cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 689 results. Next

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A019279 Superperfect numbers: numbers k such that sigma(sigma(k)) = 2*k where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Keywords

Comments

Let sigma_m(n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives (2,2)-perfect numbers.
Even values of these are 2^(p-1) where 2^p-1 is a Mersenne prime (A000043 and A000668). No odd superperfect numbers are known. Hunsucker and Pomerance checked that there are no odd ones below 7 * 10^24. - Jud McCranie, Jun 01 2000
The number of divisors of a(n) is equal to A000043(n), if there are no odd superperfect numbers. - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is the n-th Mersenne prime A000668(n), provided that there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n) if there are no odd superperfect numbers. - Omar E. Pol, Apr 25 2008
This sequence is a divisibility sequence if there are no odd superperfect numbers. - Charles R Greathouse IV, Mar 14 2012
For n>1, sigma(sigma(a(n))) + phi(phi(a(n))) = (9/4)*a(n). - Farideh Firoozbakht, Mar 02 2015
The term "super perfect number" was coined by Suryanarayana (1969). He and Kanold (1969) gave the general form of even superperfect numbers. - Amiram Eldar, Mar 08 2021

Examples

			sigma(sigma(4))=2*4, so 4 is in the sequence.
		

References

  • Dieter Bode, Über eine Verallgemeinerung der vollkommenen Zahlen, Dissertation, Braunschweig, 1971.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B9, pp. 99-100.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, pp. 110-111.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, pp. 38-42.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    sigma = DivisorSigma[1, #]&;
    For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from itertools import count, islice
    def A019279_gen(): # generator of terms
        return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n)
    A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022

Formula

a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013

Extensions

a(8)-a(9) from Jud McCranie, Jun 01 2000
Corrected by Michel Marcus, Oct 28 2017

A023758 Numbers of the form 2^i - 2^j with i >= j.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1

Views

Author

Keywords

Comments

Numbers whose digits in base 2 are in nonincreasing order.
Might be called "nialpdromes".
Subset of A077436. Proof: Since a(n) is of the form (2^i-1)*2^j, i,j >= 0, a(n)^2 = (2^(2i) - 2^(i+1))*2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004
Numbers whose binary representation contains no "01". - Benoit Cloitre, May 23 2004
Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008
From Gary W. Adamson, Jul 18 2008: (Start)
As a triangle by rows starting:
1;
2, 3;
4, 6, 7;
8, 12, 14, 15;
16, 24, 28, 30, 31;
...,
equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8; ...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129, ...). (End)
First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1; ... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009
Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013
From Andres Cicuttin, Apr 29 2016: (Start)
Numbers that can be digitally generated with twisted ring (Johnson) counters. This is, the binary digits of a(n) correspond to those stored in a shift register where the input bit of the first bit storage element is the inverted output of the last storage element. After starting with all 0’s, each new state is obtained by rotating the stored bits but inverting at each state transition the last bit that goes to the first position (see link).
Examples: for a(n) represented by three bits
Binary
a(5)= 4 -> 100 last bit = 0
a(6)= 6 -> 110 first bit = 1 (inverted last bit of previous number)
a(7)= 7 -> 111
and for a(n) represented by four bits
Binary
a(8) = 8 -> 1000
a(9) = 12 -> 1100 last bit = 0
a(10)= 14 -> 1110 first bit = 1 (inverted last bit of previous number)
a(11)= 15 -> 1111
(End)
Powers of 2 represented in bases which are terms of this sequence must always contain at least one digit which is also a power of 2. This is because 2^i mod (2^i - 2^j) = 2^j, which means the last digit always cycles through powers of 2 (or if i=j+1 then the first digit is a power of 2 and the rest are trailing zeros). The only known non-member of this sequence with this property is 5. - Ely Golden, Sep 05 2017
Numbers k such that k = 2^(1 + A000523(k)) - 2^A007814(k). - Daniel Starodubtsev, Aug 05 2021
A002260(n) = v(a(n)/2^v(a(n))+1) and A002024(n) = A002260(n) + v(a(n)) where v is the dyadic valuation (i.e., A007814). - Lorenzo Sauras Altuzarra, Feb 01 2023

Examples

			a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
		

Crossrefs

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A002024, A003056, A140129, A140130, A221975.
Cf. A007088, A130123, A101082 (complement), A340375 (characteristic function).
This is the base-2 version of A064222. First differences are A057728.
Subsequence of A077436, of A129523, of A277704, and of A333762.
Subsequences: A043569 (nonzero even terms, or equally, nonzero terms doubled), A175332, A272615, A335431, A000396 (its even terms only), A324200.
Positions of zeros in A049502, A265397, A277899, A284264.
Positions of ones in A283983, A283989.
Positions of nonzero terms in A341509 (apart from the initial zero).
Positions of squarefree terms in A260443.
Fixed points of A264977, A277711, A283165, A334666.
Distinct terms in A340632.
Cf. also A309758, A309759, A309761 (for analogous sequences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a023758 n = a023758_list !! (n-1)
    a023758_list = 0 : f (singleton 1) where
    f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
    where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
    
  • Maple
    a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
    Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
    
  • PARI
    A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
    /* or, to illustrate the "decreasing digit" property and analogy to A064222: */
    A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
    
  • PARI
    is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
    
  • Python
    def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
    a_n = 1; a = [0]
    for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
    
  • Python
    from math import isqrt
    def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 2^s(n) - 2^((s(n)^2 + s(n) - 2n)/2) where s(n) = ceiling((-1 + sqrt(1+8n))/2). - Sam Alexander, Jan 08 2005
a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001
For n > 0, a(n) mod 2 = A010054(n). - Benoit Cloitre, May 23 2004
A140130(a(n)) = 1 and for n > 1: A140129(a(n)) = A002262(n-2). - Reinhard Zumkeller, May 14 2008
a(n+1) = (2^(n - r(r-1)/2) - 1) 2^(r(r+1)/2 - n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009
Start with A000225. If k is in the sequence, then so is 2k. - Ralf Stephan, Aug 16 2013
G.f.: (x^2/((2-x)*(1-x)))*(1 + Sum_{k>=0} x^((k^2+k)/2)*(1 + x*(2^k-1))). The sum is related to Jacobi theta functions. - Robert Israel, Feb 24 2015
A049502(a(n)) = 0. - Reinhard Zumkeller, Jun 17 2015
a(n) = a(n-1) + a(n-d)/a(d*(d+1)/2 + 2) if n > 1, d > 0, where d = A002262(n-2). - Yuchun Ji, May 11 2020
A277699(a(n)) = a(n)^2, A306441(a(n)) = a(n+1). - Antti Karttunen, Feb 15 2021 (the latter identity from A306441)
Sum_{n>=2} 1/a(n) = A211705. - Amiram Eldar, Feb 20 2022

Extensions

Definition changed by N. J. A. Sloane, Jan 05 2008

A033630 Number of partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 35, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 26, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 22, 1, 1, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			a(12) = 3 because we have the partitions [12], [6, 4, 2], and [6, 3, 2, 1].
		

Crossrefs

Programs

  • Haskell
    a033630 0 = 1
    a033630 n = p (a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (d:ds) m = if d > m then 0 else p ds (m - d) + p ds m
    -- Reinhard Zumkeller, Feb 23 2014, Apr 04 2012, Oct 27 2011
  • Maple
    with(numtheory): a:=proc(n) local div, g, gser: div:=divisors(n): g:=product(1+x^div[j],j=1..tau(n)): gser:=series(g,x=0,105): coeff(gser,x^n): end: seq(a(n),n=1..100); # Emeric Deutsch, Mar 30 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    A033630 = Table[SeriesCoefficient[Series[Times@@((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n ], {n, 512}] (* Wouter Meeussen *)
    A033630[n_] := f[n, n, 1]; f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k + 1] + f[n, m - k, k + 1] * Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[A033630, 101, 0] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)

Formula

a(n) = A065205(n) + 1.
a(A005100(n)) = 1; a(A005835(n)) > 1. - Reinhard Zumkeller, Mar 02 2007
a(n) = f(n, n, 1) with f(n, m, k) = if k <= m then f(n, m, k + 1) + f(n, m - k, k + 1)*0^(n mod k) else 0^m. - Reinhard Zumkeller, Dec 11 2009
a(n) = [x^n] Product_{d|n} (1 + x^d). - Ilya Gutkovskiy, Jul 26 2017
a(n) = 1 if n is deficient (A005100) or weird (A006037). a(n) = 2 if n is perfect (A000396). - Alonso del Arte, Sep 24 2017

Extensions

More terms from Reinhard Zumkeller, Apr 21 2003

A174973 Numbers whose divisors increase by a factor of at most 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 256
Offset: 1

Views

Author

T. D. Noe, Apr 02 2010

Keywords

Comments

That is, if the divisors of a number are listed in increasing order, the ratio of adjacent divisors is at most 2. The only odd number in this sequence is 1. Every term appears to be a practical number (A005153). The first practical number not here is 78.
Let p1^e1 * p2^e2 * ... * pr^er be the prime factorization of a number, with primes p1 < p2 < ... < pr and ek > 0. Then the number is in this sequence if and only if pk <= 2*Product_{j < k} p_j^e_j. This condition is similar to, but more restrictive than, the condition for practical numbers.
The polymath8 project led by Terry Tao refers to these numbers as "2-densely divisible". In general they say that n is y-densely divisible if its divisors increase by a factor of y or less, or equivalently, if for every R with 1 <= R <= n, there is a divisor in the interval [R/y,R]. They use this as a weakening of the condition that n be y-smooth. - David S. Metzler, Jul 02 2013
Is this the same as numbers k with the property that the symmetric representation of sigma(k) has only one part? If not, where is the first place these sequences differ? (cf. A237593). - Omar E. Pol, Mar 06 2014
Yes, the sequence so defined is the same as this sequence; see proof in the links. - Hartmut F. W. Hoft, Nov 26 2014
Saias (1997) called these terms "2-dense numbers" and proved that if N(x) is the number of terms not exceeding x, then there are two positive constants c_1 and c_2 such that c_1 * x/log_2(x) <= N(x) <= c_2 * x/log_2(x) for all x >= 2. - Amiram Eldar, Jul 23 2020
Weingartner (2015, 2019) showed that N(x) = c*x/log(x) + O(x/(log(x))^2), where c = 1.224830... As a result, a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 0.816439... - Andreas Weingartner, Jun 22 2021

Examples

			The divisors of 12 are 1, 2, 3, 4, 6, 12. The ratios of adjacent divisors is 2, 3/2, 4/3, 3/2, and 2, which are all <= 2. Hence 12 is in this sequence.
Example from _Omar E. Pol_, Mar 06 2014: (Start)
    The symmetric representation of sigma(6) = 12 in the first quadrant looks like this:
   y
   .
   ._ _ _ _
   |_ _ _  |_
   .     |   |_
   .     |_ _  |
   .         | |
   .         | |
   . . . . . |_| . . x
.
6 is in the sequence because the symmetric representation of sigma(6) = 12 has only one part. The 6th row of A237593 is [4, 1, 1, 1, 1, 4] and the 5th row of A237593 is [3, 2, 2, 3] therefore between both symmetric Dyck paths there is only one region (or part) of size 12.
    70 is not in the sequence because the symmetric representation of sigma(70) = 144 has three parts. The 70th row of A237593 is [36, 12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 12, 36] and the 69th row of A237593 is [35, 12, 7, 4, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 7, 12, 35] therefore between both symmetric Dyck paths there are three regions (or parts) of size [54, 36, 54]. (End)
		

Crossrefs

Subsequence of A196149 and of A071562. A000396 and A000079 are subsequences.
Cf. A027750, A047836, A237593, A365429 (characteristic function).
Column 1 of A240062.
First differs from A103288 and A125225 at a(23). First differs from A005153 at a(24).

Programs

  • Haskell
    a174973 n = a174973_list !! (n-1)
    a174973_list = filter f [1..] where
       f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 2) divs)
             where divs = a027750_row' n
    -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
    
  • Magma
    [k:k in [1..260]|forall{i:i in [1..#Divisors(k)-1]|d[i+1]/d[i] le 2 where d is Divisors(k)}]; // Marius A. Burtea, Jan 09 2020
    
  • Maple
    a:= proc() option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> ormap(x-> x, [seq(l[i]>l[i-1]*2, i=2..
          nops(l))]))(sort([(numtheory[divisors](k))[]])) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 27 2018
  • Mathematica
    OK[n_] := Module[{d=Divisors[n]}, And@@(#<=2& /@ (Rest[d]/Most[d]))]; Select[Range[1000], OK]
    dif2Q[n_]:=AllTrue[#[[2]]/#[[1]]&/@Partition[Divisors[n],2,1],#<=2&]; Select[Range[300],dif2Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 29 2020 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=2,#d,if(d[i]>2*d[i-1],return(0)));1 \\ Charles R Greathouse IV, Jul 06 2013
    
  • Python
    from sympy import divisors
    def ok(n):
        d = divisors(n)
        return all(d[i]/d[i-1] <= 2 for i in range(1, len(d)))
    print(list(filter(ok, range(1, 257)))) # Michael S. Branicky, Jun 22 2021

Formula

a(n) = A047836(n) / 2. - Reinhard Zumkeller, Sep 28 2011
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.816439... (see comments). - Andreas Weingartner, Jun 23 2021

Extensions

Edited by N. J. A. Sloane, Sep 09 2023
Edited by Peter Munn, Oct 17 2023

A064987 a(n) = n*sigma(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 72, 56, 120, 117, 180, 132, 336, 182, 336, 360, 496, 306, 702, 380, 840, 672, 792, 552, 1440, 775, 1092, 1080, 1568, 870, 2160, 992, 2016, 1584, 1836, 1680, 3276, 1406, 2280, 2184, 3600, 1722, 4032, 1892, 3696, 3510, 3312, 2256, 5952
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

Dirichlet convolution of sigma_2(n)=A001157(n) with phi(n)=A000010(n). - Vladeta Jovovic, Oct 27 2002
Equals row sums of triangle A143311 and of triangle A143308. - Gary W. Adamson, Aug 06 2008
a(n) is also the sum of all n's present in A244580, or in other words, a(n) is also the volume (or number of cubes) below the terraces of the n-th level of the staircase described in A244580 (see also A237593). - Omar E. Pol, Oct 11 2018
If n is a superperfect number then sigma(n) is a Mersenne prime and a(n) is a perfect number, a(A019279(k)) = A000396(k), k >= 1, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 15 2020

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. see page 43.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Main diagonal of A319073.
Cf. A000203, A038040, A002618, A000010, A001157, A143308, A143311, A004009, A006352, A000594, A126832, A069097 (Mobius transform), A001001 (inverse Mobius transform), A237593, A244580.

Programs

  • GAP
    a:=List([1..50],n->n*Sigma(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Haskell
    a064987 n = a000203 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    with(numtheory): [n*sigma(n)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    # DivisorSigma[1,#]&/@Range[80]  (* Harvey P. Dale, Mar 12 2011 *)
  • MuPAD
    numlib::sigma(n)*n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if ( n==0, 0, n * sigma(n))}
    
  • PARI
    { for (n=1, 1000, write("b064987.txt", n, " ", n*sigma(n)) ) } \\ Harry J. Smith, Oct 02 2009
    

Formula

Multiplicative with a(p^e) = p^e * (p^(e+1) - 1) / (p - 1).
G.f.: Sum_{n>0} n^2*x^n/(1-x^n)^2. - Vladeta Jovovic, Oct 27 2002
G.f.: phi_{2, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Michael Somos, Apr 02 2003
G.f. is also (Q - P^2) / 288 where P, Q are Ramanujan Lambert series. - Michael Somos, Apr 02 2003. See the Hardy reference, p. 136, eq. (10.5.4) (with a proof). For Q and P, (10.5.6) and (10.5.5), see E_4 A004009 and E_2 A006352, respectively. - Wolfdieter Lang, Jan 30 2017
Convolution of A000118 and A186690. Dirichlet convolution of A000027 and A000290. - Michael Somos, Mar 25 2012
Dirichlet g.f.: zeta(s-1)*zeta(s-2). - R. J. Mathar, Feb 16 2011
a(n) = A009194(n)*A009242(n). - Michel Marcus, Oct 23 2013
a(n) (mod 5) = A126832(n) = A000594(n) (mod 5). See A126832 for references. - Wolfdieter Lang, Feb 03 2017
L.g.f.: Sum_{k>=1} k*x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
Sum_{k>=1} 1/a(k) = 1.4383899259334187832765458631783591251241657856627653748389234270650138768... - Vaclav Kotesovec, Sep 20 2020
From Peter Bala, Jan 21 2021: (Start)
G.f.: Sum_{n >= 1} n*q^n*(1 + q^n)/(1 - q^n)^3 (use the expansion x*(1 + x)/(1 - x)^3 = x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + ...).
A faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3*q^(3*n) - (n^3 + 3*n^2 - n)*q^(2*n) - (n^3 - 3*n^2 - n)*q^n + n^3 )/(1 - q^n)^3 - differentiate equation 5 in Arndt w.r.t. both x and q and then set x = 1. (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= j, k <= n} sigma_1( gcd(j, k, n) ).
a(n) = Sum_{d divides n} sigma_1(d)*J_2(n/d) = Sum_{d divides n} sigma_2(d)* phi(n/d), where the Jordan totient function J_2(n) = A007434(n). (End)

A005835 Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1

Views

Author

Keywords

Comments

In other words, some subset of the numbers { 1 <= d < n : d divides n } adds up to n. - N. J. A. Sloane, Apr 06 2008
Also, numbers n such that A033630(n) > 1. - Reinhard Zumkeller, Mar 02 2007
Deficient numbers cannot be pseudoperfect. This sequence includes the perfect numbers (A000396). By definition, it does not include the weird, i.e., abundant but not pseudoperfect, numbers (A006037).
From Daniel Forgues, Feb 07 2011: (Start)
The first odd pseudoperfect number is a(233) = 945.
An empirical observation (from the graph) is that it seems that the n-th pseudoperfect number would be asymptotic to 4n, or equivalently that the asymptotic density of pseudoperfect numbers would be 1/4. Any proof of this? (End)
A065205(a(n)) > 0; A210455(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013
Deléglise (1998) shows that abundant numbers have asymptotic density < 0.2480, resolving the question which he attributes to Henri Cohen of whether the abundant numbers have density greater or less than 1/4. The density of pseudoperfect numbers is the difference between the densities of abundant numbers (A005101) and weird numbers (A006037), since the remaining integers are perfect numbers (A000396), which have density 0. Using the first 22 primitive pseudoperfect numbers (A006036) and the fact that every multiple of a pseudoperfect number is pseudoperfect it can be shown that the density of pseudoperfect numbers is > 0.23790. - Jaycob Coleman, Oct 26 2013
The odd terms of this sequence are given by the odd abundant numbers A005231, up to hypothetical (so far unknown) odd weird numbers (A006037). - M. F. Hasler, Nov 23 2017
The term "pseudoperfect numbers" was coined by Sierpiński (1965). The alternative term "semiperfect numbers" was coined by Zachariou and Zachariou (1972). - Amiram Eldar, Dec 04 2020

Examples

			6 = 1+2+3, 12 = 1+2+3+6, 18 = 3+6+9, etc.
70 is not a member since the proper divisors of 70 are {1, 2, 5, 7, 10, 14, 35} and no subset adds to 70.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.

Crossrefs

Subsequence of A023196; complement of A136447.
See A136446 for another version.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a005835 n = a005835_list !! (n-1)
    a005835_list = filter ((== 1) . a210455) [1..]
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    with(combinat):
    isA005835 := proc(n)
        local b, S;
        b:=false;
        S:=subsets(numtheory[divisors](n) minus {n});
        while not S[finished] do
            if convert(S[nextvalue](), `+`)=n then
                b:=true;
                break
            end if ;
        end do;
        b
    end proc:
    for n from 1 do
        if isA005835(n) then
            print(n);
        end if;
    end do: # Walter Kehowski, Aug 12 2005
  • Mathematica
    A005835 = Flatten[ Position[ A033630, q_/; q>1 ] ] (* Wouter Meeussen *)
    pseudoPerfectQ[n_] := Module[{divs = Most[Divisors[n]]}, MemberQ[Total/@Subsets[ divs, Length[ divs]], n]]; A005835 = Select[Range[300],pseudoPerfectQ] (* Harvey P. Dale, Sep 19 2011 *)
    A005835 = {}; n = 0; While[Length[A005835] < 100, n++; d = Most[Divisors[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[A005835, n]]]; A005835 (* T. D. Noe, Dec 29 2011 *)
  • PARI
    is_A005835(n, d=divisors(n)[^-1], s=vecsum(d), m=#d)={ m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nA005835(n-d[m], d, s-d[m], m-1) || is_A005835(n, d, s-d[m], m-1), n==s)} \\ Returns nonzero iff n is the sum of a subset of d, which defaults to the set of proper divisors of n. Improved using more recent PARI syntax by M. F. Hasler, Jul 15 2016, Jul 27 2016. NOTE: This function is also used (with 2nd optional arg) in A136446, A122036 and possibly in A006037. - M. F. Hasler, Jul 28 2016
    for(n=1,1000,is_A005835(n)&&print1(n",")) \\ M. F. Hasler, Apr 06 2008
    

Extensions

Better description and more terms from Jud McCranie, Oct 15 1997

A061652 Even superperfect numbers: 2^(p-1) where 2^p-1 is a Mersenne prime (A000668).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Jason Earls, Jun 16 2001

Keywords

Comments

It is conjectured that there are no odd superperfect numbers, in which case this coincides with A019279.
The number of divisors of a(n) is equal to A000043(n). - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is equal to A000668(n), the n-th Mersenne prime. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n). - Omar E. Pol, Apr 25 2008
Indices of hexagonal numbers (A000384) that are also even perfect numbers. [Omar E. Pol, Aug 26 2008]
Except for the first perfect number 6, this sequence is the greatest common divisor of a perfect number (A000396) and its arithmetic derivative (A003415). - Giorgio Balzarotti, Apr 21 2011
If n is in the sequence then n is a solution to the equation phi(sigma(x)) = 2x-2. It seems that there is no other solution to this equation. - Jahangeer Kholdi, Sep 09 2014
The sum of sums of elements of subsets of divisors of a(n), i.e. A229335(a(n)), is a perfect number (A000396). - Jaroslav Krizek, Nov 02 2017

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    2^(Select[Range[512], PrimeQ[2^# - 1] &] - 1) (* Alonso del Arte, Apr 22 2011 *)
    2^(MersennePrimeExponent[Range[15]]-1) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    forprime(p=2,1e3,if(ispseudoprime(2^p-1),print1(2^(p-1)", "))) \\ Charles R Greathouse IV, Mar 14 2012

Formula

a(n) = 2^(A090748(n)). - Lekraj Beedassy, Dec 07 2007
a(n) = (1 + A000668(n))/2. - Omar E. Pol, Mar 11 2008
a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008

A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.

Original entry on oeis.org

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Comments

A080224(a(n)) = 1.
This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016

Examples

			12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016
		

Crossrefs

Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.
Cf. A027751, A071395 (subsequence), supersequence of A275082.
Cf. A294930 (characteristic function), A294890.

Programs

  • Haskell
    a091191 n = a091191_list !! (n-1)
    a091191_list = filter f [1..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:
    for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
    Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012
Previous Showing 61-70 of 689 results. Next