cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 248 results. Next

A002002 a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).

Original entry on oeis.org

0, 1, 5, 25, 129, 681, 3653, 19825, 108545, 598417, 3317445, 18474633, 103274625, 579168825, 3256957317, 18359266785, 103706427393, 586889743905, 3326741166725, 18885056428537, 107347191941249, 610916200215241
Offset: 0

Views

Author

Keywords

Comments

From Benoit Cloitre, Jan 29 2002: (Start)
Array interpretation (first row and column are the natural numbers):
1 2 3 ..j ... if b(i,j) = b(i-1,j) + b(i-1,j-1) + b(i,j-1) then a(n+1) = b(n,n)
2 5 .........
.............
i........... b(i,j)
(End)
Number of ordered trees with 2n edges, having root of even degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
Coefficient of x^n in ((1-x)/(1-2x))^n, n>0. - Michael Somos, Sep 24 2003
Number of peaks in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0). Example: a(2)=5 because HH, HU*D, U*DH, UHD, U*DU*D, UU*DD contain 5 peaks (indicated by *). - Emeric Deutsch, Dec 06 2003
a(n) is the total number of HHs in all Schroeder (n+1)-paths. Example: a(2)=5 because UH*HD, H*H*H, UDH*H, H*HUD contain 5 HHs (indicated by *) and the other 18 Schroeder 3-paths contain no HHs. - David Callan, Jul 03 2006
a(n) is the total number of Hs in all Schroeder n-paths. Example: a(2)=5 as the Schroeder 2-paths are HH, DUH, DHU, HDU, DUDU and DDUU, and there are 5 H's. In general, a(n) is the total number of H..Hs (m+1 H's) in all Schroeder (n+m)-paths. - FUNG Cheok Yin, Jun 19 2021
a(n) is the number of points in Z^(n+1) that are L1 (Manhattan) distance <= n from the origin, or the number of points in Z^n that are L1 distance <= n+1 from the origin. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the (n+1)-dimensional cubic lattice as well as the (n+1)-st term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 25 2022 [Edited by Peter Munn, Jan 05 2023]

Examples

			G.f. = x + 5*x^2 + 25*x^3 + 129*x^4 + 681*x^5 + 3653*x^6 + 19825*x^7 + 108545*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002003, Cf. A047781, A001003.
a(n)=T(n, n+1), array T as in A050143.
a(n)=T(n, n+1), array T as in A064861.
Half the first differences of central Delannoy numbers (A001850).
a(n)=T(n, n+1), array T as in A008288.

Programs

  • Magma
    [&+[Binomial(n,k+1)*Binomial(n+k,k): k in [0..n]]: n in [0..21]];  // Bruno Berselli, May 19 2011
    
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i+1),i=1..40);
  • Mathematica
    CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x,0,30}],x]  (* Harvey P. Dale, Mar 17 2011 *)
    a[ n_] := n Hypergeometric2F1[ n + 1, -n + 1, 2, -1] (* Michael Somos, Aug 09 2011 *)
    a[ n_] := With[{m = Abs@n}, Sign[n] Sum[ Binomial[ m, k] Binomial[ m + k - 1, m], {k, m}]]; (* Michael Somos, Aug 09 2011 *)
  • Maxima
    makelist(sum(binomial(n,k+1)*binomial(n+k,k), k, 0, n), n, 0, 21); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    {a(n) = my(m = abs(n)); sign( n) * sum( k=0, m-1, binomial( m, k+1) * binomial( m+k, k))}; /* Michael Somos, Aug 09 2011 */
    
  • PARI
    /* L.g.f.: Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1-x)^(-n)/n! */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)/(1-x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, May 17 2015
  • Sage
    a = lambda n: hypergeometric([1-n, -n], [1], 2) if n>0 else 0
    [simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014
    

Formula

G.f.: ((1-x)/sqrt(1-6*x+x^2)-1)/2. - Emeric Deutsch, Aug 02 2002
E.g.f.: exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+sqrt(2)*BesselI(1, 2*sqrt(2)*x)). - Vladeta Jovovic, Mar 28 2004
a(n) = Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k+1). - Paul Barry, Sep 20 2004
a(n) = n * hypergeom([n + 1, -n + 1], [2], -1) = ((n+1)*LegendreP(n+1,3) - (5*n+3)*LegendreP(n,3))/(2*n) for n > 0. - Mark van Hoeij, Jul 12 2010
G.f.: x*d/dx log(1/(1-x*A006318(x))). - Vladimir Kruchinin, Apr 19 2011
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 09 2011
G.f.: -1 + 1 / ( 1 - x / (1 - 4*x / (1 - x^2 / (1 - 4*x / (1 - x^2 / (1 - 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = Sum_{k=0..n} A201701(n,k)^2 = Sum_{k=0..n} A124182(n,k)^2 for n > 0. - Philippe Deléham, Dec 05 2011
D-finite with recurrence: 2*(6*n^2-12*n+5)*a(n-1)-(n-2)*(2*n-1)*a(n-2)-n*(2*n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n/(2^(5/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 04 2012
D-finite (an alternative): n*a(n) = (6-n)*a(n-6) + (14*n-72)*a(n-5) + (264-63*n)*a(n-4) + 100*(n-3)*a(n-3) + (114-63*n)*a(n-2) + 2*(7*n-6)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k) and n^3*a(n) = Sum_{k=0..n-1} (4*k^3+4*k^2+4*k+1)*binomial(n-1,k)*binomial(n+k,k). For each of the two equalities, both sides satisfy the same recurrence -- this follows from the Zeilberger algorithm. - Zhi-Wei Sun, Aug 30 2014
a(n) = hypergeom([1-n, -n], [1], 2) for n >= 1. - Peter Luschny, Nov 19 2014
Logarithmic derivative of A001003 (little Schroeder numbers). - Paul D. Hanna, May 17 2015
L.g.f.: L(x) = Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1-x)^(-n) / n! = Sum_{n>=1} a(n)*x^n/n where exp(L(x)) = g.f. of A001003. - Paul D. Hanna, May 17 2015
a(n+1) = (1/2^(n+1)) * Sum_{k >= 0} (1/2^k) * binomial(n + k, n)*binomial(n + k, n + 1). - Peter Bala, Mar 02 2017
2*a(n) = A110170(n), n > 0. - R. J. Mathar, Feb 10 2022
a(n) = (LegendreP(n,3) - LegendreP(n-1,3))/2. - Mark van Hoeij, Jul 14 2022
D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
From Peter Bala, Nov 08 2022: (Start)
a(n) = (-1)^(n+1)*hypergeom( [n+1, -n+1], [1], 2) for n >= 1.
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p and all positive integers n and r. (End)
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 1} binomial(2*n-1, n)*x^n/(1 - x)^(2*n) = x + 5*x^2 + 25*x^3 + 129*x^4 + ....
Row sums of A253283. (End)

Extensions

More terms from Clark Kimberling

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A033282 Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
Offset: 3

Views

Author

Keywords

Comments

T(n+3, k) is also the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's cluster algebra of finite type A_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of the triangle of Narayana numbers A001263. For example, x^2 + 5*x + 5 = y^2 + 3*y + 1. - Paul Boddington, Mar 07 2003
Number of standard Young tableaux of shape (k+1,k+1,1^(n-k-3)), where 1^(n-k-3) denotes a sequence of n-k-3 1's (see the Stanley reference).
Number of k-dimensional 'faces' of the n-dimensional associahedron (see Simion, p. 168). - Mitch Harris, Jan 16 2007
Mirror image of triangle A126216. - Philippe Deléham, Oct 19 2007
For relation to Lagrange inversion or series reversion and the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. - Tom Copeland, Sep 29 2008
Row generating polynomials 1/(n+1)*Jacobi_P(n,1,1,2*x+1). Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p. 60]. See A001263 for the corresponding array of h-vectors for associahedra of type A_n. See A063007 and A080721 for the f-vectors for associahedra of type B and type D respectively. - Peter Bala, Oct 28 2008
f-vectors of secondary polytopes for Grobner bases for optimization and integer programming (see De Loera et al. and Thomas). - Tom Copeland, Oct 11 2011
From Devadoss and O'Rourke's book: The Fulton-MacPherson compactification of the configuration space of n free particles on a line segment with a fixed particle at each end is the n-Dim Stasheff associahedron whose refined f-vector is given in A133437 which reduces to A033282. - Tom Copeland, Nov 29 2011
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
The general results on the convolution of the refined partition polynomials of A133437, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
The signed triangle t(n, k) =(-1)^k* T(n+2, k-1), n >= 1, k = 1..n, seems to be obtainable from the partition array A111785 (in Abramowitz-Stegun order) by adding the entries corresponding to the partitions of n with the number of parts k. E.g., triangle t, row n=4: -1, (6+3) = 9, -21, 14. - Wolfdieter Lang, Mar 17 2017
The preceding conjecture by Lang is true. It is implicit in Copeland's 2011 comments in A086810 on the relations among a gf and its compositional inverse for that entry and inversion through A133437 (a differently normalized version of A111785), whose integer partitions are the same as those for A134685. (An inversion pair in Copeland's 2008 formulas below can also be used to prove the conjecture.) In addition, it follows from the relation between the inversion formula of A111785/A133437 and the enumeration of distinct faces of associahedra. See the MathOverflow link concernimg Loday and the Aguiar and Ardila reference in A133437 for proofs of the relations between the partition polynomials for inversion and enumeration of the distinct faces of the A_n associahedra, or Stasheff polytopes. - Tom Copeland, Dec 21 2017
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/(n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 07 2022
Chapoton's observation above is correct: the precise expansion is (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/ (n!*(n+1)!) = Sum_{k = 0..n-1} (-1)^k*T(n+2,n-k-1)*binomial(x+2*n-k,2*n-k), as can be verified using the WZ algorithm. For example, n = 4 gives (x+1)*(x+2)^2*(x+3)^2*(x+4)^2*(x+5)/(4!*5!) = 14*binomial(x+8,8) - 21*binomial(x+7,7) + 9*binomial(x+6,6) - binomial(x+5,5). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) begins:
n\k  0  1   2    3     4     5      6      7     8     9
3:   1
4:   1  2
5:   1  5   5
6:   1  9  21   14
7:   1 14  56   84    42
8:   1 20 120  300   330   132
9:   1 27 225  825  1485  1287    429
10:  1 35 385 1925  5005  7007   5005   1430
11:  1 44 616 4004 14014 28028  32032  19448  4862
12:  1 54 936 7644 34398 91728 148512 143208 75582 16796
... reformatted. - _Wolfdieter Lang_, Mar 17 2017
		

References

  • S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.

Crossrefs

Cf. diagonals: A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281; row sums: A001003 (Schroeder numbers, first term omitted). See A086810 for another version.
A007160 is a diagonal. Cf. A001263.
With leading zero: A086810.
Cf. A019538 'faces' of the permutohedron.
Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image).
Cf. A248727 for a relation to f-polynomials of simplices.
Cf. A111785 (contracted partition array, unsigned; see a comment above).
Antidiagonal sums give A005043. - Jordan Tirrell, Jun 01 2017

Programs

  • Magma
    [[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]];  // G. C. Greubel, Nov 19 2018
    
  • Maple
    T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);
    Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ Hugo Pfoertner, Nov 19 2018
    
  • PARI
    for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ G. C. Greubel, Nov 19 2018
    
  • Sage
    [[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # G. C. Greubel, Nov 19 2018

Formula

G.f. G = G(t, z) satisfies (1+t)*G^2 - z*(1-z-2*t*z)*G + t*z^4 = 0.
T(n, k) = binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <= k <= n-3.
From Tom Copeland, Nov 03 2008: (Start)
Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.
1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)] = t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...
b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)} = (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...
2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)] = (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...
b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)] = (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...
c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)] = t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...
x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437) to generate A033282 and show that A133437 is a refinement of A033282, i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.
y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264) to generate A033282 and show that A134264 is a refinement of A001263, i.e., a refinement of the h-polynomials of the associahedra.
f1[x,t](t+1) gives a generator for A088617.
f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].
f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].
The unsigned coefficients of x1(y t,t) are A074909, reverse rows of A135278. (End)
G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). - Paul Barry, Feb 06 2009
Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u + 2*t + 3*t^2 + 4*t^3 + ...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - Tom Copeland, Sep 06 2011
With a different offset, the row polynomials equal 1/(1 + x)*Integral_{0..x} R(n,t) dt, where R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*t^k are the row polynomials of A063007. - Peter Bala, Jun 23 2016
n-th row polynomial = ( LegendreP(n-1,2*x + 1) - LegendreP(n-3,2*x + 1) )/((4*n - 6)*x*(x + 1)), n >= 3. - Peter Bala, Feb 22 2017
n*T(n+1, k) = (4n-6)*T(n, k-1) + (2n-3)*T(n, k) - (n-3)*T(n-1, k) for n >= 4. - Fang Lixing, May 07 2019

Extensions

Missing factor of 2 for expansions of f1 and f2 added by Tom Copeland, Apr 12 2009

A277996 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 102, 299, 892, 2713, 8364, 26108, 82310, 261804, 838961, 2706336, 8780725, 28636157, 93818641, 308641277, 1019140129, 3376604826, 11221805968, 37399728251, 124967677989, 418564867751, 1405030366113, 4726036692421, 15927027834163, 53770343259613
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Comments

Also the number of distinct orderless Mathematica expressions with one atom and n positions.

Examples

			The a(5)=13 Mathematica expressions are:
x[x,x,x]
x[x,x][]   x[x][x]   x[][x,x]  x[x,x[]]  x[x[x]]
x[x][][]   x[][x][]  x[][][x]  x[x[]][]  x[][x[]]  x[x[][]]
x[][][][]
		

Crossrefs

Programs

  • Mathematica
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    a[n_]:=a[n]=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-1}]];
    Array[a,30]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} 1/(1 - x^n)^a(n)). (End)

A059231 Number of different lattice paths running from (0,0) to (n,0) using steps from S = {(k,k) or (k,-k): k positive integer} that never go below the x-axis.

Original entry on oeis.org

1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, 3768209, 29324405, 231153133, 1841801065, 14810069497, 120029657805, 979470140661, 8040831465825, 66361595715105, 550284185213925, 4582462506008253, 38306388126997785, 321327658068506121, 2703925940081270205
Offset: 0

Views

Author

Wenjin Woan, Jan 20 2001

Keywords

Comments

If y = x*A(x) then 4*y^2 - (1 + 3*x)*y + x = 0 and x = y*(1 - 4*y) / (1 - 3*y). - Michael Somos, Sep 28 2003
a(n) = A059450(n, n). - Michael Somos, Mar 06 2004
The Hankel transform of this sequence is 4^binomial(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schroder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 3 colors. Example: a(2)=5 because we have UDUD, UUDD, UBD, UGD, and URD, where U=(1,1), D=(1,-1), while B, G, and R are, respectively, blue, green, and red (2,0)-steps. - Emeric Deutsch, May 02 2011
Shifts left when INVERT transform applied four times. - Benedict W. J. Irwin, Feb 02 2016

Examples

			a(3) = 29 since the top row of Q^2 = (5, 8, 16, 0, 0, 0, ...), and 5 + 8 + 16 = 29.
		

Crossrefs

Row sums of A086873.
Column k=2 of A227578. - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    gf := (1+3*x-sqrt(9*x^2-10*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s, x, i)) od:
    A059231_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+4*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A059231_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    Join[{1},Table[-I 3^n/2LegendreP[n,-1,5/3],{n,40}]] (* Harvey P. Dale, Jun 09 2011 *)
    Table[Hypergeometric2F1[-n, 1 - n, 2, 4], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x - sqrt(1 - 10*x + 9*x^2 + x^2 * O(x^n))) / (8*x), n))}; /* Michael Somos, Sep 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Sep 28 2003 */
    
  • Sage
    # Algorithm of L. Seidel (1877)
    def A059231_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; b = False; h = 1
        for i in range(2*n) :
            if b :
                for k in range(1, h, 1) : D[k] += 2*D[k+1]
            else :
                for k in range(h, 0, -1) : D[k] += 2*D[k-1]
                h += 1
            b = not b
            if b : R.append(D[1])
        return R
    A059231_list(23)  # Peter Luschny, Oct 19 2012

Formula

a(n) = Sum_{k=0..n} 4^k*N(n, k) where N(n, k) = (1/n)*binomial(n, k)*binomial(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003
a(n) = 3^n/2*LegendreP(n, -1, 5/3). - Vladeta Jovovic, Sep 17 2003
G.f.: (1 + 3*x - sqrt(1 - 10*x + 9*x^2)) / (8*x) = 2 / (1 + 3*x + sqrt(1 - 10*x + 9*x^2)). - Michael Somos, Sep 28 2003
a(n) = Sum_{k=0..n} A088617(n, k)*4^k*(-3)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1: a(1)=1, a(n) = -3*a(n-1) + 4*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence a(n) = (5(2n-1)a(n-1) - 9(n-2)a(n-2))/(n+1) for n>=2; a(0)=a(1)=1. - Emeric Deutsch, Mar 20 2004
Moment representation: a(n)=(1/(8*Pi))*Int(x^n*sqrt(-x^2+10x-9)/x,x,1,9)+(3/4)*0^n. - Paul Barry, Sep 30 2009
a(n) = upper left term in M^n, M = the production matrix:
1, 1
4, 4, 4
1, 1, 1, 1
4, 4, 4, 4, 4
1, 1, 1, 1, 1, 1
... - Gary W. Adamson, Jul 08 2011
a(n) is the sum of top row terms of Q^(n-1), where Q = the following infinite square production matrix:
1, 4, 0, 0, 0, ...
1, 1, 4, 0, 0, ...
1, 1, 1, 4, 0, ...
1, 1, 1, 1, 4, ...
... - Gary W. Adamson, Aug 23 2011
G.f.: (1+3*x-sqrt(9*x^2-10*x+1))/(8*x)=(1+3*x -G(0))/(4*x) ; G(k)= 1+x*3-x*4/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ sqrt(2)*3^(2*n+1)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
a(n) = A127846(n) for n>0. - Philippe Deléham, Apr 03 2013
0 = a(n)*(+81*a(n+1) - 225*a(n+2) + 36*a(n+3)) + a(n+1)*(+45*a(n+1) + 82*a(n+2) - 25*a(n+3)) + a(n+2)*(+5*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Aug 25 2014
G.f.: 1/(1 - x/(1 - 4*x/(1 - x/(1 - 4*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017

A033877 Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1

Views

Author

Keywords

Comments

A106579 is in some ways a better version of this sequence, but since this was entered first it will be the main entry for this triangle.
The diagonals of this triangle are self-convolutions of the main diagonal A006318: 1, 2, 6, 22, 90, 394, 1806, ... . - Philippe Deléham, May 15 2005
From Johannes W. Meijer, Sep 22 2010, Jul 15 2013: (Start)
Note that for the terms T(n,k) of this triangle n indicates the column and k the row.
The triangle sums, see A180662, link Schroeder's triangle with several sequences, see the crossrefs. The mirror of this triangle is A080247.
Quite surprisingly the Kn1p sums, p >= 1, are all related to A026003 and crystal ball sequences for n-dimensional cubic lattices (triangle offset is 0): Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - A005408(n+3), Kn14(n) = A026003(n+6) - A001844(n+4), Kn15(n) = A026003(n+8) - A001845(n+5), Kn16(n) = A026003(n+10) - A001846(n+6), Kn17(n) = A026003(n+12) - A001847(n+7), Kn18(n) = A026003(n+14) - A001848(n+8), Kn19(n) = A026003(n+16) - A001849(n+9), Kn110(n) = A026003(n+18) - A008417(n+10), Kn111(n) = A026003(n+20) - A008419(n+11), Kn112(n) = A026003(n+22) - A008421(n+12). (End)
T(n,k) is the number of normal semistandard Young tableaux with two columns, one of height k and one of height n. The recursion can be seen by performing jeu de taquin deletion on all instances of the smallest value. (If there are two instances of the smallest value, jeu de taquin deletion will always shorten the right column first and the left column second.) - Jacob Post, Jun 19 2018

Examples

			Triangle starts:
  1;
  1,    2;
  1,    4,    6;
  1,    6,   16,   22;
  1,    8,   30,   68,   90;
  1,   10,   48,  146,  304,  394;
  1,   12,   70,  264,  714, 1412, 1806;
  ... - _Joerg Arndt_, Sep 29 2013
		

Crossrefs

Essentially same triangle as A080247 and A080245 but with rows read in reversed order. Also essentially the same triangle as A106579.
Cf. A001003 (row sums), A026003 (antidiagonal sums).
Triangle sums (see the comments): A001003 (Row1, Row2), A026003 (Kn1p, p >= 1), A006603 (Kn21), A227504 (Kn22), A227505 (Kn23), A006603(2*n) (Kn3), A001850 (Kn4), A227506 (Fi1), A010683 (Fi2).

Programs

  • Haskell
    a033877 n k = a033877_tabl !! n !! k
    a033877_row n = a033877_tabl !! n
    a033877_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Magma
    function t(n,k)
      if k le 0 or k gt n then return 0;
      elif k eq 1 then return 1;
      else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
      end if;
    end function;
    [t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
  • Maple
    T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
  • Mathematica
    T[1, ]:= 1; T[n, k_]/;(k
    				
  • Sage
    def A033877_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
    
  • SageMath
    @CachedFunction
    def t(n, k): # t = A033847
        if (k<0 or k>n): return 0
        elif (k==1): return 1
        else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
    flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
    

Formula

As an upper right triangle: a(n, k) = a(n, k-1) + a(n-1, k-1) + a(n-1, k) if k >= n >= 0 and a(n, k) = 0 otherwise.
G.f.: Sum T(n, k)*x^n*y^k = (1-x*y-(x^2*y^2-6*x*y+1)^(1/2)) / (x*(2*y+x*y-1+(x^2*y^2-6*x*y+1)^(1/2))). - Vladeta Jovovic, Feb 16 2003
Another version of A000007 DELTA [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] = 1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
Sum_{n=1..floor((k+1)/2)} T(n+p-1, k-n+p) = A026003(2*p+k-3) - A008288(2*p+k-3, p-2), p >= 2, k >= 1. - Johannes W. Meijer, Sep 28 2013
From G. C. Greubel, Mar 23 2023: (Start)
(t(n, k) as a lower triangle)
t(n, k) = t(n, k-1) + t(n-1, k-1) + t(n-1, k) with t(n, 1) = 1.
t(n, n) = A006318(n-1).
t(2*n-1, n) = A330801(n-1).
t(2*n-2, n) = A103885(n-1), n > 1.
Sum_{k=1..n-1} t(n, k) = A238112(n), n > 1.
Sum_{k=1..n} t(n, k) = A001003(n).
Sum_{k=1..n-1} (-1)^(k-1)*t(n, k) = (-1)^n*A001003(n-1), n > 1.
Sum_{k=1..n} (-1)^(k-1)*t(n, k) = A080243(n-1).
Sum_{k=1..floor((n+1)/2)} t(n-k+1, k) = A026003(n-1). (End)

Extensions

More terms from David W. Wilson

A086810 Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2003

Keywords

Comments

Mirror image of triangle A133336. - Philippe Deléham, Dec 10 2008
From Tom Copeland, Oct 09 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 2 t^2
P(4,t) = t + 5 t^2 + 5 t^3
P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - Tom Copeland, Mar 12 2012
Diagonals of A132081 are essentially rows of this sequence. - Tom Copeland, May 08 2012
T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - Michel Marcus, Nov 22 2014
From Yu Hin Au, Dec 07 2019: (Start)
T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)

Examples

			Triangle starts:
  1;
  0,  1;
  0,  1,  2;
  0,  1,  5,  5;
  0,  1,  9, 21, 14;
  ...
		

Crossrefs

The diagonals (except for A000007) are also the diagonals of A033282.
Row sums: A001003 (Schroeder numbers).

Programs

  • Mathematica
    Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
    Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014

Formula

Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by Marko Riedel, May 04 2023]
Sum_{k>=0} T(n, k)*2^k = A107841(n). - Philippe Deléham, May 26 2005
Sum_{k>=0} T(n-k, k) = A005043(n). - Philippe Deléham, May 30 2005
T(n, k) = A108263(n+k, k). - Philippe Deléham, May 30 2005
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - Philippe Deléham, Jan 17 2009
Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - Tom Copeland, Oct 04 2014
T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - Michel Marcus, Nov 22 2014
P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - Tom Copeland, Aug 22 2016

Extensions

Typo in a(60) corrected by Michael De Vlieger, Nov 21 2019

A071356 Expansion of (1 - 2*x - sqrt(1 - 4*x - 4*x^2))/(4*x^2).

Original entry on oeis.org

1, 2, 6, 20, 72, 272, 1064, 4272, 17504, 72896, 307648, 1312896, 5655808, 24562176, 107419264, 472675072, 2091206144, 9296612352, 41507566592, 186045061120, 836830457856, 3776131489792, 17089399689216, 77548125675520, 352766964908032
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

Number of underdiagonal lattice paths from (0,0) to the line x=n, using only steps R=(1,0), V=(0,1) and D=(1,2). Also number of Motzkin paths of length n in which both the "up" and the "level" steps come in two colors. E.g., a(2)=6 because we have RR, RVR, RRV, RD, RVRV and RRVV. - Emeric Deutsch, Dec 21 2003
Inverse binomial transform of little Schroeder numbers 1,3,11,... (A001003 with first term deleted). - David Callan, Feb 07 2004
a(n) is the number of planar trees satisfying: 1) Every internal node has at least two children, 2) Among the children of a node, only the leftmost and the rightmost children can be leaves, 3) The tree has n+1 leaves. For instance, a(3)=6. - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
Hankel transform is A006125(n+1)=2^C(n+1,2). - Paul Barry, Jan 08 2008
Equals binomial transform of A025235: (1, 1, 3, 7, 21, 61, 191, ...). - Gary W. Adamson, Sep 03 2010
Conjecturally, the number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j) <= e(k). [Martinez and Savage, 2.19] - Eric M. Schmidt, Jul 17 2017
Let s denote West's stack-sorting map, and let Av_n(tau_1, ..., tau_r) denote the set of permutations of [n] that avoid the patterns tau_1, ..., tau_r. It is conjectured that a(n) = |s^{-1}(Av_{n+1}(132, 231))| = |s^{-1}(Av_{n+1}(132, 312))| = |s^{-1}(Av_{n+1}(231, 312))|. Only the last of these equalities is known. - Colin Defant, Sep 16 2018

Examples

			a(3) = 20 = sum of top row terms in M^3 = (9 + 7 + 3 + 1).
		

Crossrefs

A036774(n) = a(n-1) * n! / 2^(n-1).
Row sums of A071943.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1 - 2*x - Sqrt(1 - 4*x - 4*x^2))/(4*x^2))); // Vincenzo Librandi, Jan 21 2020
  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-4*x-4*x^2])/(4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 24 2013 *)
    a[n_] := 2^n Hypergeometric2F1[(1-n)/2, -n/2, 2, 2];
    Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2021 *)
  • PARI
    a(n)=if(n<0,0,n++; polcoeff(serreverse(x/(1+2*x+2*x^2)+x*O(x^n)),n))
    
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( 2/(1 -2*x +sqrt(1 -4*x -4*x^2 +x*O(x^n))), n))}
    
  • PARI
    {a(n)= local(A); if(n<0, 0, A= x*O(x^n); n!*simplify(polcoeff( exp(2*x +A)* besseli(1, 2*x* quadgen(8) +A), n)))} /* Michael Somos, Mar 31 2007 */
    
  • Sage
    def A071356_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*(b + c)
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A071356_list(25)  # Peter Luschny, Nov 01 2012
    

Formula

G.f. A(x) satisfies 2x^2*A(x)^2+(2x-1)*A(x)+1=0 and A(x)=1/(1-2x-2x^2/A(x)). - Michael Somos, Sep 06 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)C(k)2^(n-2k)*2^k. - Paul Barry, May 18 2005
G.f.: (1 - 2*x - sqrt(1 - 4*x - 4*x^2) )/(4*x^2) = 2/(1 - 2*x +sqrt(1 - 4*x - 4*x^2)).
Moment representation is a(n) = (1/(4*Pi))*int(x^n*sqrt(4-4x-x^2), x, -2*sqrt(2)-2, 2*sqrt(2)-2). - Paul Barry, Jan 08 2008
G.f.: 1/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/.... (continued fraction). - Paul Barry, Dec 06 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
2, 2, 2, 1, 1, 0, ...
2, 2, 2, 2, 1, 1, ...
2, 2, 2, 2, 2, 1, ... (End)
E.g.f.: a(n) = n!* [x^n] exp(2*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) +2*(-2*n-1)*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 02 2012 (Formula verified and used for computations. - Fung Lam, Feb 24 2014)
a(n) ~ 2^(n - 1/4) * (1+sqrt(2))^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 24 2013, simplified Jan 26 2019
a(n) = A179190(n+2)/4. - R. J. Mathar, Jan 20 2020
a(n) = 2^n * hypergeom((1 - n)/2, -n/2, 2, 2). - Peter Luschny, May 30 2021
a(n) = (-2*î)^(n+2) * (Legendre_P(n+2, i) - Legendre_P(n, i))/(4*(2*n + 3)). - Peter Bala, May 06 2024
From Emanuele Munarini, Jun 13 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*2^(n-k)/(k+1).
a(n) = Sum_{k=0..floor((n+2)/3)} binomial(n-2k+2, 2k)*Catalan(n-2k+1).
a(n) = Sum_{k=0..floor((n+2)/4)} binomial(n-2k+1, 2k+1)*Catalan(n-2k). (End)

A052893 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.

Original entry on oeis.org

1, 1, 3, 10, 37, 144, 589, 2483, 10746, 47420, 212668, 966324, 4439540, 20587286, 96237484, 453012296, 2145478716, 10215922013, 48877938369, 234862013473, 1132902329028, 5483947191651, 26630419098206, 129696204701807, 633339363924611, 3100369991303297
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of free pure symmetric multifunctions with n + 1 unlabeled leaves. A free pure symmetric multifunction f in PSM is either (case 1) f = the leaf symbol "o", or (case 2) f = an expression of the form h[g_1, ..., g_k] where k > 0, h is in PSM, each of the g_i for i = 1, ..., k is in PSM, and for i < j we have g_i <= g_j under a canonical total ordering of PSM, such as the Mathematica ordering of expressions. - Gus Wiseman, Aug 02 2018

Examples

			From _Gus Wiseman_, Aug 02 2018: (Start)
The a(3) = 10 free pure symmetric multifunctions with 4 unlabeled leaves:
  o[o[o[o]]]
  o[o[o][o]]
  o[o][o[o]]
  o[o[o]][o]
  o[o][o][o]
  o[o[o,o]]
  o[o,o[o]]
  o[o][o,o]
  o[o,o][o]
  o[o,o,o]
(End)
		

Crossrefs

Programs

  • Maple
    spec := [S, {C = Set(B,1 <= card), B=Prod(Z,S), S=Sequence(C)}, unlabeled]:
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    a[n_]:=a[n]=If[n==1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k]}],{k,1,n-1}]];
    Array[a,30] (* Gus Wiseman, Aug 02 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=1, n, v=Vec(1/(1-x*Ser(EulerT(v))))); v} \\ Andrew Howroyd, Aug 09 2020

Formula

G.f.: 1/(1 - g(x)) where g(x) is the g.f. of A052891. - Andrew Howroyd, Aug 09 2020

Extensions

More terms from Gus Wiseman, Aug 02 2018

A107841 Series reversion of x*(1-3*x)/(1-x).

Original entry on oeis.org

1, 2, 10, 62, 430, 3194, 24850, 199910, 1649350, 13879538, 118669210, 1027945934, 9002083870, 79568077034, 708911026210, 6359857112438, 57403123415350, 520895417047010, 4749381474135850, 43489017531266654, 399755692955359630, 3687437532852484442, 34121911117572911410
Offset: 0

Views

Author

Paul Barry, May 24 2005

Keywords

Comments

In general, the series reversion of x(1-r*x)/(1-x) has g.f. (1+x-sqrt(1+2*(1-2*r)*x+x^2))/(2*r) and general term given by a(n)=(1/(n+1))sum{k=0..n, C(n+1,k)C(2n-k,n)(-1)^k*r^(n-k)}; a(n)=(1/(n+1))sum{k=0..n, C(n+1,k+1)C(n+k,k)(-1)^(n-k)*r^k}; a(n)=sum{k=0..n, (1/(k+1))*C(n,k)C(n+k,k)(-1)^(n-k)*r^k}; a(n)=sum{k=0..n, A088617(n,k)*(-1)^(n-k)*r^k}.
The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 29 2007
Number of Dyck n-paths with three colors of up (U,a,b) and one color of down (D) avoiding UD. - David Scambler, Jun 24 2013
This sequence is implied in the turbulence solutions of the incompressible Navier-Stokes equations in R^3. a(n) = numbers of realizable vorticity eddies in terms of initial conditions. - Fung Lam, Dec 31 2013
Conjugate sequence to this series is defined by series reversion of x(1+3*x)/(1+x), G.f.: ((x-1)-sqrt(1-10*x+ x^2))/(6*x). Conjugate sequence is the negation of this series except a(0). - Fung Lam, Jan 16 2014
Complete Chebyshev transform is G.f. = 3*F((1-x^2)/(1+x^2)), where F(x) is the g.f. of A107841. Real part of G.f. (= (1 - sqrt(3*x^4-2))/((1+x^2))) generates periodic sequence A056594. In general, for reversion of x*(1-r*x)/(1-x), r>=2, Real part of r*F((1-x^2)/(1+x^2)) (= (1 - sqrt(r*x^4 - r + 1))/(1+x^2)) generates A056594. - Fung Lam, Apr 29 2014
a(n) is the number of small Schröder n-paths with 2 types of up steps (i.e., lattice paths from (0,0) to (2n,0) using steps U1=U2=(1,1), F=(2,0), D=(1,-1), with no F steps on the x-axis). - Yu Hin Au, Dec 07 2019

Crossrefs

Cf. A001003 (r=2), this sequence (r=3), A131763 (r=4), A131765 (r=5), A131846 (r=6), A131926 (r=7), A131869 (r=8), A131927 (r=9).

Programs

  • Maple
    seq(simplify((-1)^n*hypergeom([-n, n + 1], [2], 3)), n=0..10); # Georg Fischer, Sep 14 2024 (from Peter Luschny's formula in A131763, with last parameter r=3)
  • Mathematica
    CoefficientList[Series[(1+x-Sqrt[1-10*x+x^2])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec(serreverse(x*(1-3*x)/(1-x))) \\ Joerg Arndt, May 15 2013

Formula

G.f.: (1+x-sqrt(1-10x+x^2))/(6x).
a(n) = (1/(n+1))sum{k=0..n, C(n+1, k)C(2n-k, n)(-1)^k*3^(n-k)}.
a(n) = (1/(n+1))sum{k=0..n, C(n+1, k+1)C(n+k, k)(-1)^(n-k)*3^k}.
a(n) = sum{k=0..n, (1/(k+1))*C(n, k)C(n+k, k)(-1)^(n-k)*3^k}.
a(n) = sum{k=0..n, A088617(n, k)*(-1)^(n-k)*3^k}.
a(n) = Sum_{k>=0} A086810(n, k)*2^k. - Philippe Deléham, May 26 2005
a(n) = (2/3)*A103210(n) for n>0. - Philippe Deléham, Oct 29 2007
G.f.: 1/(1-2x/(1-3x/(1-2x/(1-3x/(1-2x/(1-3x/(1-2x/(1-3x........ (continued fraction). - Paul Barry, Dec 15 2008
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1-2x/(1-x-2x/(1-x-2x/(1-x-2x/(1-x-2x/(1-... (continued fraction).
G.f.: 1/(1-2x-6x^2/(1-5x-6x^2/(1-5x-6x^2/(1-5x-6x^2/(1-... (continued fraction). (End)
G.f.: 1/(1+x-3x/(1+x-3x/(1+x-3x/(1+x-3x/(1+x-3x/(1+... (continued fraction). - Paul Barry, Mar 18 2011
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n+1) is the coefficient of x^(n+1) in 2*sum{j,1,n}((sum{k,1,n}a(k)x^k)^(j+1)), a(1)=1 with offset by 1. - Fung Lam, Dec 31 2013
The series reversion of x*(1 - r*x)/(1 - x) is D-finite with the general recurrence n*a(n) - (2*r-1)*(2*n-3)*a(n-1) + (n-3)*a(n-2) = 0 and with initial values a(1) = 1, a(2) = r-1, a(3) = (2*r-1)*(r-1). This sequence uses r=3, cf. crossrefs. - Georg Fischer, Sep 14 2024
Previous Showing 41-50 of 248 results. Next