Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 9, 2, 14, 6, 23, 33, 34, 78, 114, 105, 227, 281, 207, 492, 1536, 1667, 3036, 5155, 6502, 5206, 7682, 15861, 15396, 9051, 21295, 22160, 36300, 58657, 71186, 81276, 91901
Offset: 1
Example: The ninth member of A094348 is 60 because lcm(1,2,3,4,5) = 60. Let H(n) = Sum_{k=1..n} 1/k. Since H(60) + exp(H(60)) log(H(60)) = 170.9766843.. and sigma(60) = 1 + 2 + 3 + 4 + 5 + 6 + 10 + 12 + 15 + 20 + 30 + 60 = 168 it follows A181852(9)= 170 - 168 = 2.
Further, the inequality 0 <= A057641(lcm(1,2,3,4,5)) is in agreement with (Lagarias' formulation of) the Riemann hypothesis.
A182940
List of divisors of the sequence A094348 in their order of occurrence.
Original entry on oeis.org
1, 2, 4, 3, 6, 12, 8, 24, 9, 18, 36, 16, 48, 5, 10, 15, 20, 30, 60, 72, 40, 120, 45, 90, 180, 80, 240, 360, 7, 14, 21, 28, 35, 42, 70, 84, 105, 140, 210, 420, 144, 720, 56, 168, 280, 840
Offset: 1
Peter Luschny, Jan 04 2011
1 [1]
2 [2]
4 [4]
6 [3, 6]
12 [12]
24 [8, 24]
36 [9, 18, 36]
48 [16, 48]
60 [5, 10, 15, 20, 30, 60]
72 [72]
120 [40, 120]
180 [45, 90, 180]
240 [80, 240]
360 [360]
420 [7, 14, 21, 28, 35, 42, 70, 84, 105, 140, 210, 420]
720 [144, 720]
840 [56, 168, 280, 840]
1260 [63, 126, 252, 315, 630, 1260]
1680 [112, 336, 560, 1680]
2520 [504, 2520]
5040 [1008, 5040]
-
concat := (a,h)->[op(a),op(sort(convert(h,list)))];
DivisorsInOrder := proc(S) local A, H, T, s;
T := {}; A := [];
for s in S do
H := numtheory[divisors](s) minus T:
if H <> {} then
A := concat(A, H);
T := T union H
fi
od;
A end:
A182940 := DivisorsInOrder(A094348);
Original entry on oeis.org
72, 420, 30240, 360360, 12252240, 24504480, 64864800, 232792560, 1163962800, 1470268800, 2572970400, 5354228880, 26771144400, 32125373280, 53542288800, 83805321600, 107084577600, 2329089562800, 4658179125600, 13974537376800
Offset: 1
A178938
Min{ n | A094348(n) element of {A096179(n,k) | 1 <= k <= n}}.
Original entry on oeis.org
1, 2, 4, 3, 4, 8, 18, 16, 5, 9, 8, 18, 16, 9, 7, 16, 15, 21, 16, 9, 16
Offset: 1
A182939
Number of terms of A094348 which have n prime divisors (counting repetitions).
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 4, 3, 3, 6, 9, 8, 10, 11, 12, 11, 12, 11, 12, 14, 14, 14, 16, 18
Offset: 0
a(5) = 5 = card({48, 72, 120, 180, 420}).
A182941
a(n) = sum of divisors of A094348(n).
Original entry on oeis.org
1, 3, 7, 12, 28, 60, 91, 124, 168, 195, 360, 546, 744, 1170, 1344, 2418, 2880, 4368, 5952, 9360, 19344, 28800, 39312, 59520, 79248, 99944, 112320, 120960, 180048, 203112, 232128, 345600, 471744, 714240, 950976, 1199328, 1451520, 1572480, 2160576, 2437344, 2926080
Offset: 1
A002110
Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
Original entry on oeis.org
1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0
a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
- P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
- D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.
- Alex Ermolaev, Table of n, a(n) for n = 0..350 (terms up to a(100) from T. D. Noe)
- Iskander Aliev, Jesús De Loera, Fritz Eisenbrand, Timm Oertel, and Robert Weismantel, The Support of Integer Optimal Solutions, arXiv:1712.08923 [math.OC], 2017.
- C. K. Caldwell, The Prime Glossary, Primorial.
- Geoffrey Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.
- Harvey Dubner, Factorial and primorial primes, J. Rec. Math., Vol. 19, No. 3 (1987), pp. 197-203. (Annotated scanned copy)
- F. Ellermann, Illustration for A002110, A005867, A038110, A060753.
- S. W. Golomb, The evidence for Fortune's conjecture, Math. Mag. 54 (1981), 209-210.
- D. J. Greenhoe, MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing, 2014.
- Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, pp. 7, 81.
- Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 7.
- A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, preprint, CONCUR 2014 - Concurrency Theory, Volume 8704 of the series Lecture Notes in Computer Science pp. 327-341.
- A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, CONCUR 2014 - Concurrency Theory, Lecture Notes in Computer Science, Volume 8704, 2014, pp. 327-341.
- F. E. Masat, Letter to N. J. A. Sloane with attachment: "A note on prime number sequences" (unpublished manuscript), Apr. 1991.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv:1202.3670 [math.HO], 2012.
- Thomas Morrill, Further Development of "Non-Pythagorean" Musical Scales Based on Logarithms, arXiv:1804.08067 [math.HO], 2018.
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17, no.3 (1983), 375-388.
- Patrick Sole and Michel Planat, The Robin inequality for 7-free integers, INTEGERS, 2011, #A65.
- Andrew V. Sutherland, Order Computations in Generic Groups, Ph. D. Dissertation, Math. Dept., M.I.T., 2007.
- G. Villemin's Almanach of Numbers, Primorielle.
- Eric Weisstein's World of Mathematics, Primorial.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1994.
- Index to divisibility sequences
- Index entries for "core" sequences
- Index entries for sequences related to primorial base
- Index entries for sequences related to primorial numbers
A034386 gives the second version of the primorial numbers.
Cf.
A001615,
A002182,
A002201,
A003418,
A005235,
A006862,
A034444 (unitary divisors),
A034448,
A034387,
A033188,
A035345,
A035346,
A036691 (compositorial numbers),
A049345 (primorial base representation),
A057588,
A060735 (and integer multiples),
A061742 (squares),
A072938,
A079266,
A087315,
A094348,
A106037,
A121572,
A053589,
A064648,
A132120,
A260188.
-
a002110 n = product $ take n a000040_list
a002110_list = scanl (*) 1 a000040_list
-- Reinhard Zumkeller, Feb 19 2012, May 03 2011
-
[1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
-
[1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
-
A002110 := n -> mul(ithprime(i),i=1..n);
-
FoldList[Times, 1, Prime[Range[20]]]
primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
-
p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) ) \\ Harry J. Smith, Nov 13 2009
-
a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
-
from sympy import primorial
def a(n): return 1 if n < 1 else primorial(n)
[a(n) for n in range(51)] # Indranil Ghosh, Mar 29 2017
-
[sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
-
; with memoization-macro definec
(definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016
A002182
Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1
a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
- CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
- L. E. Dickson, History of Theory of Numbers, I, p. 323.
- Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
- Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (obtained from A. Flammenkamp's data; first 1000 terms from T. D. Noe)
- Yu. Bilu, P. Habegger, and L. Kühne, Effective bounds for singular units, arXiv:1805.07167 [math.NT], 2018.
- Benjamin Braun and Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
- Harold W. Ellingsen, Jr., A Fresh Look at Highly Composite Numbers, The American Mathematical Monthly, Vol. 126, No. 8 (2019), pp. 740-741.
- Paul Erdős, On Highly composite numbers, J. London Math. Soc., Vol. 19 (1944), pp. 130-133, MR7,145d; Zentralblatt 61,79.
- Achim Flammenkamp, Highly composite numbers.
- Achim Flammenkamp, List of the first 1200 highly composite numbers.
- Achim Flammenkamp, List of the first 779,674 highly composite numbers.
- James Grime and Brady Haran, 5040 and other Anti-Prime Numbers, Numberphile video (2016).
- Bob Hinman, Letter to N. J. A. Sloane, Aug. 1980.
- Ivan N. Ianakiev, On the question "Which Highly composite numbers (A002182) are Zumkeller numbers (A083207)?".
- Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, and Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
- Aneesh M. Koya and P. P. Deepthi, Plug and play self-configurable IoT gateway node for telemonitoring of ECG, Computers in Biology and Medicine, Vol. 112 (2019), 103359.
- Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543; arXiv:math/0008177 [math.NT], 2000-2001.
- Bill Lauritzen, Versatile Numbers -Versatile Economics.
- Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola Magazine, Volume 54, Issue 3, (2018).
- R. J. Mathar, Maple program to convert the Flammenkamp file to an OEIS b-file.
- R. J. Mathar, Output of above Maple program. [Uncompresses to 9.1 MB]
- Graeme McRae, Highly Composite Numbers.
- Jean-Louis Nicolas, Ordre maximal d'un élément du groupe S_n de permutations et 'highly composite numbers' (Text in French).
- Jean-Louis Nicolas and Guy Robin, Highly Composite Numbers by Srinivasa Ramanujan, The Ramanujan Journal, Vol. 1(2), pp. 119-153, Kluwer Academics Pub.
- Kevin O'Bryant, PlanetMath.org, Highly composite number.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, Ser. 2, Vol. XIV, No. 1 (1915), pp. 347-409. (DOI: 10.1112/plms/s2_14.1.347, also available with an additional footnote in the PDF at http://ramanujan.sirinudi.org/Volumes/published/ram15.html)
- Steven Ratering, An interesting subset of the highly composite numbers, Math. Mag., Vol. 64, No. 5 (1991), pp. 343-346.
- Guy Robin, Méthodes d'optimisation pour un problème de théorie des nombres, RAIRO Informatique Théorique, Vol. 17, No. 3 (1983), pp. 239-247.
- Vladimir Shevelev, On Erdős constant, arXiv:1605.08884 [math.NT], 2016.
- D. B. Siano and J. D. Siano, An Algorithm for Generating Highly Composite Numbers, 1994.
- N. J. A. Sloane, Transforms.
- Michel Waldschmidt, From highly composite numbers to transcendental number theory, 2013.
- Eric Weisstein's World of Mathematics, Highly Composite Number.
- Wikipedia, Highly composite number.
Cf.
A000005 (number of divisors),
A002110,
A002183,
A002473,
A004394,
A025487,
A106037,
A108602,
A112778,
A112779,
A112780,
A112781,
A006218,
A126098,
A002201,
A072938,
A094348,
A003418,
A161184,
A037992 (infinitary analog),
A108951,
A329902,
A352418.
Cf.
A279930 (highly composite and highly Brazilian).
Cf.
A068507 (terms such that a(n)+-1 are twin primes).
Cf.
A199337 (number of terms not divisible by n).
-
a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}]
(* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *)
a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *)
DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *)
NestList[Function[last,
Module[{d = DivisorSigma[0, last]},
NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
-
print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
-
v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
-
is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(tn, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022
-
from sympy import divisor_count
A002182_list, r = [], 0
for i in range(1,10**4):
d = divisor_count(i)
if d > r:
r = d
A002182_list.append(i) # Chai Wah Wu, Mar 23 2015
Jun 19 1996: Changed beginning to start at 1.
A003418
Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0
Roland Anderson (roland.anderson(AT)swipnet.se)
LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..2308 (first 501 terms from T. D. Noe)
- R. Anderson and N. J. A. Sloane, Correspondence, 1975.
- Dorin Andrica, Sorin Rădulescu, and George Cătălin Ţurcaş, The Exponent of a Group: Properties, Computations and Applications, Disc. Math. and Applications, Springer, Cham (2020), 57-108.
- Javier Cilleruelo, Juanjo Rué, Paulius Šarka, and Ana Zumalacárregui, The least common multiple of sets of positive integers, arXiv:1112.3013 [math.NT], 2011.
- R. E. Crandall and C. Pomerance, Prime numbers: a computational perspective, MR2156291, p. 61.
- Roger B. Eggleton, Least Common Multiple of {1,2,...,n}, Mathematics Magazine, 61(1) (1988), pp. 47-48, Problem 1252.
- Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, arXiv:0906.2295 [math.NT], 2009.
- Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, Amer. Math. Monthly 116(9) (2009), 836-839.
- Steven Finch, Cilleruelo's LCM Constants, 2013. [Cached copy, with permission of the author]
- V. L. Gavrikov, On property of least common multiple to be a D-magic number, arXiv:1806.09264 [math.NT], 2018.
- S. Labbé and E. Pelantová, Palindromic sequences generated from marked morphisms, arXiv:1409.7510 [math.CO], 2014.
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (6) (2002) 534-543. arXiv:math/0008177 [math.NT], 2000-2001.
- Peter Luschny and S. Wehmeier, The lcm(1, 2, ..., n) as a product of sine values sampled over the points in Farey sequences, arXiv:0909.1838 [math.CA], 2009.
- Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99, pp 213-219 (2015).
- Greg Martin, A product of Gamma function values at fractions with the same denominator, arXiv:0907.4384 [math.CA], 2009.
- M. Nair, On Chebychev-type inequalities for primes Amer. Math. Monthly 89(2) (1982), 126-129.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society ser. 2, vol. XIV, no. 1 (1915), pp 347-409. (A variant of a better quality with an additional footnote is available here.)
- E. S. Selmer, On the number of prime divisors of a binomial coefficient, Math. Scand. 39 (1976), no. 2, 271-281 (1977).
- Jonathan Sondow, Criteria for irrationality of Euler's constant, Proc. AMS 131 (2003), 3335.
- Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS 13 (2013) #A65.
- M. Tchebichef, Mémoire sur les nombres premiers, J. Math. Pures Appliquées 17 (1852), 366-390.
- Helge von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1) (1901), 159-182.
- Eric Weisstein's World of Mathematics, Least Common Multiple, Chebyshev Functions, Mangoldt Function.
- Index to divisibility sequences
- Index entries for "core" sequences
- Index entries for sequences related to lcm's
Cf.
A000142,
A000793,
A002110,
A002182,
A002201,
A002944,
A014963,
A020500,
A025527,
A038610,
A051173,
A064446,
A064859,
A069513,
A072938,
A093880,
A094348,
A096179,
A099996,
A102910,
A106037,
A119682,
A179661,
A193181,
A225558,
A225630,
A225632,
A225640,
A225642.
Cf.
A025528 (number of prime factors of a(n) with multiplicity).
Cf.
A275120 (lengths of runs of consecutive equal terms),
A276781 (ordinal transform from term a(1)=1 onward).
-
a003418 = foldl lcm 1 . enumFromTo 2
-- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
-
[1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
-
[Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
-
A003418 := n-> lcm(seq(i,i=1..n));
HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
# next Maple program:
a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
seq(a(n), n=0..33); # Alois P. Heinz, Jun 10 2021
-
Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
FoldList[ LCM, 1, Range@ 28]
A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
a[n_] := Denominator[Sqrt[a1[n]]];
Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
-
a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
-
a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
-
a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
-
a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
-
n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
-
from functools import reduce
from operator import mul
from sympy import sieve
def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
kmin, kmax = 0,1
while b**kmax <= n:
kmax *= 2
while True:
kmid = (kmax+kmin)//2
if b**kmid > n:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmin
def A003418(n):
return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
-
# generates initial segment of sequence
from math import gcd
from itertools import accumulate
def lcm(a, b): return a * b // gcd(a, b)
def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
print(aupton(30)) # Michael S. Branicky, Jun 10 2021
-
[lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
-
(define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
A002201
Superior highly composite numbers: positive integers n for which there is an e > 0 such that d(n)/n^e >= d(k)/k^e for all k > 1, where the function d(n) counts the divisors of n (A000005).
Original entry on oeis.org
2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 13967553600, 321253732800, 2248776129600, 65214507758400, 195643523275200, 6064949221531200, 12129898443062400, 448806242393308800, 18401055938125660800, 791245405339403414400
Offset: 1
For n=2, 6 and 12 we may take e in the intervals (log(2)/log(3), 1], (log(3/2)/log(2), log(2)/log(3)] and (log(2)/log(5), log(3/2)/log(2)], respectively.
Can the intervals in the previous line can be extended to include the left endpoints? - _Ant King_, May 02 2005
- J. L. Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988.
- S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.
- S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
- S. Ramanujan, Highly Composite Numbers: Section IV, in 1) Collected Papers of Srinivasa Ramanujan, pp. 111-8, Ed. G. H. Hardy et al., AMS Chelsea 2000. 2) Ramanujan's Papers, pp. 143-150, Ed. B. J. Venkatachala et al., Prism Books Bangalore 2000.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Iain Fox, Table of n, a(n) for n = 1..400 (first 150 terms from T. D. Noe)
- Hirotaka Akatsuka, Maximal order for divisor functions and zeros of the Riemann zeta-function, arXiv:2411.19259 [math.NT], 2024. See p. 4.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409.
- S. Ramanujan, IV: Superior Highly Composite Numbers
- S. Ratering, An interesting subset of the highly composite numbers, Math. Mag., 64 (1991), 343-346.
- Eric Weisstein's World of Mathematics, Superior Highly Composite Number
- Eric Weisstein's World of Mathematics, Colossally Abundant Number
- Wikipedia, Superior highly composite number
-
Rest@ Union@ Array[Product[p^Floor[1/(p^(1/#) - 1)], {p, Prime@ Range@ PrimePi[2^#]}] &[Log@ #] &, 160] (* Michael De Vlieger, Jul 09 2019 *)
-
lista(nn)=my(p=primes(primepi(2^log(nn)))); setminus(Set(vector(nn, i, prod(n=1, primepi(2^log(i)), p[n]^floor(1/(p[n]^(1/log(i))-1))))), [1]) \\ Iain Fox, Aug 23 2020
Better definition from
T. D. Noe, Nov 05 2002
Showing 1-10 of 15 results.
Comments