cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 353 results. Next

A002202 Values taken by totient function phi(m) (A000010).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Views

Author

Keywords

Comments

These are the numbers n such that for some m the multiplicative group mod m has order n.
Maier & Pomerance show that there are about x * exp(c (log log log x)^2)/log x members of this sequence up to x, with c = 0.81781465... (A234614); see the paper for details on making this precise. - Charles R Greathouse IV, Dec 28 2013
A264739(a(n)) = 1; a(n) occurs A058277(n) times in A007614. - Reinhard Zumkeller, Nov 26 2015
There are no odd numbers > 2 in the sequence and the even numbers that are not in the sequence are in A005277. - Bernard Schott, May 13 2020

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002110, A005277, A007614, A007617 (complement).
Cf. A083533 (first differences), A264739.
Cf. A006093 (a subsequence).

Programs

  • Haskell
    import Data.List.Ordered (insertSet)
    a002202 n = a002202_list !! (n-1)
    a002202_list = f [1..] (tail a002110_list) [] where
       f (x:xs) ps'@(p:ps) us
         | x < p = f xs ps' $ insertSet (a000010' x) us
         | otherwise = vs ++ f xs ps ws
         where (vs, ws) = span (<= a000010' x) us
    -- Reinhard Zumkeller, Nov 22 2015
  • Maple
    with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2;
    # second Maple program:
    q:= n-> is(numtheory[invphi](n)<>[]):
    select(q, [$1..176])[];  # Alois P. Heinz, Nov 13 2024
  • Mathematica
    phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
  • PARI
    lst(lim)=my(P=1,q,v);forprime(p=2,default(primelimit), if(eulerphi(P*=p)>=lim,q=p;break));v=vecsort(vector(P/q*lim\eulerphi(P/q),k,eulerphi(k)),,8);select(n->n<=lim,v) \\ Charles R Greathouse IV, Apr 16 2012
    
  • PARI
    select(istotient,vector(100,i,i)) \\ Charles R Greathouse IV, Dec 28 2012
    

A005867 a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).

Original entry on oeis.org

1, 1, 2, 8, 48, 480, 5760, 92160, 1658880, 36495360, 1021870080, 30656102400, 1103619686400, 44144787456000, 1854081073152000, 85287729364992000, 4434961926979584000, 257227791764815872000, 15433667505888952320000
Offset: 0

Views

Author

Keywords

Comments

Local minima of Euler's phi function. - Walter Nissen
Number of potential primes in a modulus primorial(n+1) sieve. - Robert G. Wilson v, Nov 20 2000
Let p=prime(n) and let p# be the primorial (A002110), then it can be shown that any p# consecutive numbers have exactly a(n-1) numbers whose lowest prime factor is p. For a proof, see the "Proofs Regarding Primorial Patterns" link. For example, if we let p=7 and consider the interval [101,310] containing 210 numbers, we find the 8 numbers 119, 133, 161, 203, 217, 259, 287, 301. - Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 16 2006
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 1, 2, 8, 48, ...) dot (-1, 2, -3, 5, -7, 11, ...).
a(6) = 480 = (1, 1, 1, 2, 8, 48) dot (-1, 2, -3, 5, -7, 11) = (-1, 2, -3, 10, -56, 528). (End)
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i=0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
First column of A096294. - Eric Desbiaux, Jun 20 2013
Conjecture: The g.f. for the prime(n+1)-rough numbers (A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063) is x*P(x)/(1-x-x^a(n)+x^(a(n)+1)), where P(x) is an order a(n) polynomial with symmetric coefficients (i.e., c(0)=c(n), c(1)=c(n-1), ...). - Benedict W. J. Irwin, Mar 18 2016
a(n)/A002110(n+1) (primorial(n+1)) is the ratio of natural numbers whose smallest prime factor is prime(n+1); i.e., prime(n+1) coprime to A002110(n). So the ratio of even numbers to natural numbers = 1/2; odd multiples of 3 = 1/6; multiples of 5 coprime to 6 (A084967) = 2/30 = 1/15; multiples of 7 coprime to 30 (A084968) = 8/210 = 4/105; etc. - Bob Selcoe, Aug 11 2016
The 2-adic valuation of a(n) is A057773(n), being sum of the 2-adic valuations of the product terms here. - Kevin Ryde, Jan 03 2023
For n > 1, a(n) is the number of prime(n+1)-rough numbers in [1, primorial(prime(n))]. - Alexandre Herrera, Aug 29 2023

Examples

			a(3): the mod 30 prime remainder set sieve representation yields the remainder set: {1, 7, 11, 13, 17, 19, 23, 29}, 8 elements.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057773 (2-adic valuation).
Column 1 of A281890.

Programs

  • Haskell
    a005867 n = a005867_list !! n
    a005867_list = scanl (*) 1 a006093_list
    -- Reinhard Zumkeller, May 01 2013
  • Maple
    A005867 := proc(n)
        mul(ithprime(j)-1,j=1..n) ;
    end proc: # Zerinvary Lajos, Aug 24 2008, R. J. Mathar, May 03 2017
  • Mathematica
    Table[ Product[ EulerPhi[ Prime[ j ] ], {j, 1, n} ], {n, 1, 20} ]
    RecurrenceTable[{a[0]==1,a[n]==(Prime[n]-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Dec 09 2013 *)
    EulerPhi@ FoldList[Times, 1, Prime@ Range@ 18] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    for(n=0, 22, print1(prod(k=1,n, prime(k)-1), ", "))
    

Formula

a(n) = phi(product of first n primes) = A000010(A002110(n)).
a(n) = Product_{k=1..n} (prime(k)-1) = Product_{k=1..n} A006093(n).
Sum_{n>=0} a(n)/A002110(n+1) = 1. - Bob Selcoe, Jan 09 2015
a(n) = A002110(n)-((1/A000040(n+1) - A038110(n+1)/A038111(n+1))*A002110(n+1)). - Jamie Morken, Mar 27 2019
a(n) = |Sum_{k=0..n} A070918(n,k)|. - Alois P. Heinz, Aug 18 2019
a(n) = A058251(n)/A060753(n+1). - Jamie Morken, Apr 25 2022
a(n) = A002110(n) - A016035(A002110(n)) - 1 for n >= 1. - David James Sycamore, Sep 07 2024
Sum_{n>=0} 1/a(n) = A345974. - Amiram Eldar, Jun 26 2025

Extensions

Offset changed to 0, Name changed, and Comments and Examples sections edited by T. D. Noe, Apr 04 2010

A003958 If n = Product p(k)^e(k) then a(n) = Product (p(k)-1)^e(k).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 4, 4, 10, 2, 12, 6, 8, 1, 16, 4, 18, 4, 12, 10, 22, 2, 16, 12, 8, 6, 28, 8, 30, 1, 20, 16, 24, 4, 36, 18, 24, 4, 40, 12, 42, 10, 16, 22, 46, 2, 36, 16, 32, 12, 52, 8, 40, 6, 36, 28, 58, 8, 60, 30, 24, 1, 48, 20, 66, 16, 44, 24, 70, 4, 72, 36, 32, 18, 60, 24, 78, 4, 16
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Dirichlet inverse of A097945. - R. J. Mathar, Aug 29 2011

Crossrefs

Programs

  • Haskell
    a003958 1 = 1
    a003958 n = product $ map (subtract 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Mar 02 2012
    
  • Maple
    a:= n-> mul((i[1]-1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[ f[n/d]*DirichletInverse[f][d], {d, Most[ Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; Table[ DirichletInverse[ muphi][n], {n, 1, 81}] (* Jean-François Alcover, Dec 12 2011, after R. J. Mathar *)
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 10 2016 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-p*X+X))[n]) /* Ralf Stephan */
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p-1)**e for p, e in factorint(n).items())
    print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Feb 27 2022

Formula

Multiplicative with a(p^e) = (p-1)^e. - David W. Wilson, Aug 01 2001
a(n) = A000010(n) iff n is squarefree (see A005117). - Reinhard Zumkeller, Nov 05 2004
a(n) = abs(A125131(n)). - Tom Edgar, May 26 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4 / (315 * zeta(3)) = 1/(2*A082695) = 0.25725505075419... - Vaclav Kotesovec, Jun 14 2020
Dirichlet g.f.: Product_{p prime} 1 / (1 - p^(1-s) + p^(-s)). - Ilya Gutkovskiy, Feb 27 2022
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + (p^(1-s) - 2) / (1 - p + p^s)), (with a product that converges for s=2). - Vaclav Kotesovec, Feb 11 2023

Extensions

Definition reedited (from formula) by Daniel Forgues, Nov 17 2009

A005277 Nontotients: even numbers k such that phi(m) = k has no solution.

Original entry on oeis.org

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302, 304, 308, 314, 318
Offset: 1

Views

Author

Keywords

Comments

If p is prime then the following two statements are true. I. 2p is in the sequence iff 2p+1 is composite (p is not a Sophie Germain prime). II. 4p is in the sequence iff 2p+1 and 4p+1 are composite. - Farideh Firoozbakht, Dec 30 2005
Another subset of nontotients consists of the numbers j^2 + 1 such that j^2 + 2 is composite. These numbers j are given in A106571. Similarly, let b be 3 or a number such that b == 1 (mod 4). For any j > 0 such that b^j + 2 is composite, b^j + 1 is a nontotient. - T. D. Noe, Sep 13 2007
The Firoozbakht comment can be generalized: Observe that if k is a nontotient and 2k+1 is composite, then 2k is also a nontotient. See A057192 and A076336 for a connection to Sierpiński numbers. This shows that 271129*2^j is a nontotient for all j > 0. - T. D. Noe, Sep 13 2007

Examples

			There are no values of m such that phi(m)=14, so 14 is a term of the sequence.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 44 at p. 91.
  • R. K. Guy, Unsolved Problems in Number Theory, B36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 91.

Crossrefs

See A007617 for all numbers k (odd or even) such that phi(m) = k has no solution.
All even numbers not in A002202. Cf. A000010.

Programs

  • Haskell
    a005277 n = a005277_list !! (n-1)
    a005277_list = filter even a007617_list
    -- Reinhard Zumkeller, Nov 22 2015
    
  • Magma
    [n: n in [2..400 by 2] | #EulerPhiInverse(n) eq 0]; // Marius A. Burtea, Sep 08 2019
  • Maple
    A005277 := n -> if type(n,even) and invphi(n)=[] then n fi: seq(A005277(i),i=1..318); # Peter Luschny, Jun 26 2011
  • Mathematica
    searchMax = 320; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; Select[Range[searchMax], EvenQ[ # ] && (phiAnsYldList[[ # ]] == 0) &] (* Alonso del Arte, Sep 07 2004 *)
    totientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) Select[2 Range@160, ! totientQ@# &] (* Robert G. Wilson v, Mar 20 2023 *)
  • PARI
    is(n)=n%2==0 && !istotient(n) \\ Charles R Greathouse IV, Mar 04 2017
    

Formula

a(n) = 2*A079695(n). - R. J. Mathar, Sep 29 2021
{k: k even and A014197(k) = 0}. - R. J. Mathar, Sep 29 2021

Extensions

More terms from Jud McCranie, Oct 13 2000

A060681 Largest difference between consecutive divisors of n (ordered by size).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 6, 12, 7, 10, 8, 16, 9, 18, 10, 14, 11, 22, 12, 20, 13, 18, 14, 28, 15, 30, 16, 22, 17, 28, 18, 36, 19, 26, 20, 40, 21, 42, 22, 30, 23, 46, 24, 42, 25, 34, 26, 52, 27, 44, 28, 38, 29, 58, 30, 60, 31, 42, 32, 52, 33, 66, 34, 46, 35, 70, 36, 72, 37
Offset: 1

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

Is a(n) the least m > 0 such that n - m divides n! + m? - Clark Kimberling, Jul 28 2012
Is a(n) the least m > 0 such that L(n-m) divides L(n+m), where L = A000032 (Lucas numbers)? - Clark Kimberling, Jul 30 2012
Records give A006093. - Omar E. Pol, Oct 26 2013
Divide n by its smallest prime factor p, then multiply with (p-1), with a(1) = 0 by convention. Compare also to A366387. - Antti Karttunen, Oct 23 2023
a(n) is also the smallest LCM of positive integers x and y where x + y = n. - Felix Huber, Aug 28 2024

Examples

			For n = 35, divisors are {1, 5, 7, 35}; differences are {4, 2, 28}; a(35) = largest difference = 28 = 35 - 35/5.
		

Crossrefs

Cf. A013661, A020639, A060680, A060682, A060683, A060685, A064097 (number of iterations needed to reach 1).
Cf. also A171462, A366387.

Programs

  • Haskell
    a060681 n = div n p * (p - 1) where p = a020639 n
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Maple
    read("transforms") :
    A060681 := proc(n)
        if n = 1 then
            0 ;
        else
            sort(convert(numtheory[divisors](n),list)) ;
            DIFF(%) ;
            max(op(%)) ;
        end if;
    end proc:
    seq(A060681(n),n=1..60) ; # R. J. Mathar, May 23 2018
    # second Maple program:
    A060681:=n->if(n=1,0,min(map(x->ilcm(x,n-x),[$1..1/2*n]))); seq(A060681(n),n=1..74); # Felix Huber, Aug 28 2024
  • Mathematica
    a[n_ ] := n - n/FactorInteger[n][[1, 1]]
    Array[Max[Differences[Divisors[#]]] &, 80, 2] (* Harvey P. Dale, Oct 26 2013 *)
  • PARI
    diff(v)=vector(#v-1,i,v[i+1]-v[i])
    a(n)=vecmax(diff(divisors(n))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n) = if (n==1, 0, n - n/factor(n)[1,1]); \\ Michel Marcus, Oct 24 2015
    
  • PARI
    first(n) = n = max(n, 1); my(res = vector(n)); res[1] = 0; forprime(p = 2, n, for(i = 1, n \ p, if(res[p * i] == 0, res[p * i] = i*(p-1)))); res \\ David A. Corneth, Jan 08 2019
    
  • Python
    from sympy import primefactors
    def A060681(n): return n-n//min(primefactors(n),default=1) # Chai Wah Wu, Jun 21 2023

Formula

a(n) = n - n/A020639(n).
a(n) = n - A032742(n). - Omar E. Pol, Aug 31 2011
a(2n) = n, a(3*(2n+1)) = 2*(2n+1) = 4n + 2. - Antti Karttunen, Oct 23 2023
Sum_{k=1..n} a(k) ~ (1/2 - c) * n^2, where c is defined in the corresponding formula in A032742. - Amiram Eldar, Dec 21 2024

Extensions

Edited by Dean Hickerson, Jan 22 2002
a(1)=0 added by N. J. A. Sloane, Oct 01 2015 at the suggestion of Antti Karttunen

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A002371 Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).

Original entry on oeis.org

0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228, 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, 141, 146, 153, 155, 312, 79, 110
Offset: 1

Views

Author

Keywords

Comments

a(n) is the minimum solution x of modular equation 10^x == 1 (mod p), where p = prime(n). - Carmine Suriano, Oct 10 2012
a(n) = smallest m such that 111...11 (m 1's) is divisible by the n-th prime, or 0 if no such m exists (with the exception that a(2) = 3 instead of 1). E.g., the 5th prime, 11, divides 11, so a(5) = 2. - N. J. A. Sloane, Oct 03 2013 [Comment corrected by Derek Orr, Jun 14 2014]
Numbers n such that A071126(n) = A000040(n) - 1. - Hugo Pfoertner, Mar 18 2003
Except for n = 1 and 3, a(n) divides A006093(n). - Robert Israel, Jul 15 2016

Examples

			A002371(11) = 15 because the 11th prime is 31, and 1/31 = 0.03225806451612903225806451612903225806452... has period 15. - _Richard F. Lyon_, Mar 29 2022
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309. ISBN 0-486-21096-0.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, 1996, p. 162. ISBN 978-0-387-97993-9.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A048595 for another version. Cf. A006883, A007732, A051626, A071126, A000040, A002275, A097443.
Cf. A001913 (full repetend primes), A060257 (1/prime(n) has period prime(n) - 1).

Programs

  • Maple
    seq(subs(FAIL=0,numtheory:-order(10, ithprime(n))),n=1..100); # Robert Israel, Jul 15 2016
  • Mathematica
    Table[ Length[ RealDigits[1 / Prime[n]] [[1, 1]]], {n, 1, 70}]
    Table[If[IntegerQ[#], #, 0] &[MultiplicativeOrder[10, Prime[n]]], {n, 1, 70}] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    a(n)=if(n<4,n==2,znorder(Mod(10, prime(n))))
    
  • Python
    from sympy import prime, n_order
    def A002371(n): return 0 if n == 1 or n == 3 else n_order(10,prime(n)) # Chai Wah Wu, Feb 07 2022

Formula

From Alexander Adamchuk, Jan 28 2007: (Start)
a(A000720(p)) = p - 1 for primes p in A001913.
a(A060257(n)) = prime(A060257(n)) - 1. (End)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)
Edited by Charles R Greathouse IV, Mar 24 2010

A038547 Least number with exactly n odd divisors.

Original entry on oeis.org

1, 3, 9, 15, 81, 45, 729, 105, 225, 405, 59049, 315, 531441, 3645, 2025, 945, 43046721, 1575, 387420489, 2835, 18225, 295245, 31381059609, 3465, 50625, 2657205, 11025, 25515, 22876792454961, 14175, 205891132094649, 10395, 1476225, 215233605
Offset: 1

Views

Author

Keywords

Comments

Also least odd number with exactly n divisors. - Lekraj Beedassy, Aug 30 2006
a(2n-1) = {1, 9, 81, 729, 225, 59049, ...} are the squares. A122842(n) = sqrt(a(2n-1)) = {1, 3, 9, 27, 15, 243, 729, 45, 6561, 19683, 135, 177147, 225, 105, 4782969, 14348907, 1215, ...}. - Alexander Adamchuk, Sep 13 2006
Also the least number k such that there are n partitions of k whose elements are consecutive integers. I.e., 1=1, 3=1+2=3, 9=2+3+4=4+5=9, 15=1+2+3+4+5=4+5+6=7+8=15, etc. - Robert G. Wilson v, Jun 02 2007
The politeness of an integer, A069283(n), is defined to be the number of its nontrivial runsum representations, and the sequence 3, 9, 15, 81, 45, 729, 105, ... represents the least integers to have a politeness of 1, 2, 3, 4, ... This is also the sequence of smallest integers with n+1 odd divisors and so apart from the leading 1, is precisely this sequence. - Ant King, Sep 23 2009
a(n) is also the least number k with the property that the symmetric representation of sigma(k) has n subparts. - Omar E. Pol, Dec 31 2016

Examples

			a(2^3) = 105 = 3*5 while a(2^4) = 945 = 3^3 * 5 * 7. There are 5 partition lists for the exponents of numbers with 16 odd divisors; they are {1, 1, 1, 1}, {3, 1, 1}, {3, 3}, {7, 1}, and {15} that result in the 5 numbers 1155, 945, 3375, 10935, and 14348907. Number a(3^8) = a(6561) = 3^2 * 5^2 * ... * 19^2 * 23^2 = 12442607161209225 while a(3^9) = a(19683) = 3^8 * 5^2 * ... * 19^2 * 23^2 = 9070660620521525025. The numbers a(5^52) = 3^4 * 5^4 * 7^4 * ... and a(5^53) = 3^24 * 5^4 * 7^4 * ... have 393 and 402 digits, respectively.  - _Hartmut F. W. Hoft_, Nov 03 2022
		

Crossrefs

A122842 = sqrt( a(2n-1) ).
Row 1 of A266531. - Omar E. Pol, Dec 31 2016

Programs

  • Haskell
    import Data.List  (find)
    import Data.Maybe (fromJust)
    a038547 n = fromJust $ find ((== n) . length . divisors) [1,3..]
       where divisors m = filter ((== 0) . mod m) [1..m]
    -- Reinhard Zumkeller, Feb 24 2011
    
  • Mathematica
    Table[Select[Range[1,532000,2],DivisorSigma[0,#]==k+1 &,1],{k,0,15}]//Flatten (* Ant King, Nov 28 2010 *)
    2#-1&/@With[{ds=DivisorSigma[0,Range[1,600000,2]]},Table[Position[ds,n,1,1],{n,16}]]//Flatten (* The program is not suitable for generating terms beyond a(16) *) (* Harvey P. Dale, Jun 06 2017 *)
    (* direct computation of A038547(n) *)
    (* Function by _Vaclav Kotesovec_in A005179, Apr 04 2021, modified for odd divisors *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[mHartmut F. W. Hoft, Mar 05 2023 *)
  • PARI
    for(nd=1,15,forstep(k=1,10^66,2,if(nd==numdiv(k),print1(k,", ");break())))
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A038547(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 3^(p-1) for primes p. - Zak Seidov, Apr 18 2006
a(n) = A119265(n,n). - Reinhard Zumkeller, May 11 2006
It was suggested by Alexander Adamchuk that for all n >= 1, we have a(3^(n-1)) = (p(n)#/2)^2 = (A002110(n)/2)^2 = A070826(n)^2. But this is false! E.g., (p(n)#/2)^2 = 3^2 * 5^2 * 7^2 * ... * 23^2 * 29^2 does indeed have 3^9 odd factors, but it is greater than 3^8 * 5^2 * 7^2 * ... * 23^2 which has 9*3*3*3*3*3*3*3 = 9*3^7 = 3^9 odd factors. - Richard Sabey, Oct 06 2007
a(A053640(m)) = a(A000005(A053624(m))) = A053624(m). - Rick L. Shepherd, Apr 20 2008
a(p^k) = Product_{i=1..k} prime(i+1)^(p-1), p prime and k >= 0, only when p_(k+1) < 3^p. - Hartmut F. W. Hoft, Nov 03 2022

Extensions

Corrected by Ron Knott, Feb 22 2001
a(30) from Zak Seidov, Apr 18 2006
a(32)-a(34) from Lekraj Beedassy, Aug 30 2006

A195017 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} c_k*((-1)^(k-1)).

Original entry on oeis.org

0, 1, -1, 2, 1, 0, -1, 3, -2, 2, 1, 1, -1, 0, 0, 4, 1, -1, -1, 3, -2, 2, 1, 2, 2, 0, -3, 1, -1, 1, 1, 5, 0, 2, 0, 0, -1, 0, -2, 4, 1, -1, -1, 3, -1, 2, 1, 3, -2, 3, 0, 1, -1, -2, 2, 2, -2, 0, 1, 2, -1, 2, -3, 6, 0, 1, 1, 3, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 5, -4, 2, 1, 0, 2, 0, -2, 4, -1, 0, -2, 3, 0, 2, 0, 4, 1, -1, -1, 4, -1, 1, 1, 2, -1
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2012

Keywords

Comments

Let p(n,x) be the completely additive polynomial-valued function such that p(1,x) = 0 and p(prime(n),x) = x^(n-1), like is defined in A206284 (although here we are not limited to just irreducible polynomials). Then a(n) is the value of the polynomial encoded in such a manner by n, when it is evaluated at x=-1. - The original definition rewritten and clarified by Antti Karttunen, Oct 03 2018
Positions of 0 give the values of n for which the polynomial p(n,x) is divisible by x+1. For related sequences, see the Mathematica section.
Also the number of odd prime indices of n minus the number of even prime indices of n (both counted with multiplicity), where a prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Oct 24 2023

Examples

			The sequence can be read from a list of the polynomials:
  p(n,x)      with x = -1, gives a(n)
------------------------------------------
  p(1,x) = 0           0
  p(2,x) = 1x^0        1
  p(3,x) = x          -1
  p(4,x) = 2x^0        2
  p(5,x) = x^2         1
  p(6,x) = 1+x         0
  p(7,x) = x^3        -1
  p(8,x) = 3x^0        3
  p(9,x) = 2x         -2
  p(10,x) = x^2 + 1    2.
(The list runs through all the polynomials whose coefficients are nonnegative integers.)
		

Crossrefs

For other evaluation functions of such encoded polynomials, see A001222, A048675, A056239, A090880, A248663.
Zeros are A325698, distinct A325700.
For sum instead of count we have A366749 = A366531 - A366528.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Mathematica
    b[n_] := Table[x^k, {k, 0, n}];
    f[n_] := f[n] = FactorInteger[n]; z = 200;
    t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
    == Prime[k], f[n][[m, 2]], 0];
    u = Table[Apply[Plus,
        Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
          Length[f[n]]}]], {n, 1, z}];
    p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
    Table[p[n, x] /. x -> 0, {n, 1, z/2}]   (* A007814 *)
    Table[p[2 n, x] /. x -> 0, {n, 1, z/2}] (* A001511 *)
    Table[p[n, x] /. x -> 1, {n, 1, z}]     (* A001222 *)
    Table[p[n, x] /. x -> 2, {n, 1, z}]     (* A048675 *)
    Table[p[n, x] /. x -> 3, {n, 1, z}]     (* A090880 *)
    Table[p[n, x] /. x -> -1, {n, 1, z}]    (* A195017 *)
    z = 100; Sum[-(-1)^k IntegerExponent[Range[z], Prime[k]], {k, 1, PrimePi[z]}] (* Friedjof Tellkamp, Aug 05 2024 *)
  • PARI
    A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * (-1)^(1+primepi(f[i,1])))); } \\ Antti Karttunen, Oct 03 2018

Formula

Totally additive with a(p^e) = e * (-1)^(1+PrimePi(p)), where PrimePi(n) = A000720(n). - Antti Karttunen, Oct 03 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} = (-1)^(primepi(p)+1)/(p-1) = Sum_{k>=1} (-1)^(k+1)/A006093(k) = A078437 + Sum_{k>=1} (-1)^(k+1)/A036689(k) = 0.6339266524059... . - Amiram Eldar, Sep 29 2023
a(n) = A257991(n) - A257992(n). - Gus Wiseman, Oct 24 2023
a(n) = -Sum_{k=1..pi(n)} (-1)^k * valuation(n, prime(k)). - Friedjof Tellkamp, Aug 05 2024

Extensions

More terms, name changed and example-section edited by Antti Karttunen, Oct 03 2018

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020
Previous Showing 11-20 of 353 results. Next