cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A078371 a(n) = (2*n+5)*(2*n+1).

Original entry on oeis.org

5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This is the generic form of D in the (nontrivially) solvable Pell equation x^2 - D*y^2 = +4. See A077428 and A078355.
Consider all primitive Pythagorean triples (a,b,c) with c-a=8, sequence gives values of a. (Corresponding values for b are A017113(n), while c follows A078370(n).) - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
From Vincenzo Librandi, Aug 08 2010: (Start)
The identity (4*n^3 + 18*n^2 + 24*n + 9)^2 - (4*n^2 + 12*n + 5)*(2*n^2 + 6*n + 4)^2 = 1 (see Ramasamy's paper in link) can be written as A141530(n+2)^2 - a(n)*A046092(n+1)^2 = 1.
a(n)^3 + 6*a(n)^2 + 9*a(n) + 4 is a square: in fact, a(n)^3 + 6*a(n)^2 + 9*a(n) + 4 = (a(n) + 1)^2*(a(n) + 4), where a(n) + 4 = (2*n+3)^2. (End)
Products of two positive odd integers with difference 4 (i.e., 1*5, 3*7, 5*9, 7*11, 9*13, ...). - Wesley Ivan Hurt, Nov 19 2013
Starting with stage 1, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 675", based on the 5-celled von Neumann neighborhood. - Robert Price, May 21 2016
The continued fraction expansion of (sqrt(a(n))-1)/2 is [n; {1,2*n+1}] with periodic part of length 2: repeat {1,2*n+1}. - Ron Knott, May 11 2017
a(n) is the sum of 2*n+5 consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
The continued fraction expansion of sqrt(a(n)) is [2n+2; {1, n, 2, n, 1, 4n+4}]. For n=0, this collapses to [2; {4}]. - Magus K. Chu, Aug 26 2022

Crossrefs

Subsequence of A077425 (D values (not a square) for which Pell x^2 - D*y^2 = +4 is solvable in positive integers).
Supersequence of A143206.

Programs

  • Magma
    [(2*n+5)*(2*n+1): n in [0..100]]; // G. C. Greubel, Sep 19 2018
  • Maple
    seq((2*n+5)*(2*n+1), n=0..48); # Emeric Deutsch, Feb 24 2005
  • Mathematica
    Table[(2 n + 5) (2 n + 1), {n, 0, 100}] (* Wesley Ivan Hurt, Nov 19 2013 *)
    LinearRecurrence[{3,-3,1},{5,21,45},50] (* Harvey P. Dale, Oct 18 2020 *)
  • PARI
    lista(nn) = {for (n=0, nn, print1((2*n+1)*(2*n+5), ", "));} \\ Michel Marcus, Nov 21 2013
    

Formula

a(n) = 8*(binomial(n+2, 2)-1)+5, hence subsequence of A004770 (5 (mod 8) numbers).
G.f.: (5 + 6*x - 3*x^2)/(1-x)^3.
a(n) = A061037(2*n+1) = (2*n+3)^2 - 4. For A061037: a(2*n+1) = (2*n+1)*(2*n+5) = (2*n+3)^2-4. - Paul Curtz, Sep 24 2008
a(n) = 8*(n+1) + a(n-1) for n > 0, a(0)=5. - Vincenzo Librandi, Aug 08 2010
From Ilya Gutkovskiy, May 22 2016: (Start)
E.g.f.: (5 + 4*x*(4 + x))*exp(x).
Sum_{n>=0} 1/a(n) = 1/3. (End)
Sum_{n>=0} (-1)^n/a(n) = 1/6. - Amiram Eldar, Oct 08 2023

Extensions

More terms from Emeric Deutsch, Feb 24 2005

A118413 Triangle read by rows: T(n,k) = (2*n-1)*2^(k-1), 0

Original entry on oeis.org

1, 3, 6, 5, 10, 20, 7, 14, 28, 56, 9, 18, 36, 72, 144, 11, 22, 44, 88, 176, 352, 13, 26, 52, 104, 208, 416, 832, 15, 30, 60, 120, 240, 480, 960, 1920, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 21, 42, 84, 168
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Central terms give A118415; row sums give A118414;
T(n,1) = A005408(n-1);
T(n,2) = A016825(n-1) for n>1;
T(n,3) = A017113(n-1) for n>2;
T(n,4) = A051062(n-1) for n>3;
T(n,n-2) = A052951(n-1) for n>2;
T(n,n) = A014480(n-1) = A118416(n,n);
A001511(T(n,k)) = A002260(n,k);
A003602(T(n,k)) = A002024(n,k).
G.f.: x*y*(1 + x + 2*x*y - 6*x^2*y)/((1 - x)^2*(1 - 2*x*y)^2). - Stefano Spezia, Dec 22 2024

Examples

			   1
   3   6
   5  10  20
   7  14  28  56
   9  18  36  72 144
  11  22  44  88 176 352
  13  26  52 104 208 416  832
  15  30  60 120 240 480  960 1920
  17  34  68 136 272 544 1088 2176 4352
  19  38  76 152 304 608 1216 2432 4864 9728
  ...
		

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[(2n-1)2^(k-1),{n,20},{k,0,n}]],IntegerQ] (* Harvey P. Dale, Jan 17 2024 *)
  • Python
    from math import isqrt, comb
    def A118413(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        return ((a<<1)-1)<Chai Wah Wu, Jun 20 2025

A047535 Numbers that are congruent to {4, 7} mod 8.

Original entry on oeis.org

4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, 47, 52, 55, 60, 63, 68, 71, 76, 79, 84, 87, 92, 95, 100, 103, 108, 111, 116, 119, 124, 127, 132, 135, 140, 143, 148, 151, 156, 159, 164, 167, 172, 175, 180, 183, 188, 191, 196, 199, 204, 207, 212, 215, 220, 223, 228, 231
Offset: 1

Views

Author

Keywords

Comments

Union of A004771 and A017113.

Crossrefs

Programs

Formula

a(n) = 8*n - a(n-1) - 5 (with a(1)=4). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n -(1 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
G.f.: x*(4+3*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2015
From Franck Maminirina Ramaharo, Jul 22 2018: (Start)
a(n) = A047470(n) + 4.
E.g.f.: (2 - exp(-x) + (8*x - 1)*exp(x))/2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A062111 Upper-right triangle resulting from binomial transform calculation for nonnegative integers.

Original entry on oeis.org

0, 1, 1, 4, 3, 2, 12, 8, 5, 3, 32, 20, 12, 7, 4, 80, 48, 28, 16, 9, 5, 192, 112, 64, 36, 20, 11, 6, 448, 256, 144, 80, 44, 24, 13, 7, 1024, 576, 320, 176, 96, 52, 28, 15, 8, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

From Philippe Deléham, Apr 15 2007: (Start)
This triangle can be found in the Laisant reference in the following form:
.......................5...11..
...................4...9...20..
...............3...7..16...36..
...........2...5..12..28.......
.......1...3...8..20..48.......
...0...1...4..12..32..80....... (End)
Triangle A152920 reversed. - Philippe Deléham, Apr 21 2009

Examples

			As a lower triangle (T(n, k)):
    0;
    1,   1;
    4,   3,   2;
   12,   8,   5,  3;
   32,  20,  12,  7,  4;
   80,  48,  28, 16,  9,  5;
  192, 112,  64, 36, 20, 11,  6;
  448, 256, 144, 80, 44, 24, 13, 7;
		

Crossrefs

Rows include (essentially) A001787, A001792, A034007, A045623, A045891.
Diagonals include (essentially) A001477, A005408, A008586, A008598, A017113.
Column sums are A058877.

Programs

  • Magma
    [2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    Table[2^(n-k-1)*(n+k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
  • SageMath
    def A062111(n,k): return 2^(n-k-1)*(n+k)
    flatten([[A062111(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022

Formula

A(n, k) = A(n, k-1) + A(n+1, k) if k > n with A(n, n) = n.
A(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009
From G. C. Greubel, Sep 28 2022: (Start)
T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.
T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.
T(2*n-1, n-1) = A130129(n-1).
T(2*n+1, n-1) = 12*A001787(n).
Sum_{k=0..n} T(n, k) = A058877(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.
T(n, k) = A152920(n, n-k). (End)

A037227 If n = 2^m*k, k odd, then a(n) = 2*m+1.

Original entry on oeis.org

1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 13, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Take the number of rightmost zeros in the binary expansion of n, double it, and increment it by 1. - Ralf Stephan, Aug 22 2013
Gives the maximum possible number of n X n complex Hermitian matrices with the property that all of their nonzero real linear combinations are nonsingular (see Adams et al. reference). - Nathaniel Johnston, Dec 11 2013

Crossrefs

Programs

  • Haskell
    a037227 = (+ 1) . (* 2) . a007814  -- Reinhard Zumkeller, Jun 30 2012
    
  • Magma
    [2*Valuation(n, 2)+1: n in [1..120]]; // Vincenzo Librandi, Jun 19 2019
    
  • Maple
    nmax:=102: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p):= 2*p+1: od: od: seq(a(n), n=1..nmax);  # Johannes W. Meijer, Feb 07 2013
  • Mathematica
    a[n_] := Sum[(-1)^(d+1)*MoebiusMu[d]*DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Dec 31 2012, after Vladeta Jovovic *)
    f[n_]:=Module[{z=Last[Split[IntegerDigits[n,2]]]},If[Union[z]={0},2* Length[ z]+1,1]]; Array[f,110] (* Harvey P. Dale, Jun 16 2019, after Ralf Stephan *)
    Table[2 IntegerExponent[n, 2] + 1, {n, 120}] (* Vincenzo Librandi, Jun 19 2019 *)
  • PARI
    a(n)=2*valuation(n,2)+1 \\ Charles R Greathouse IV, May 21 2015
    
  • Python
    def A037227(n): return ((~n & n-1).bit_length()<<1)+1 # Chai Wah Wu, Jul 05 2022
  • R
    maxrow <- 6 # by choice
    a <- 1
    for(m in 0:maxrow){
    for(k in 0:(2^m-1)) {
       a[2^(m+1)    +k] <- a[2^m+k]
       a[2^(m+1)+2^m+k] <- a[2^m+k]
    }
       a[2^(m+1)      ] <- a[2^(m+1)] + 2
    }
    a
    # Yosu Yurramendi, May 21 2015
    

Formula

a(n) = Sum_{d divides n} (-1)^(d+1)*mu(d)*tau(n/d). Multiplicative with a(p^e) = 2*e+1 if p = 2; 1 if p > 2. - Vladeta Jovovic, Apr 27 2003
a(n) = a(n-1)+(-1)^n*(a(floor(n/2))+1). - Vladeta Jovovic, Apr 27 2003
a(2*n) = a(n) + 2, a(2*n+1) = 1. a(n) = 2*A007814(n) + 1. - Ralf Stephan, Oct 07 2003
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = 2*p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
From Peter Bala, Feb 07 2016: (Start)
a(n) = ( A002487(n-1) + A002487(n+1) )/A002487(n).
a(n*2^(k+1) + 2^k) = 2*k + 1 for n,k >= 0; thus a(2*n+1) = 1, a(4*n+2) = 3, a(8*n+4) = 5, a(16*n+8) = 7 and so on. Note the square array ( n*2^(k+1) + 2^k - 1 )n, k>=0 is the transpose of A075300.
G.f.: Sum_{n >= 0} (2*n + 1)*x^(2^n)/(1 - x^(2^(n+1))). (End)
a(n) = 2*floor(A002487(n-1)/A002487(n))+1 for n > 1. - I. V. Serov, Jun 15 2017
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s+1)/(2^s-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. (End)

Extensions

More terms from Erich Friedman

A081770 Numbers twice their squarefree kernel (A007947).

Original entry on oeis.org

4, 12, 20, 28, 44, 52, 60, 68, 76, 84, 92, 116, 124, 132, 140, 148, 156, 164, 172, 188, 204, 212, 220, 228, 236, 244, 260, 268, 276, 284, 292, 308, 316, 332, 340, 348, 356, 364, 372, 380, 388, 404, 412, 420, 428, 436, 444, 452, 460, 476, 492, 508, 516, 524
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2003

Keywords

Comments

From Amiram Eldar, Nov 02 2020: (Start)
Numbers k such that A280292(k) = 2.
The asymptotic density of this sequence is 1/Pi^2 (A092742). (End)

Examples

			84=2*2*3*7=2*(2*3*7)=2*rad(84), therefore 84 is a term.
		

Crossrefs

Programs

  • Haskell
    a081770 n = a081770_list !! (n-1)
    a081770_list = filter ((== 1) . a008966 . (`div` 4)) a017113_list
    -- Reinhard Zumkeller, Jul 13 2013
  • Mathematica
    4 * Select[Range[1, 100, 2], SquareFreeQ] (* Amiram Eldar, Nov 02 2020 *)
  • PARI
    is(n)=n%8==4 && issquarefree(n/4) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = 2*A039956(n) = 4*A056911(n).

A003484 Radon function, also called Hurwitz-Radon numbers.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Keywords

Comments

This sequence and A006519 (greatest power of 2 dividing n) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). - Simon Plouffe, Dec 02 2004
For all n congruent to 2^k (mod 2^(k+1)), a(n) is the same. Therefore, for any natural number m, the list of the first 2^m - 1 terms is palindromic. - Ivan N. Ianakiev, Jul 21 2019
Named after the Austrian mathematician Johann Radon (1887-1956) and the German mathematician Adolf Hurwitz (1859-1919). - Amiram Eldar, Jun 15 2021

Examples

			G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.
  • A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A053381 for a closely related sequence.

Programs

  • Haskell
    a003484 n = 2 * e + cycle [1,0,0,2] !! e  where e = a007814 n
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d,`,1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d,`,2*m+1) fi: if m mod 4 = 1 then printf(`%d,`,2*m) fi: if m mod 4 = 2 then printf(`%d,`,2*m) fi: if m mod 4 = 3 then printf(`%d,`,2*m+2) fi: fi: od: # James Sellers, Dec 07 2000
    nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # Johannes W. Meijer, Jun 07 2011, Dec 15 2012
  • Mathematica
    a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 08 2011, after Paul D. Hanna *)
  • PARI
    a(n)=8*(valuation(n,2)\4)+2^(valuation(n,2)%4) /* Paul D. Hanna, Dec 02 2004 */
    
  • Python
    def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # Chai Wah Wu, Jul 09 2022

Formula

a(n) = A003485(A007814(n)).
If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.
If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).
Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - R. J. Mathar, Mar 04 2011
a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - Reinhard Zumkeller, Mar 11 2012
a((2*n-1)*2^p) = A003485(p), p >=0. - Johannes W. Meijer, Jun 07 2011, Dec 15 2012
Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - Mamuka Jibladze, Dec 07 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - Amiram Eldar, Oct 22 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A108269 Numbers of the form (2*m - 1)*4^k where m >= 1, k >= 1.

Original entry on oeis.org

4, 12, 16, 20, 28, 36, 44, 48, 52, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 140, 144, 148, 156, 164, 172, 176, 180, 188, 192, 196, 204, 208, 212, 220, 228, 236, 240, 244, 252, 256, 260, 268, 272, 276, 284, 292, 300, 304, 308, 316, 320, 324, 332
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 30 2005

Keywords

Comments

Numbers of terms in nonnegative integer sequences the sum of which is never a square.
The sum of a sequence of consecutive nonnegative integers starting with k is never a square for any k, if and only if the number of the terms in the sequence can be expressed as (2*m - 1) * 2^(2*n), m and n being any positive integers. (Proved by Alfred Vella, Jun 14 2005.)
Odious and evil terms alternate. - Vladimir Shevelev, Jun 22 2009
Even numbers whose binary representation ends in an even number of zeros. - Amiram Eldar, Jan 12 2021
From Antti Karttunen, Jan 28 2023: (Start)
Numbers k for which the parity of k is equal to that of A048675(k).
A multiplicative semigroup; if m and n are in the sequence then so is m*n. (End)

Examples

			a( 1, 1 ) = 4, a( 2, 1) = 12, etc.
For a( 1, 1 ): the sum of 4 consecutive nonnegative integers (4k+6, if the first term is k) is never a square.
		

Crossrefs

Intersection of A005843 and A003159.
Cf. A000069, A001969, A017113 (primitive terms), A036554, A328981 (characteristic function), A359794 (complement).

Programs

  • Mathematica
    Select[2 * Range[200], EvenQ @ IntegerExponent[#, 2] &] (* Amiram Eldar, Jan 12 2021 *)
  • PARI
    is(n)=my(e=valuation(n,2)); e>1 && e%2==0 \\ Charles R Greathouse IV, Nov 03 2016
    
  • Python
    def A108269(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+(x+1>>1), bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c += int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 29 2025

Formula

a(n) = 6*n + O(log n). - Charles R Greathouse IV, Nov 03 2016 [Corrected by Amiram Eldar, Jan 12 2021]
a(n) = 2 * A036554(n) = 4 * A003159(n). - Amiram Eldar, Jan 12 2021

Extensions

Entry revised by N. J. A. Sloane, Jun 26 2005
More terms from Amiram Eldar, Jan 12 2021
Previous Showing 11-20 of 65 results. Next