A328779 a(n) is the number of unlabeled unrooted trees (as in A000055) on n nodes with one designated node (exclusive) or one designated edge.
0, 1, 2, 3, 7, 15, 36, 85, 211, 525, 1341, 3449, 9001, 23671, 62835, 167881, 451557, 1221065, 3318737, 9059397, 24830110, 68299159, 188488448, 521737636, 1448154837, 4029712400, 11239492056, 31416403198, 87990722479, 246903542031, 694022911203, 1954012196966
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2135
- Mathematics Stack Exchange Counting free trees from rooted trees.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, (add(b(n-j)*add( d*b(d), d=numtheory[divisors](j)), j=1..n-1))/(n-1)) end: a:= n-> b(n)+add(b(j)*b(n-j), j=0..n)/2+`if`(n::even, b(n/2)/2, 0): seq(a(n), n=0..31); # Alois P. Heinz, Feb 17 2024
-
Mathematica
nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[ 0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; CoefficientList[Series[r[x] + r[x]^2/2 + r[x^2]/2, {x, 0, nn}], x]
Formula
O.g.f.: R(x) + R(x)^2/2 + R(x^2)/2 where R(x) is the o.g.f. for A000081.
Comments