rows 1 through 4 of the table A145605. It is a subsequence of A252494 and contains A085152 as a subsequence. - M. F. Hasler, Jan 16 2015
Equivalently, this is the sequence of numbers for which A074399(n) <= 7, or A252489(n) <= 4.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 7 &] (* T. D. Noe, Mar 03 2008 *)
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<8 && vecmax(factor(n--+(n<2))[,1])<8 && print1(n",")) \\ M. F. Hasler, Jan 16 2015

Extensions

Edited by Dean Hickerson, Jun 30 2003
Previous Showing 21-30 of 160 results. Next