cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 286 results. Next

A056109 Fifth spoke of a hexagonal spiral.

Original entry on oeis.org

1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321, 386, 457, 534, 617, 706, 801, 902, 1009, 1122, 1241, 1366, 1497, 1634, 1777, 1926, 2081, 2242, 2409, 2582, 2761, 2946, 3137, 3334, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5126, 5377, 5634, 5897, 6166, 6441
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

Squared distance from (0,0,-1) to (n,n,n) in R^3. - James R. Buddenhagen, Jun 15 2013

Examples

			Illustration of initial terms:
.
.                                                o
.                           o                 o o o o
.            o           o o o o           o o o o o o o
.   o     o o o o     o o o o o o o     o o o o o o o o o o
.            o           o o o o           o o o o o o o
.                           o                 o o o o
.                                                o
.
.   1        6              17                   34
- _Aaron David Fairbanks_, Feb 16 2025
		

Crossrefs

Cf. A008810, A122430 (prime terms).
Other spirals: A054552.
Cf. A000290.

Programs

  • GAP
    List([0..50],n->3*n^2+2*n+1); # Muniru A Asiru, Oct 07 2018
  • Magma
    [3*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Mar 15 2013
    
  • Maple
    seq(coeff(series(n!*(exp(x)*(3*x^2+5*x+1)),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Table[3 n^2 + 2 n + 1, {n, 0, 100}] (* Vincenzo Librandi, Mar 15 2013 *)
    LinearRecurrence[{3,-3,1},{1,6,17},60] (* Harvey P. Dale, Mar 28 2019 *)
  • PARI
    {a(n) = 3*n^2 + 2*n + 1}; /* Michael Somos, Aug 03 2006 */
    
  • PARI
    Vec((1+3*x+2*x^2)/(1-3*x+3*x^2-x^3)+O(x^100)) \\ Stefano Spezia, Oct 17 2018
    

Formula

a(n) = 3n^2+2n+1 = a(n-1)+6n-1 = 2a(n-1)-a(n-2)+6 = 3a(n-1)-3a(n-2)+a(n-3) = A056105(n)+4n = A056106(n)+3n = A056107(n)+2n = A056108(n)+n = A003215(n)-n.
G.f.: (1+3*x+2*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
G.f.: (1 + x) * (1 + 2*x) / (1 - x)^3. - Michael Somos, Feb 04 2012
a(n) = A008810(3*n + 1) = A056105(-n). - Michael Somos, Aug 03 2006
E.g.f.: exp(x)*(1 + 5*x + 3*x^2). - Stefano Spezia, Oct 06 2018
a(n) = A000290(n+1) + 2*A000290(n). - Leo Tavares, May 29 2023
a(n) = A069894(n) - A000290(n+1). - Jarrod G. Sage, Jul 19 2024

A056107 Third spoke of a hexagonal spiral.

Original entry on oeis.org

1, 4, 13, 28, 49, 76, 109, 148, 193, 244, 301, 364, 433, 508, 589, 676, 769, 868, 973, 1084, 1201, 1324, 1453, 1588, 1729, 1876, 2029, 2188, 2353, 2524, 2701, 2884, 3073, 3268, 3469, 3676, 3889, 4108, 4333, 4564, 4801, 5044, 5293, 5548, 5809, 6076, 6349
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

a(n+1) is the number of lines crossing n cells of an n X n X n cube. - Lekraj Beedassy, Jul 29 2005
Equals binomial transform of [1, 3, 6, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Each term a(n), with n>1 represents the area of the right trapezoid with bases whose values are equal to hex number A003215(n) and A003215(n+1)and height equal to 1. The right trapezoid is formed by a rectangle with the sides equal to A003215(n) and 1 and a right triangle whose area is 3*n with the greater cathetus equal to the difference A003215(n+1)-A003215(n). - Giacomo Fecondo, Jun 11 2010
2*a(n)^2 is of the form x^4+y^4+(x+y)^4. In fact, 2*a(n)^2 = (n-1)^4+(n+1)^4+(2n)^4. - Bruno Berselli, Jul 16 2013
Numbers m such that m+(m-1)+(m-2) is a square. - César Aguilera, May 26 2015
After 4, twice each term belongs to A181123: 2*a(n) = (n+1)^3 - (n-1)^3. - Bruno Berselli, Mar 09 2016
This is a subsequence of A003136: a(n) = (n-1)^2 + (n-1)*(n+1) + (n+1)^2. - Bruno Berselli, Feb 08 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n X n torus grid graph. - Eric W. Weisstein, Nov 30 2017

References

  • Edward J. Barbeau, Murray S. Klamkin and William O. J. Moser, Five Hundred Mathematical Challenges, MAA, Washington DC, 1995, Problem 444, pp. 42 and 195.
  • Ben Hamilton, Brainteasers and Mindbenders, Fireside, 1992, p. 107.

Crossrefs

Cf. A002648 (prime terms), A201053.
Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1+x+4*x^2)/(1-x)^3.
a(n) = a(n-1) + 6*n - 3 for n>0.
a(n) = 2*a(n-1) - a(n-2) + 6 for n>1.
a(n) = A056105(n) + 2*n = A056106(n) + n.
a(n) = A056108(n) - n = A056109(n) - 2*n = A003215(n) - 3*n.
a(n) = (A000578(n+1) - A000578(n-1))/2. - Lekraj Beedassy, Jul 29 2005
a(n) = A132111(n+1,n-1) for n>1. - Reinhard Zumkeller, Aug 10 2007
E.g.f.: (1 + 3*x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(3))*coth(Pi/sqrt(3)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(3))*csch(Pi/sqrt(3)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(3))*sinh(sqrt(2/3)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(3))*csch(Pi/sqrt(3)). (End)

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A047969 Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0

Views

Author

Keywords

Comments

If each row started with an initial 0 (i.e., a(n,k) = (n+1)^k - n^k) then each row would be the binomial transform of the preceding row. - Henry Bottomley, May 31 2001
a(n-1, k-1) is the number of ordered k-tuples of positive integers such that the largest of these integers is n. - Alford Arnold, Sep 07 2005
From Alford Arnold, Jul 21 2006: (Start)
The sequences in A047969 can also be calculated using the Eulerian Array (A008292) and Pascal's Triangle (A007318) as illustrated below: (cf. A101095).
1 1 1 1 1 1
1 1 1 1 1 1
-----------------------------------------
1 2 3 4 5 6
1 2 3 4 5
1 3 5 7 9 11
-----------------------------------------
1 3 6 10 15 21
4 12 24 40 60
1 3 6 10
1 7 19 37 61 91
-----------------------------------------
1 4 10 20 35 56
11 44 110 220 385
11 44 110 220
1 4 10
1 15 65 175 369 671
----------------------------------------- (End)
From Peter Bala, Oct 26 2008: (Start)
The above remarks of Alford Arnold may be summarized by saying that (the transpose of) this array is the Hilbert transform of the triangle of Eulerian numbers A008292 (see A145905 for the definition of the Hilbert transform). In this context, A008292 is best viewed as the array of h-vectors of permutohedra of type A. See A108553 for the Hilbert transform of the array of h-vectors of type D permutohedra. Compare this array with A009998.
The polynomials n^k - (n-1)^k, k = 1,2,3,..., which give the nonzero entries in the columns of this array, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re s = 1/2 in the complex plane. See A019538 for the connection between the polynomials n^k - (n-1)^k and the Stirling polynomials of the simplicial complexes dual to the type A permutohedra.
(End)
Empirical: (n+1)^(k+1) - n^(k+1) is the number of first differences of length k+1 arrays of numbers in 0..n, k > 0. - R. H. Hardin, Jun 30 2013
a(n-1, k-1) is the number of bargraphs of width k and height n. Examples: a(1,2) = 7 because we have [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], and [2,2,2]; a(2,1) = 5 because we have [1,3], [2,3], [3,1], [3,2], and [3,3] (bargraphs are given as compositions). This comment is equivalent to A. Arnold's Sep 2005 comment. - Emeric Deutsch, Jan 30 2017

Examples

			Array a begins:
  [n\k][0  1   2    3    4   5  6  ...
  [0]   1  1   1    1    1   1  1  ...
  [1]   1  3   7   15   31  63  ...
  [2]   1  5  19   65  211  ...
  [3]   1  7  37  175  ...
  ...
Triangle T begins:
  n\m   0   1    2     3     4      5      6      7      8     9  10 ...
  0:    1
  1:    1   1
  2:    1   3    1
  3:    1   5    7     1
  4:    1   7   19    15     1
  5:    1   9   37    65    31      1
  6:    1  11   61   175   211     63      1
  7:    1  13   91   369   781    665    127      1
  8:    1  15  127   671  2101   3367   2059    255      1
  9:    1  17  169  1105  4651  11529  14197   6305    511     1
  10:   1  19  217  1695  9031  31031  61741  58975  19171  1023   1
  ...  - _Wolfdieter Lang_, May 07 2021
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Cf. A047970.
Cf. A009998, A108553 (Hilbert transform of array of h-vectors of type D permutohedra), A145904, A145905.
Row n sequences of array a: A000012, A000225(k+1), A001047(k+1), A005061(k+1), A005060(k+1), A005062(k+1), A016169(k+1), A016177(k+1), A016185(k+1), A016189(k+1), A016195(k+1), A016197(k+1).
Column k sequences of array a: (nexus numbers): A000012, A005408, A003215, A005917(n+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Cf. A343237 (row reversed triangle).

Programs

  • Mathematica
    Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
  • Maxima
    T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */

Formula

From Vladimir Kruchinin: (Start)
O.g.f. of e.g.f of rows of array: ((1-x)*exp(y))/(1-x*exp(y))^2.
T(n,m) = Sum_{k=0..m} k!*(-1)^(m+k)*Stirling2(m,k)*C(n+k-1,n), T(n,0)=1.(End)
From Wolfdieter Lang, May 07 2021: (Start)
T(n,m) = a(n-m,m) = (n-m+1)^(m+1) - (n-m)^(m+1), n >= 0, m = 0, 1,..., n.
O.g.f. column k of the array: polylog(-(k+1), x)*(1-x)/x. See the Peter Bala comment above, and the Eulerian triangle A008292 formula by Vladeta Jovovic, Sep 02 2002.
E.g.f. of e.g.f. of row of the array: exp(y)*(1 + x*(exp(y) - 1))*exp(x*exp(y)).
O.g.f. of triangle's exponential row polynomials R(n, y) = Sum_{m=0} T(n, m)*(y^m)/m!: G(x, y) = exp(x*y)*(1 - x)/(1 - x*exp(x*y))^2. (End)

A056105 First spoke of a hexagonal spiral.

Original entry on oeis.org

1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017

Examples

			The spiral begins:
                   49--48--47--46--45
                   /                 \
                 50  28--27--26--25  44
                 /   /             \   \
               51  29  13--12--11  24  43
               /   /   /         \   \   \
             52  30  14   4---3  10  23  42  67
             /   /   /   /     \   \   \   \   \
           53  31  15   5   1===2===9==22==41==66==>
             \   \   \   \         /   /   /   /
             54  32  16   6---7---8  21  40  65
               \   \   \             /   /   /
               55  33   17--18--19--20  39  64
                 \   \                 /   /
                 56  34--35--36--37--38  63
                   \                     /
                   57--58--59--60--61--62
		

Crossrefs

Cf. A285792 (prime terms), A113519 (semiprime terms).
Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 - 2*n + 1.
a(n) = a(n-1) + 6*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056106(n) - n = A056107(n) - 2*n.
a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n.
A008810(3*n-1) = A056109(-n) = a(n). - Michael Somos, Aug 03 2006
G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
From Robert G. Wilson v, Jul 05 2014: (Start)
Each of the 6 primary spokes or rays has a generating formula as stated here:
1st: 90 degrees A056105 3n^2 - 2n + 1
2nd: 30 degrees A056106 3n^2 - n + 1
3rd: 330 degrees A056107 3n^2 + 1
4th: 270 degrees A056108 3n^2 + n + 1
5th: 210 degrees A056109 3n^2 + 2n + 1
6th: 150 degrees A003215 3n^2 + 3n + 1
Each of the 6 secondary spokes or rays has a generating formula as stated here:
1st: 60 degrees 12n^2 - 27n + 16
2nd: 360 degrees 12n^2 - 25n + 14
3rd: 300 degrees 12n^2 - 23n + 12
4th: 240 degrees 12n^2 - 21n + 10
5th: 180 degrees 12n^2 - 19n + 8
6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1)
(End)
a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017
a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - J. M. Bergot, Mar 03 2018
E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018

A054554 a(n) = 4*n^2 - 10*n + 7.

Original entry on oeis.org

1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, 1123, 1261, 1407, 1561, 1723, 1893, 2071, 2257, 2451, 2653, 2863, 3081, 3307, 3541, 3783, 4033, 4291, 4557, 4831, 5113, 5403, 5701, 6007, 6321, 6643, 6973, 7311, 7657, 8011, 8373, 8743
Offset: 1

Views

Author

Keywords

Comments

Move in 1-3 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 2, 8, 0, 0, 0, ...]. - Gary W. Adamson, May 03 2008
Ulam's spiral (NE spoke). - Robert G. Wilson v, Oct 31 2011
Number of ternary strings of length 2*(n-1) that have one or no 0's, one or no 1's, and an even number of 2's. For n=2, the 3 strings of length 2 are 01, 10 and 22. For n=3, the 13 strings of length 4 are the 12 permutations of 0122 and 2222. - Enrique Navarrete, Jul 25 2025

Crossrefs

Cf. A014105.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n + a(n-1) - 14 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -x*(7*x^2+1)/(x-1)^3. - Colin Barker, Sep 21 2012
For n > 2, a(n) = A014105(n) + A014105(n-1). - Bruce J. Nicholson, May 07 2017
From Leo Tavares, Feb 21 2022: (Start)
a(n) = A003215(n-2) + 2*A000217(n-1). See Hexagonal Dual Rays illustration in links.
a(n) = A227776(n-1) - 4*A000217(n-1). (End)
a(k+1) = 4k^2 - 2k + 1 in the Numberphile video. - Frank Ellermann, Mar 11 2020
E.g.f.: exp(x)*(7 - 6*x + 4*x^2) - 7. - Stefano Spezia, Apr 24 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002

A062786 Centered 10-gonal numbers.

Original entry on oeis.org

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Comments

Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023

Crossrefs

Programs

  • GAP
    List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
    
  • Magma
    [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
    
  • PARI
    for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
    
  • Python
    def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
  • Sage
    [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
    

Formula

a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)

Extensions

Better description from Terrel Trotter, Jr., Apr 06 2002

A077043 "Three-quarter squares": a(n) = n^2 - A002620(n).

Original entry on oeis.org

0, 1, 3, 7, 12, 19, 27, 37, 48, 61, 75, 91, 108, 127, 147, 169, 192, 217, 243, 271, 300, 331, 363, 397, 432, 469, 507, 547, 588, 631, 675, 721, 768, 817, 867, 919, 972, 1027, 1083, 1141, 1200, 1261, 1323, 1387, 1452, 1519, 1587, 1657, 1728, 1801, 1875, 1951
Offset: 0

Views

Author

Henry Bottomley, Oct 22 2002

Keywords

Comments

Triangular numbers plus quarter squares: (n+1)*(n+2)/2 + floor(n^2/4) (i.e., A000217(n+1) + A002620(n)).
Largest coefficient in the expansion of (1+x+x^2+...+x^(n-1))^3=((1-x^n)/(1-x))^3, i.e., the coefficient of x^floor[3(n-1)/2] and of x^ceiling[3(n-1)/2]; also number of compositions of [3(n+1)/2] into exactly 3 positive integers each no more than n.
A set of n independent statements a,b,c,d..., produces n^2 conditional statements of the form "If a, then b" (including self-implications such as "If a, then a"). If such statements are taken as equivalent to "It is not the case that the first statement is true and the second is false" (material implication), A077043(n) is the minimum number of the conditional statements that can be true. (The maximum number of false conditional statements is A002620(n), the maximum product of two integers whose sum is n.) - Matthew Vandermast, Mar 04 2003
This is also the maximum number of triple intersections between three sets of n lines, where the lines in each set are parallel to each other. E.g., for n=3:
\.\.\.../././
.\.\.\./././.
..\.\.x././..
---+-*-*-+---
----*-*-*----
---+-*-*-+---
.././.x.\.\..
./././.\.\.\.
/././...\.\.\
where '*' = triple intersection, '+' and 'x' = double intersection.
I am pretty sure that the hexagonal configuration of intersections shown above is the optimum and I get the formulas a(n) = (3n^2)/4 for n even and (3n^2+1)/4 for n odd. - Gabriel Nivasch (gnivasch(AT)yahoo.com), Jan 13 2004
For n > 1 the sequence represents the maximum number of points that can be placed in a plane such that the largest distances between any two points does not exceed the shortest of the distances between any two points by more than a factor n-1. - Johannes Koelman (Joc_kay(AT)hotmail.com), Apr 27 2006
This is also the number of distinct noncongruent isosceles triangles with side length up to n. - Patrick Hurst (patrick(AT)imsa.edu), May 14 2008
Also concentric triangular numbers. A033428 and A003215 interleaved. - Omar E. Pol, Sep 28 2011
Number of (w,x,y) with all terms in {0,...,n} and w=x>range{w,x,y}. - Clark Kimberling, Jun 02 2012
Number of pairs (x,y) with x in {0,...,n}, y even in {0,...,2n}, and x<=y. - Clark Kimberling, Jul 02 2012
From Bob Selcoe, Aug 05 2013: (Start)
a(n) is the number of 3-member sets with non-repeating positive integer values (x,y,z) whose sums equal 3(n+1). Example: a(4)=12; thus there are 12 sets where x+y+z = 15: (1,2,12), (1,3,11), (1,4,10), (1,5,9), (1,6,8), (2,3,10), (2,4,9), (2,5,8), (2,6,7), (3,4,8), (3,5,7) and (4,5,6).
From above, the number of sets sharing minimum values (minvals) equals a(1)-a(0), a(2)-a(1), a(3)-a(2),... a(n)-a(n-1) which are the numbers not divisible by 3, in sequence (A001651), range n to 1. So in the above example, there is one set with minval 4, two sets with minval 3, four sets with minval 2 and five sets with minval 1. (End)
Number of partitions of 3n into exactly 3 parts. - Wesley Ivan Hurt, Jan 21 2014
Number of partitions of 3(n-1) into at most 3 parts. - Colin Barker, Mar 31 2015
Number of possible positions after n-1 steps on the lines of a hexagonal grid. - Reg Robson, Mar 08 2014
12*a(n) is a perfect square when n is even and 12*a(n) - 3 is a perfect square when n is odd. - Miquel Cerda, Jun 30 2016
Square of largest Euclidean distance from start point reachable by an n-step walk on a honeycomb lattice. - Hugo Pfoertner, Jun 21 2018

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 27*x^6 + 37*x^7 + 48*x^8 + ...
a(4)=12 since the compositions of floor(3*(4+1)/2) = 7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+3, 2+4+1, 3+1+3, 3+2+2, 3+3+1, 4+1+2, 4+2+1.
From _Philippe Deléham_, Dec 17 2011: (Start)
a(1) = 1 = 1^3;
a(1) + a(3) = 1 + 7 = 2^3;
a(1) + a(3) + a(5) = 1 + 7 + 19 = 3^3;
a(1) + a(3) + a(5) + a(7) = 1 + 7 + 19 + 37 = 4^3;
a(1) + a(3) + a(5) + a(7) + a(9) = 1 + 7 + 19 + 37 + 61 = 5^3; ... (End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.

Crossrefs

Column 3 of A195040. - Omar E. Pol, Sep 28 2011
Cf. A019298 (partial sums).
Equals one more than A331952 and one less than A084684. - Greg Dresden, Feb 22 2020

Programs

  • Haskell
    a077043 n = a077043_list !! n
    a077043_list = scanl (+) 0 a001651_list
    -- Reinhard Zumkeller, Jan 06 2014
  • Magma
    [Ceiling(n^2*3/4): n in [0..60]]; // Vincenzo Librandi, Jun 29 2011
    
  • Maple
    A077043:=n->ceil(3*n^2/4); seq(A077043(n), n=0..60); # Wesley Ivan Hurt, Jan 21 2014
  • Mathematica
    Table[Ceiling[(3n^2)/4], {n,0,60}] (* or *) LinearRecurrence[{2,0,-2,1}, {0,1,3,7}, 60] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    {a(n) = n^2 - (n^2 \ 4)}; /* Michael Somos, Jun 29 2011 */
    

Formula

a(n) = ceiling(n^2*3/4) = A077042(n, 3); a(-n) = a(n).
Also can be computed from 1 * C(n,0) + 2 * C(n,1) + 2 * C(n,2) - Sum((-2)^(k-3) C(n, k)). - Joshua Zucker, Nov 10 2002
a(n) = A002620(n-1) + A002620(n) + A002620(n+1). - Jon Perry, May 29 2003
From Jon Perry, May 29 2003: (Start)
a(2k) = a(2k-2) + 6k - 3,
a(2k+1) = a(2k-1) + 6k,
a(4n) = 12n^2,
a(4n+1) = a(4n) + 6n + 1,
a(4n+2) = a(4n+1) + 6n + 2,
a(4n+3) = a(4n+2) + 6n + 4,
a(4n+4) = a(4n+3) + 6n + 5.
Differences between alternate terms give 3, 6, 9, 12, ... (End)
a(n+1) - a(n) = A001651(n), partial sums of A001651. - Reinhard Zumkeller, Dec 28 2007
From R. J. Mathar, Nov 10 2008: (Start)
G.f.: x*(1+x+x^2)/((1+x)*(1-x)^3).
a(n) + a(n+1) = A005448(n+1).
The inverse binomial transform yields 0 followed by A141531. (End)
Euler transform of length 3 sequence [3, 1, -1]. - Michael Somos, Jun 29 2011
a(n) = 3*n^2/4 - ((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
Sum_{k=0..n} a(2k+1) = partial sums of A003215 = (n+1)^3 (see example). - Philippe Deléham, Dec 17 2011
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Dec 16 2012
a(0)=0, a(1)=1, a(n) = 3*(n-1) + a(n-2). - Reg Robson, Mar 08 2014
a(2k) = 3k^2 = A033428(k), a(2k+1) = 3k^2 + 3k + 1 = A003215(k). - Jon Perry, Oct 25 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n)/2). - Wesley Ivan Hurt, Mar 12 2015
a(n) = (3*n)^2/12 for n even and a(n) = ((3*n)^2 + 3)/12 for n odd. - Miquel Cerda, Jun 30 2016
a(n) = Sum_{k=1..n} floor((n+k)/2). - Wesley Ivan Hurt, Mar 31 2017
0 = 1 +a(n)*(+a(n+1) -a(n+2)) +a(n+1)*(-3 -a(n+1) +a(n+2)) for all n in Z. - Michael Somos, Apr 02 2017
E.g.f.: (1/8)*exp(-x)*(-1 + exp(2*x)*(1 + 6*x + 6*x^2)). - Stefano Spezia, Nov 29 2019
Sum_{n>=1} 1/a(n) = Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Jan 16 2023

A068601 a(n) = n^3 - 1.

Original entry on oeis.org

0, 7, 26, 63, 124, 215, 342, 511, 728, 999, 1330, 1727, 2196, 2743, 3374, 4095, 4912, 5831, 6858, 7999, 9260, 10647, 12166, 13823, 15624, 17575, 19682, 21951, 24388, 26999, 29790, 32767, 35936, 39303, 42874, 46655, 50652, 54871, 59318, 63999, 68920
Offset: 1

Views

Author

Naohiro Nomoto, Mar 28 2002

Keywords

Comments

a(n) is the least positive integer k such that k can only contain 'n-1' in exactly 2 different bases B, where 1 < B <= k.
Apart from the first term, the same as A135300. - R. J. Mathar, Apr 29 2008
A058895(n)^3 + a(n)^3 + A033562(n)^3 = A185065(n)^3. - Vincenzo Librandi, Mar 13 2012
Numbers k such that for every nonnegative integer m, k^(3*m+1) + k^(3*m) is a cube. - Arkadiusz Wesolowski, Aug 10 2013

Examples

			For n=6; 215 written in bases 6 and 42 is 555, 55 and (555, 55) are exactly 2 different bases.
		

Crossrefs

Programs

Formula

Partial sums of A003215, hex (or centered hexagonal) numbers: 3*n(n+1)+1. - Jonathan Vos Post, Mar 16 2006
G.f.: x^2*(7-2*x+x^2)/(1-x)^4. - Colin Barker, Feb 12 2012
4*a(m^2-2*m+2) = (m^2-m+1)^3 + (m^2-m-1)^3 + (m^2-3*m+3)^3 + (m^2-3*m+1)^3. - Bruno Berselli, Jun 23 2014
a(n) = Sum_{i=1..n-1} (i+1)^3 - i^3. - Wesley Ivan Hurt, Jul 23 2014
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(3*n) - 1) = A339604. - Amiram Eldar, Nov 06 2020
Product_{n>=2} (1 + 1/a(n)) = 3*Pi*sech(sqrt(3)*Pi/2). - Amiram Eldar, Jan 20 2021
E.g.f.: 1 + exp(x)*(x^3 + 3*x^2 + x - 1). - Stefano Spezia, Jul 06 2021

A028896 6 times triangular numbers: a(n) = 3*n*(n+1).

Original entry on oeis.org

0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0, 6, ...
The spiral begins:
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
<==90==60==36==18===6===0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
If Y is a 4-subset of an n-set X then, for n >= 5, a(n-5) is the number of (n-4)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the maximal number of points of intersection of n+1 distinct triangles drawn in the plane. For example, two triangles can intersect in at most a(1) = 6 points (as illustrated in the Star of David configuration). - Terry Stickels (Terrystickels(AT)aol.com), Jul 12 2008
Also sequence found by reading the line from 0, in the direction 0, 6, ... and the same line from 0, in the direction 0, 18, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Axis perpendicular to A195143 in the same spiral. - Omar E. Pol, Sep 18 2011
Partial sums of A008588. - R. J. Mathar, Aug 28 2014
Also the number of 5-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
a(n-4) is the maximum irregularity over all maximal 3-degenerate graphs with n vertices. The extremal graphs are 3-stars (K_3 joined to n-3 independent vertices). (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023

Crossrefs

Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A152773 (6-cycles).
Cf. A007531.
The partial sums give A007531. - Leo Tavares, Jan 22 2022
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

Formula

O.g.f.: 6*x/(1 - x)^3.
E.g.f.: 3*x*(x + 2)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = 6*A000217(n).
a(n) = polygorial(3, n+1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
From Zerinvary Lajos, Mar 06 2007: (Start)
a(n) = A049598(n)/2.
a(n) = A124080(n) - A046092(n).
a(n) = A033996(n) - A002378(n). (End)
a(n) = A002378(n)*3 = A045943(n)*2. - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 6*n for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A003215(n) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=6, a(2)=18.
a(n) = A174709(6*n + 5). (End)
a(n) = A049450(n) + 4*n. - Lear Young, Apr 24 2014
a(n) = Sum_{i = n..2*n} 2*i. - Bruno Berselli, Feb 14 2018
a(n) = A320047(1, n, 1). - Kolosov Petro, Oct 04 2018
a(n) = T(3*n) - T(2*n-2) + T(n-2), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - 1/3. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(3/Pi)*cos(sqrt(7/3)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (3/Pi)*cosh(Pi/(2*sqrt(3))). (End)
Previous Showing 51-60 of 286 results. Next