cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002110 Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 0

Views

Author

Keywords

Comments

See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023

Examples

			a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - _Jonathan Sondow_, Jan 15 2012
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 49.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
  • D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.

Crossrefs

A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Haskell
    a002110 n = product $ take n a000040_list
    a002110_list = scanl (*) 1 a000040_list
    -- Reinhard Zumkeller, Feb 19 2012, May 03 2011
    
  • Magma
    [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
    
  • Magma
    [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
    
  • Maple
    A002110 := n -> mul(ithprime(i),i=1..n);
  • Mathematica
    FoldList[Times, 1, Prime[Range[20]]]
    primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial,20] (* José María Grau Ribas, Feb 15 2010 *)
    Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n)=prod(i=1,n, prime(i)) \\ Washington Bomfim, Sep 23 2008
    
  • PARI
    p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) )  \\ Harry J. Smith, Nov 13 2009
    
  • PARI
    a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
    
  • Python
    from sympy import primorial
    def a(n): return 1 if n < 1 else primorial(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Mar 29 2017
    
  • Sage
    [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scheme
    ; with memoization-macro definec
    (definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016

Formula

Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
Theta being Chebyshev's theta function, a(0) = exp(theta(1)), and for n > 0, a(n) = exp(theta(m)) for A000040(n) <= m < A000040(n+1) where m is an integer. - Miles Englezou, Nov 26 2024

A001008 a(n) = numerator of harmonic number H(n) = Sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 55835135, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
By Wolstenholme's theorem, p^2 divides a(p-1) for all primes p > 3.
From Alexander Adamchuk, Dec 11 2006: (Start)
p divides a(p^2-1) for all primes p > 3.
p divides a((p-1)/2) for primes p in A001220.
p divides a((p+1)/2) or a((p-3)/2) for primes p in A125854.
a(n) is prime for n in A056903. Corresponding primes are given by A067657. (End)
a(n+1) is the numerator of the polynomial A[1, n](1) where the polynomial A[genus 1, level n](m) is defined to be Sum_{d = 1..n - 1} m^(n - d)/d. (See the Mathematica procedure generating A[1, n](m) below.) - Artur Jasinski, Oct 16 2008
Better solutions to the card stacking problem have been found by M. Paterson and U. Zwick (see link). - Hugo Pfoertner, Jan 01 2012
a(n) = A213999(n, n-1). - Reinhard Zumkeller, Jul 03 2012
a(n) coincides with A175441(n) if and only if n is not from the sequence A256102. The quotient a(n) / A175441(n) for n in A256102 is given as corresponding entry of A256103. - Wolfdieter Lang, Apr 23 2015
For a very short proof that the Harmonic series diverges, see the Goldmakher link. - N. J. A. Sloane, Nov 09 2015
All terms are odd while corresponding denominators (A002805) are all even for n > 1 (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021

Examples

			H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ].
Coincidences with A175441: the first 19 entries coincide because 20 is the first entry of A256102. Indeed, a(20)/A175441(20) = 55835135 / 11167027 = 5 = A256103(1). - _Wolfdieter Lang_, Apr 23 2015
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
  • H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972, # 1.45, page 6, #3.122, page 36.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A145609-A145640. - Artur Jasinski, Oct 16 2008
Cf. A003506. - Paul Curtz, Nov 30 2013
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.
Cf. A195505.

Programs

  • GAP
    List([1..30],n->NumeratorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
  • Haskell
    import Data.Ratio ((%), numerator)
    a001008 = numerator . sum . map (1 %) . enumFromTo 1
    a001008_list = map numerator $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Numerator(HarmonicNumber(n)): n in [1..30]]; // Bruno Berselli, Feb 17 2016
    
  • Maple
    A001008 := proc(n)
        add(1/k,k=1..n) ;
        numer(%) ;
    end proc:
    seq( A001008(n),n=1..40) ; # Zerinvary Lajos, Mar 28 2007; R. J. Mathar, Dec 02 2016
  • Mathematica
    Table[Numerator[HarmonicNumber[n]], {n, 30}]
    (* Procedure generating A[1,n](m) (see Comments section) *) m =1; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, k], {r, 1, 20}]; aa (* Artur Jasinski, Oct 16 2008 *)
    Numerator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
    Numerator[Table[((n - 1)/2)*HypergeometricPFQ[{1, 1, 2 - n}, {2, 3}, 1] + 1, {n, 1, 29}]] (* Artur Jasinski, Jan 08 2021 *)
  • PARI
    A001008(n) = numerator(sum(i=1,n,1/i)) \\ Michael B. Porter, Dec 08 2009
    
  • PARI
    H1008=List(1); A001008(n)={for(k=#H1008,n-1,listput(H1008,H1008[k]+1/(k+1))); numerator(H1008[n])} \\ about 100x faster for n=1..1500. - M. F. Hasler, Jul 03 2019
    
  • Python
    from sympy import Integer
    [sum(1/Integer(i) for i in range(1, n + 1)).numerator() for n in range(1, 31)]  # Indranil Ghosh, Mar 23 2017
    
  • Sage
    def harmonic(a, b):  # See the F. Johansson link.
        if b - a == 1:
            return 1, a
        m = (a+b)//2
        p, q = harmonic(a,m)
        r, s = harmonic(m,b)
        return p*s+q*r, q*s
    def A001008(n): H = harmonic(1,n+1); return numerator(H[0]/H[1])
    [A001008(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
    

Formula

H(n) ~ log n + gamma + O(1/n). [See Hardy and Wright, Th. 422.]
log n + gamma - 1/n < H(n) < log n + gamma + 1/n [follows easily from Hardy and Wright, Th. 422]. - David Applegate and N. J. A. Sloane, Oct 14 2008
G.f. for H(n): log(1-x)/(x-1). - Benoit Cloitre, Jun 15 2003
H(n) = sqrt(Sum_{i = 1..n} Sum_{j = 1..n} 1/(i*j)). - Alexander Adamchuk, Oct 24 2004
a(n) is the numerator of Gamma/n + Psi(1 + n)/n = Gamma + Psi(n), where Psi is the digamma function. - Artur Jasinski, Nov 02 2008
H(n) = 3/2 + 2*Sum_{k = 0..n-3} binomial(k+2, 2)/((n-2-k)*(n-1)*n), n > 1. - Gary Detlefs, Aug 02 2011
H(n) = (-1)^(n-1)*(n+1)*n*Sum_{k = 0..n-1} k!*Stirling2(n-1, k) * Stirling1(n+k+1,n+1)/(n+k+1)!. - Vladimir Kruchinin, Feb 05 2013
H(n) = n*Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)/(k+1)^2. (Wenchang Chu) - Gary Detlefs, Apr 13 2013
H(n) = (1/2)*Sum_{k = 1..n} (-1)^(k-1)*binomial(n,k)*binomial(n+k, k)/k. (H. W. Gould) - Gary Detlefs, Apr 13 2013
E.g.f. for H(n) = a(n)/A002805(n): (gamma + log(x) - Ei(-x)) * exp(x), where gamma is the Euler-Mascheroni constant, and Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2013
H(n) = residue((psi(-s)+gamma)^2/2, {s, n}) where psi is the digamma function and gamma is the Euler-Mascheroni constant. - Jean-François Alcover, Feb 19 2014
H(n) = Sum_{m >= 1} n/(m^2 + n*m) = gamma + digamma(1+n), numerators and denominators. (see Mathworld link on Digamma). - Richard R. Forberg, Jan 18 2015
H(n) = (1/2) Sum_{j >= 1} Sum_{k = 1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n)*(k + j*n))) + log(n) + 1/(2*n). - Dimitri Papadopoulos, Jan 13 2016
H(n) = (n!)^2*Sum_{k = 1..n} 1/(k*(n-k)!*(n+k)!). - Vladimir Kruchinin, Mar 31 2016
a(n) = Stirling1(n+1, 2) / gcd(Stirling1(n+1, 2), n!) = A000254(n) / gcd(A000254(n), n!). - Max Alekseyev, Mar 01 2018
From Peter Bala, Jan 31 2019: (Start)
H(n) = 1 + (1 + 1/2)*(n-1)/(n+1) + (1/2 + 1/3)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3 + 1/4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
H(n)/n = 1 + (1/2^2 - 1)*(n-1)/(n+1) + (1/3^2 - 1/2^2)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/4^2 - 1/3^2)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
For odd n >= 3, (1/2)*H((n-1)/2) = (n-1)/(n+1) + (1/2)*(n-1)*(n-3)/((n+1)*(n+3)) + 1/3*(n-1)*(n-3)*(n-5)/((n+1)*(n+3)*(n+5)) + ... . Cf. A195505. See the Bala link in A036970. (End)
H(n) = ((n-1)/2) * hypergeom([1,1,2-n], [2,3], 1) + 1. - Artur Jasinski, Jan 08 2021
Conjecture: for nonzero m, H(n) = (1/m)*Sum_{k = 1..n} ((-1)^(k+1)/k) * binomial(m*k,k)*binomial(n+(m-1)*k,n-k). The case m = 1 is well-known; the case m = 2 is given above by Detlefs (dated Apr 13 2013). - Peter Bala, Mar 04 2022
a(n) = the (reduced) numerator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024
H(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)/k (H. W. Gould). - Gary Detlefs, May 28 2024

Extensions

Edited by Max Alekseyev, Oct 21 2011
Changed title, deleting the incorrect name "Wolstenholme numbers" which conflicted with the definition of the latter in both Weisstein's World of Mathematics and in Wikipedia, as well as with OEIS A007406. - Stanislav Sykora, Mar 25 2016

A002805 Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 4084080, 77597520, 15519504, 5173168, 5173168, 118982864, 356948592, 8923714800, 8923714800, 80313433200, 80313433200, 2329089562800, 2329089562800, 72201776446800
Offset: 1

Views

Author

Keywords

Comments

H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
If n is not in {1, 2, 6} then a(n) has at least one prime factor other than 2 or 5. E.g., a(5) = 60 has a prime factor 3 and a(7) = 140 has a prime factor 7. This implies that every H(n) = A001008(n)/A002805(n), n not from {1, 2, 6}, has an infinite decimal representation. For a proof see the J. Havil reference. - Wolfdieter Lang, Jun 29 2007
a(n) = A213999(n,n-1). - Reinhard Zumkeller, Jul 03 2012
From Wolfdieter Lang, Apr 16 2015: (Start)
a(n)/A001008(n) = 1/H(n) is the solution of the following version of the classical cistern and pipes problem. A cistern is connected to n different pipes of water. For the k-th pipe it takes k time units (say, days) to fill the empty cistern, for k = 1, 2, ..., n. How long does it take for the n pipes together to fill the empty cistern? 1/H(n) gives the answer as a fraction of the time unit.
In general, if the k-th pipe needs d(k) days to fill the empty cistern then all pipes together need 1/Sum_{k=1..n} 1/d(k) = HM(d(1), ..., d(n))/n days, where HM denotes the harmonic mean HM. For the described problem, HM(1, 2, ..., n)/n = A102928(n)/(n*A175441(n)) = 1/H(n).
For a classical cistern and pipes problem see, e.g., the Hunger-Vogel reference (in Greek and German) given in A256101, problem 27, p. 29, where n = 3, and d(1), d(2) and d(3) are 6, 4 and 3 days. On p. 97 of this reference one finds remarks on the history of such problems (called in German 'Brunnenaufgabe'). (End)
From Wolfdieter Lang, Apr 17 2015: (Start)
An example of the above mentioned cistern and pipes problems appears in Chiu Chang Suan Shu (nine books on arithmetic) in book VI, problem 26. The numbers are there 1/2, 1, 5/2, 3 and 5 (days) and the result is 15/75 (day). See the reference (in German) on p. 68.
A historical account on such cistern problems is found in the Johannes Tropfke reference, given in A256101, section 4.2.1.2 Zisternenprobleme (Leistungsprobleme), pp. 578-579.
In Fibonacci's Liber Abaci such problems appear on p. 281 and p. 284 of L. E. Sigler's translation. (End)
All terms > 1 are even while corresponding numerators (A001008) are all odd (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021

Examples

			H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ] = A001008/A002805.
		

References

  • Chiu Chang Suan Shu, Neun Bücher arithmetischer Technik, translated and commented by Kurt Vogel, Ostwalds Klassiker der exakten Wissenschaften, Band 4, Friedr. Vieweg & Sohn, Braunschweig, 1968, p. 68.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • J. Havil, Gamma, (in German), Springer, 2007, p. 35-6; Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 281, 284.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001008 (numerators), A075135, A025529, A203810, A203811, A203812.
Partial sums: A027612/A027611 = 1, 5/2, 13/3, 77/12, 87/10, 223/20,...
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358, Sum 1/n^2: A007406/A007407, Sum 1/n^3: A007408/A007409.

Programs

  • GAP
    List([1..30],n->DenominatorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
    
  • Haskell
    import Data.Ratio ((%), denominator)
    a002805 = denominator . sum . map (1 %) . enumFromTo 1
    a002805_list = map denominator $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Denominator(HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
    
  • Maple
    seq(denom(sum((2*k-1)/k, k=1..n), n=1..30); # Gary Detlefs, Jul 18 2011
    f:=n->denom(add(1/k, k=1..n)); # N. J. A. Sloane, Nov 15 2013
  • Mathematica
    Denominator[ Drop[ FoldList[ #1 + 1/#2 &, 0, Range[ 30 ] ], 1 ] ] (* Harvey P. Dale, Feb 09 2000 *)
    Table[Denominator[HarmonicNumber[n]], {n, 1, 40}] (* Stefan Steinerberger, Apr 20 2006 *)
    Denominator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
  • PARI
    a(n)=denominator(sum(k=2,n,1/k)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from fractions import Fraction
    def a(n): return sum(Fraction(1, i) for i in range(1, n+1)).denominator
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 24 2021
  • Sage
    def harmonic(a, b): # See the F. Johansson link.
        if b - a == 1 : return 1, a
        m = (a+b)//2
        p, q = harmonic(a,m)
        r, s = harmonic(m,b)
        return p*s+q*r, q*s
    def A002805(n) : H = harmonic(1,n+1); return denominator(H[0]/H[1])
    [A002805(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
    

Formula

a(n) = Denominator(Sum_{k=1..n} (2*k-1)/k). - Gary Detlefs, Jul 18 2011
a(n) = n! / gcd(Stirling1(n+1, 2), n!) = n! / gcd(A000254(n),n!). - Max Alekseyev, Mar 01 2018
a(n) = the (reduced) denominator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024

Extensions

Definition edited by Daniel Forgues, May 19 2010

A034386 Primorial numbers (second definition): n# = product of primes <= n.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030, 30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 223092870, 223092870, 223092870, 223092870, 223092870, 223092870, 6469693230, 6469693230, 200560490130, 200560490130
Offset: 0

Views

Author

Keywords

Comments

Squarefree kernel of both n! and lcm(1, 2, 3, ..., n).
a(n) = lcm(core(1), core(2), core(3), ..., core(n)) where core(x) denotes the squarefree part of x, the smallest integer such that x*core(x) is a square. - Benoit Cloitre, May 31 2002
The sequence can also be obtained by taking a(1) = 1 and then multiplying the previous term by n if n is coprime to the previous term a(n-1) and taking a(n) = a(n-1) otherwise. - Amarnath Murthy, Oct 30 2002; corrected by Franklin T. Adams-Watters, Dec 13 2006

Examples

			a(5) = a(6) = 2*3*5 = 30;
a(7) = 2*3*5*7 = 210.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3, p. 14, "n?".
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.35, p. 268.

Crossrefs

Cf. A073838, A034387. - Reinhard Zumkeller, Jul 05 2010
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Magma
    [n eq 0 select 1 else LCM(PrimesInInterval(1, n)) : n in [0..50]]; // G. C. Greubel, Jul 21 2023
  • Maple
    A034386 := n -> mul(k,k=select(isprime,[$1..n])); # Peter Luschny, Jun 19 2009
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          `if`(isprime(n), n, 1)*a(n-1))
        end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Nov 26 2020
  • Mathematica
    q[x_]:=Apply[Times,Table[Prime[w],{w,1,PrimePi[x]}]]; Table[q[w],{w,1,30}]
    With[{pr=FoldList[Times,1,Prime[Range[20]]]},Table[pr[[PrimePi[n]+1]],{n,0,40}]] (* Harvey P. Dale, Apr 05 2012 *)
    Table[ResourceFunction["Primorial"][i], {i,1,40}] (* Navvye Anand, May 22 2024 *)
  • PARI
    a(n)=my(v=primes(primepi(n)));prod(i=1,#v,v[i]) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    a(n)=lcm(primes([2,n])) \\ Jeppe Stig Nielsen, Mar 10 2019
    
  • Python
    from sympy import primorial
    def A034386(n): return 1 if n == 0 else primorial(n,nth=False) # Chai Wah Wu, Jan 11 2022
    
  • SageMath
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    [sharp_primorial(n) for n in (0..30)] # Giuseppe Coppoletta, Jan 26 2015
    

Formula

a(n) = n# = A002110(A000720(n)) = A007947(A003418(n)) = A007947(A000142(n)).
Asymptotic expression for a(n): exp((1 + o(1)) * n) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, log(a(n)) < 1.01624*n. [Rosser and Schoenfeld, 1962; Sándor et al., 2005] - N. J. A. Sloane, Apr 04 2017
a(n) <= A179215(n). - Reinhard Zumkeller, Jul 05 2010
a(n) = lcm(A006530(n), a(n-1)). - Jon Maiga, Nov 10 2018
Sum_{n>=0} 1/a(n) = A249270. - Amiram Eldar, Nov 08 2020

Extensions

Offset changed and initial term added by Arkadiusz Wesolowski, Jun 04 2011

A106830 Numerator of Sum_{ primes p <= n} 1/p.

Original entry on oeis.org

0, 1, 5, 5, 31, 31, 247, 247, 247, 247, 2927, 2927, 40361, 40361, 40361, 40361, 716167, 716167, 14117683, 14117683, 14117683, 14117683, 334406399, 334406399, 334406399, 334406399, 334406399, 334406399, 9920878441, 9920878441, 314016924901, 314016924901
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2005

Keywords

Comments

Very similar to A024451, which see for further information.

Examples

			0, 1/2, 5/6, 5/6, 31/30, 31/30, 247/210, 247/210, 247/210, 247/210, 2927/2310, 2927/2310, 40361/30030, 40361/30030, 40361/30030, ...
		

Crossrefs

Denominators are in A034386.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Mathematica
    Accumulate[Table[If[PrimeQ[n],1/n,0],{n,40}]]//Numerator (* Harvey P. Dale, Feb 17 2018 *)

A250133 Denominator of the harmonic mean of the first n composite numbers.

Original entry on oeis.org

1, 5, 13, 47, 271, 301, 2287, 491, 1045, 367, 1919, 1999, 22829, 23599, 121691, 1628183, 15054047, 15440147, 15800507, 32276689, 32931889, 570652913, 83022119, 84480719, 1631388461, 1656970061, 1681912121, 11939665247, 12098387447, 12253582487, 285324285601
Offset: 1

Views

Author

Colin Barker, Nov 14 2014

Keywords

Comments

Also numerator of the sum of the reciprocals of the first n composite numbers (A250133/A296358).

Examples

			a(3) = 13 because the first 3 composite numbers are [4,6,8] and 3 / (1/4+1/6+1/8) = 72/13.
1/4, 5/12, 13/24, 47/72, 271/360, 301/360, 2287/2520, 491/504, 1045/1008, 367/336, 1919/1680, 1999/1680, 22829/18480, ... = A250133/A296358
		

Crossrefs

Cf. A250132 (numerators).
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    composite(n) = for(k=0, primepi(n), isprime(n++)&&k--); n \\ from A002808
    s=vector(100); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, composite(i))))); s

A296358 Denominator of the sum of the reciprocals of the first n composite numbers.

Original entry on oeis.org

4, 12, 24, 72, 360, 360, 2520, 504, 1008, 336, 1680, 1680, 18480, 18480, 92400, 1201200, 10810800, 10810800, 10810800, 21621600, 21621600, 367567200, 52509600, 52509600, 997682400, 997682400, 997682400, 6983776800, 6983776800, 6983776800
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Comments

Same as A282512 without the initial 1.

Examples

			1/4, 5/12, 13/24, 47/72, 271/360, 301/360, 2287/2520, 491/504, 1045/1008, 367/336, 1919/1680, 1999/1680, 22829/18480, ... = A250133/A296358
		

Crossrefs

Numerators are in A250133.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Mathematica
    Accumulate[1/Select[Range[100],CompositeQ]]//Denominator (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2018 *)

Formula

Gerry Felderman (Personal communication, Dec 15 2017) observes that Sum_{k=1..n} 1/composite(k) (= A250133(n)/A296358(n)) ~ log(n) - loglog(n) ~ log pi(n) as n -> oo.

A282511 Numerator of the sum of the reciprocals of the first n nonprimes.

Original entry on oeis.org

1, 5, 17, 37, 119, 631, 661, 4807, 995, 2053, 703, 3599, 3679, 41309, 42079, 214091, 2829383, 25864847, 26250947, 26611307, 53898289, 54553489, 938220113, 135531719, 136990319, 2629070861, 2654652461, 2679594521, 18923442047, 19082164247, 19237359287
Offset: 1

Views

Author

Ralf Steiner, Feb 17 2017

Keywords

Examples

			The first few fractions are 1, 5/4, 17/12, 37/24, 119/72, 631/360, 661/360, 4807/2520, 995/504, 2053/
1008, 703/336, 3599/1680, ... - _N. J. A. Sloane_, Dec 15 2017
		

Crossrefs

Cf. A018252 (nonprime numbers), A282512 (denominators).
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • Mathematica
    With[{nn = 45}, Numerator@ Accumulate[1/Complement[Range@ nn, Prime@ Range@ PrimePi@ nn]]] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    a018252(n) = if(n==1, 1, my(i=1); forcomposite(c=1, , i++; if(i==n, return(c))))
    a(n) = numerator(sum(k=1, n, 1/a018252(k))) \\ Felix Fröhlich, Feb 17 2017

Extensions

More terms from Felix Fröhlich, Feb 17 2017
Showing 1-8 of 8 results.