cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 310 results. Next

A001108 a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0

Views

Author

Keywords

Comments

b(0)=0, c(0)=1, b(i+1)=b(i)+c(i), c(i+1)=b(i+1)+b(i); then a(i) (the number in the sequence) is 2b(i)^2 if i is even, c(i)^2 if i is odd and b(n)=A000129(n) and c(n)=A001333(n). - Darin Stephenson (stephenson(AT)cs.hope.edu) and Alan Koch
For n > 1 gives solutions to A007913(2x) = A007913(x+1). - Benoit Cloitre, Apr 07 2002
If (X,X+1,Z) is a Pythagorean triple, then Z-X-1 and Z+X are in the sequence.
For n >= 2, a(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is A001109. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - Asher Auel, Jan 12 2006
This is the r=8 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Also, 1^3 + 2^3 + 3^3 + ... + a(n)^3 = k(n)^4 where k(n) is A001109. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 18 2006
If T_x = y^2 is a triangular number which is also a square, the least number which is both triangular and square and greater than T_x is T_(3*x + 4*y + 1) = (2*x + 3*y + 1)^2 (W. Sierpiński 1961). - Richard Choulet, Apr 28 2009
If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or (a+1) is a perfect square. If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or a/8 is a perfect square. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c, then a+b = c-d and ((d+b)^2, d^2-b^2) is a solution, too. If (a,b), (c,d) and (e,f) are three consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c < e, then (8*d^2, d*(f-b)) is a solution, too. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with p < r, then r = 3p + 4q + 1 and s = 2p + 3q + 1. - Mohamed Bouhamida, Sep 02 2009
Also numbers k such that (ceiling(sqrt(k*(k+1)/2)))^2 - k*(k+1)/2 = 0. - Ctibor O. Zizka, Nov 10 2009
From Lekraj Beedassy, Mar 04 2011: (Start)
Let x=a(n) be the index of the associated triangular number T_x=1+2+3+...+x and y=A001109(n) be the base of the associated perfect square S_y=y^2. Now using the identity S_y = T_y + T_{y-1}, the defining T_x = S_y may be rewritten as T_y = T_x - T_{y-1}, or 1+2+3+...+y = y+(y+1)+...+x. This solves the Strand Magazine House Number problem mentioned in A001109 in references from Poo-Sung Park and John C. Butcher. In a variant of the problem, solving the equation 1+3+5+...+(2*x+1) = (2*x+1)+(2*x+3)+...+(2*y-1) implies S_(x+1) = S_y - S_x, i.e., with (x,x+1,y) forming a Pythagorean triple, the solutions are given by pairs of x=A001652(n), y=A001653(n). (End)
If P = 8*n +- 1 is a prime, then P divides a((P-1)/2); e.g., 7 divides a(3) and 41 divides a(20). Also, if P = 8*n +- 3 is prime, then 4*P divides (a((P-1)/2) + a((P+1)/2) + 3). - Kenneth J Ramsey, Mar 05 2012
Starting at a(2), a(n) gives all the dimensions of Euclidean k-space in which the ratio of outer to inner Soddy hyperspheres' radii for k+1 identical kissing hyperspheres is rational. The formula for this ratio is (1+3k+2*sqrt(2k*(k+1)))/(k-1) where k is the dimension. So for a(3) = 49, the ratio is 6 in the 49th dimension. See comment for A010502. - Frank M Jackson, Feb 09 2013
Conjecture: For n>1 a(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
For n=2*k, k>0, a(n) is divisible by 8 (deficient), so since all proper divisors of deficient numbers are deficient, then a(n) is deficient. For n=2*k+1, k>0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. sigma(a(5)) = 1723 < 3362 = 2*a(5). In either case, a(n) is deficient. - Muniru A Asiru, Apr 14 2016
The squares of NSW numbers (A008843) interleaved with twice squares from A084703, where A008843(n) = A002315(n)^2 and A084703(n) = A001542(n)^2. Conjecture: Also numbers n such that sigma(n) = A000203(n) and sigma(n-th triangular number) = A074285(n) are both odd numbers. - Jaroslav Krizek, Aug 05 2016
For n > 0, numbers for which the number of odd divisors of both n and of n + 1 is odd. - Gionata Neri, Apr 30 2018
a(n) will be solutions to some (A000217(k) + A000217(k+1))/2. - Art Baker, Jul 16 2019
For n >= 2, a(n) is the base for which A058331(A001109(n)) is a length-3 repunit. Example: for n=2, A001109(2)=6 and A058331(6)=73 and 73 in base a(2)=8 is 111. See Grantham and Graves. - Michel Marcus, Sep 11 2020

Examples

			a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
  • M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
  • W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.

Crossrefs

Partial sums of A002315. A000129, A005319.
a(n) = A115598(n), n > 0. - Hermann Stamm-Wilbrandt, Jul 27 2014

Programs

  • Haskell
    a001108 n = a001108_list !! n
    a001108_list = 0 : 1 : map (+ 2)
       (zipWith (-) (map (* 6) (tail a001108_list)) a001108_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Maple
    A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
  • Mathematica
    Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
    Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
    LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    a(n)=(real((3+quadgen(32))^n)-1)/2
    
  • PARI
    a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
    
  • PARI
    a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
    

Formula

a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)). - Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ). - Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n) - A001652(k)*A001652(k+n) - A046090(k)*A046090(k+n). - Charlie Marion, Jul 01 2003
a(n) = A001652(n-1) + A001653(n-1) = A001653(n) - A046090(n) = (A001541(n)-1)/2 = a(-n). - Michael Somos, Mar 03 2004
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r-1)*binomial(2n, 2r). - Lekraj Beedassy, Aug 21 2004
If n > 1, then both A000203(n) and A000203(n+1) are odd numbers: n is either a square or twice a square. - Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)-1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n). - Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1-x)*(1-6*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n - 2)/4. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2) - (n mod 2) = A001333(n)^2 - 1 + (n mod 2). - Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1. - David Scheers, Dec 25 2006
A028982(a(n)) + 1 = A028982(a(n) + 1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n). - Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(n-m-1) + A002315(m)*A046090(n-m-1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(m-n) - A002315(m)*A001652(m-n) + a(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n-2), n > 0. - Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3-parameter family of linear divisibility sequences found by Williams and Guy.
a(2*n+1) = A002315(n)^2 = Sum_{k = 0..4*n + 1} Pell(n), where Pell(n) = A000129(n).
a(2*n) = (1/2)*A005319(n)^2 = 8*A001109(n)^2.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, -3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)
E.g.f.: exp(x)*(exp(2*x)*cosh(2*sqrt(2)*x) - 1)/2. - Stefano Spezia, Oct 25 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004

A036537 Numbers whose number of divisors is a power of 2.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Keywords

Comments

Primes and A030513(d(x)=4) are subsets; d(16k+4) and d(16k+12) have the form 3Q, so x=16k+4 or 16k-4 numbers are missing.
A number m is a term if and only if all its divisors are infinitary, or A000005(m) = A037445(m). - Vladimir Shevelev, Feb 23 2017
All exponents in the prime number factorization of a(n) have the form 2^k-1, k >= 1. So it is an S-exponential sequence (see Shevelev link) with S={2^k-1}. Using Theorem 1, we obtain that a(n) ~ C*n, where C = Product((1-1/p)*(1 + Sum_{i>=1} 1/p^(2^i-1))). - Vladimir Shevelev Feb 27 2017
This constant is C = 0.687827... . - Peter J. C. Moses, Feb 27 2017
From Peter Munn, Jun 18 2022: (Start)
1 and numbers j*m^2, j squarefree, m >= 1, such that all prime divisors of m divide j, and m is in the sequence.
Equivalently, the nonempty set of numbers whose squarefree part (A007913) and squarefree kernel (A007947) are equal, and whose square part's square root (A000188) is in the set.
(End)

Examples

			383, 384, 385, 386 have 2, 16, 8, 4 divisors, respectively, so they are consecutive terms of this sequence.
		

Crossrefs

A005117, A030513, A058891, A175496, A336591 are subsequences.
Complement of A162643; subsequence of A002035. - Reinhard Zumkeller, Jul 08 2009
Subsequence of A162644, A337533.
The closure of the squarefree numbers under application of A355038(.) and lcm.

Programs

  • Haskell
    a036537 n = a036537_list !! (n-1)
    a036537_list = filter ((== 1) . a209229 . a000005) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    bi[ x_ ] := 1-Sign[ N[ Log[ 2, x ], 5 ]-Floor[ N[ Log[ 2, x ], 5 ] ] ]; ld[ x_ ] := Length[ Divisors[ x ] ]; Flatten[ Position[ Table[ bi[ ld[ x ] ], {x, 1, m} ], 1 ] ]
    Select[Range[110],IntegerQ[Log[2,DivisorSigma[0,#]]]&] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    is(n)=n=numdiv(n);n>>valuation(n,2)==1 \\ Charles R Greathouse IV, Mar 27 2013
    
  • PARI
    isok(m) = issquarefree(m) || (omega(m) == omega(core(m)) && isok(core(m,1)[2])); \\ Peter Munn, Jun 18 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A036537_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda m:not((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1)))
    A036537_list = list(islice(A036537_gen(),30)) # Chai Wah Wu, Jan 04 2023

Formula

A209229(A000005(a(n))) = 1. - Reinhard Zumkeller, Nov 15 2012
a(n) << n. - Charles R Greathouse IV, Feb 25 2017
m is in the sequence iff for k >= 0, A352780(m, k+1) | A352780(m, k)^2. - Peter Munn, Jun 18 2022

A028983 Numbers whose sum of divisors is even.

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82
Offset: 1

Views

Author

Keywords

Comments

The even terms of this sequence are the even terms appearing in A178910. [Edited by M. F. Hasler, Oct 02 2014]
A071324(a(n)) is even. - Reinhard Zumkeller, Jul 03 2008
Sigma(a(n)) = A000203(a(n)) = A152678(n). - Jaroslav Krizek, Oct 06 2009
A083207 is a subsequence. - Reinhard Zumkeller, Jul 19 2010
Numbers k such that the number of odd divisors of k (A001227) is even. - Omar E. Pol, Apr 04 2016
Numbers k such that the sum of odd divisors of k (A000593) is even. - Omar E. Pol, Jul 05 2016
Numbers with a squarefree part greater than 2. - Peter Munn, Apr 26 2020
Equivalently, numbers whose odd part is nonsquare. Compare with the numbers whose square part is even (i.e., nonodd): these are the positive multiples of 4, A008586\{0}, and A225546 provides a self-inverse bijection between the two sets. - Peter Munn, Jul 19 2020
Also numbers whose reversed prime indices have alternating product > 1, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). Also Heinz numbers of the partitions counted by A347448. - Gus Wiseman, Oct 29 2021
Numbers whose number of middle divisors is not odd (cf. A067742). - Omar E. Pol, Aug 02 2022

Crossrefs

The complement is A028982 = A000290 U A001105.
Subsequences: A083207, A091067, A145204\{0}, A225838, A225858.
Cf. A334748 (a permutation).
Related to A008586 via A225546.
Ranks the partitions counted by A347448, complement A119620.

Programs

  • Mathematica
    Select[Range[82],EvenQ[DivisorSigma[1,#]]&] (* Jayanta Basu, Jun 05 2013 *)
  • PARI
    is(n)=!issquare(n)&&!issquare(n/2) \\ Charles R Greathouse IV, Jan 11 2013
    
  • Python
    from math import isqrt
    def A028983(n):
        def f(x): return n-1+isqrt(x)+isqrt(x>>1)
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 22 2024

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 11 2013
a(n) = n + (1 + sqrt(2)/2)*sqrt(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A007913(a(n)) > 2. - Peter Munn, May 05 2020

A000469 1 together with products of 2 or more distinct primes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
Offset: 1

Views

Author

Dan Bentley (dtb(AT)research.att.com)

Keywords

Comments

Nonprime squarefree numbers.
Except for 1, composite n such that the squarefree part of n is greater than phi(n). - Benoit Cloitre, Apr 06 2002

Crossrefs

Cf. A005117, A007913, A000010, A010051, A239508, A239509, A120944 (composite squarefree numbers, same sequence apart from the first term).

Programs

  • Haskell
    a000469 n = a000469_list !! (n-1)
    a000469_list = filter ((== 0) . a010051) a005117_list
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015
  • Mathematica
    lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst,n]]], {n,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *)
    With[{upto=200},Complement[Select[Range[upto],SquareFreeQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *)
    Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)
  • PARI
    for(n=0,64, if(isprime(n), n+1, if(issquarefree(n),print(n))))
    
  • PARI
    for(n=1,160,if(core(n)*(1-isprime(n))>eulerphi(n),print1(n,",")))
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A000469(n):
        def f(x): return n+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

n such that A007913(n)>A000010(n). - Benoit Cloitre, Apr 06 2002
N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007
A005171(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012
n such that A001221(n) = A001222(n), n nonprime. - Carlos Eduardo Olivieri, Aug 06 2015
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A019554 Smallest number whose square is divisible by n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 8, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 18, 55, 28, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69, 70, 71, 12, 73, 74, 15, 38, 77
Offset: 1

Views

Author

R. Muller

Keywords

Comments

A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), and b*c = A019554(n) = "outer square root" of n.
Instead of the terms "inner square root" and "outer square root", we may use the terms "lower square root" and "upper square root", respectively. Upper k-th roots have been studied by Broughan (2002, 2003, 2006). - Petros Hadjicostas, Sep 15 2019
The number of times each number k appears in this sequence is A034444(k). The first time k appears is at position A102631(k). - N. J. A. Sloane, Jul 28 2021

Crossrefs

Cf. A000188 (inner square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Haskell
    a019554 n = product $ zipWith (^)
                (a027748_row n) (map ((`div` 2) . (+ 1)) $ a124010_row n)
    -- Reinhard Zumkeller, Apr 13 2013
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A019554(n): return n//prod(p**(q//2) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
  • Maple
    with(numtheory):A019554 := proc(n) local i: RETURN(op(mul(i,i=map(x->x[1]^ceil(x[2]/2),ifactors(n)[2])))); end;
  • Mathematica
    Flatten[Table[Select[Range[n],Divisible[#^2,n]&,1],{n,100}]] (* Harvey P. Dale, Oct 17 2011 *)
    f[p_, e_] := p^Ceiling[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n)=n/core(n,1)[2] \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

Replace any square factors in n by their square roots.
Multiplicative with a(p^e) = p^ceiling(e/2).
Dirichlet series:
Sum_{n>=1} a(n)/n^s = zeta(2*s-1)*zeta(s-1)/zeta(2*s-2), (Re(s) > 2);
Sum_{n>=1} (1/a(n))/n^s = zeta(2*s+1)*zeta(s+1)/zeta(2*s+2), (Re(s) > 0).
a(n) = n/A000188(n).
a(n) = denominator of n/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = Product_{k=1..A001221(n)} A027748(n,k)^ceiling(A124010(n,k)/2). - Reinhard Zumkeller, Apr 13 2013
Sum_{k=1..n} a(k) ~ 3*zeta(3)*n^2 / Pi^2. - Vaclav Kotesovec, Sep 18 2020
Sum_{k=1..n} 1/a(k) ~ 3*log(n)^2/(2*Pi^2) + (9*gamma/Pi^2 - 36*zeta'(2)/Pi^4)*log(n) + 6*gamma^2/Pi^2 - 108*gamma*zeta'(2)/Pi^4 + 432*zeta'(2)^2/Pi^6 - 36*zeta''(2)/Pi^4 - 15*sg1/Pi^2, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jul 27 2021
a(n) = sqrt(n*A007913(n)). - Jianing Song, May 08 2022
a(n) = sqrt(A053143(n)). - Amiram Eldar, Sep 02 2023
From Mia Boudreau, Jul 17 2025: (Start)
a(n^2) = n.
a(A005117(n)) = A005117(n).
a(A133466(n)) = A133466(n)/2.
a(A195085(n)) = A195085(n)/3. (End)

A086971 Number of semiprime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 22 2003

Keywords

Comments

Inverse Moebius transform of A064911. - Jonathan Vos Post, Dec 08 2004

References

  • G. H. Hardy and E. M. Wright, Section 17.10 in An Introduction to the Theory of Numbers, 5th ed., Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Haskell
    a086971 = sum . map a064911 . a027750_row
    -- Reinhard Zumkeller, Dec 14 2012
  • Maple
    a:= proc(n) local l, m; l:=ifactors(n)[2]; m:=nops(l);
           m*(m-1)/2 +add(`if`(i[2]>1, 1, 0), i=l)
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; Array[f, 105] (* Zak Seidov, Mar 31 2011 and modified by Robert G. Wilson v, Dec 08 2012 *)
    a[n_] := Count[e = FactorInteger[n][[;; , 2]], ?(# > 1 &)] + (o = Length[e])*(o - 1)/2; Array[a, 100] (* _Amiram Eldar, Jun 30 2022 *)
  • PARI
    /* The following definitions of a(n) are equivalent. */
    a(n) = sumdiv(n,d,bigomega(d)==2)
    a(n) = f=factor(n); j=matsize(f)[1]; sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = f=factor(n); j=omega(n); sum(m=1,j,f[m,2]>=2) + binomial(j,2)
    a(n) = omega(n/core(n)) + binomial(omega(n),2)
    /* Rick L. Shepherd, Mar 06 2006 */
    

Formula

a(n) = A106404(n) + A106405(n). - Reinhard Zumkeller, May 02 2005
a(n) = omega(n/core(n)) + binomial(omega(n),2) = A001221(n/A007913(n)) + binomial(A001221(n),2) = A056170(n) + A079275(n). - Rick L. Shepherd, Mar 06 2006
From Reinhard Zumkeller, Dec 14 2012: (Start)
a(n) = Sum_{k=1..A000005(n)} A064911(A027750(n,k)).
a(A220264(n)) = n and a(m) <> n for m < A220264(n); a(A008578(n)) = 0; a(A002808(n)) > 0; for n > 1: a(A102466(n)) <= 1 and a(A102467(n)) > 1; A066247(n) = A057427(a(n)). (End)
G.f.: Sum_{k = p*q, p prime, q prime} x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 25 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 28 2006

A055229 Greatest common divisor of largest square dividing n and squarefree part of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, Jun 21 2000

Keywords

Comments

Record values occur at cubes of squarefree numbers: a(A062838(n)) = A005117(n) and a(m) < A005117(n) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010

Crossrefs

Programs

  • Haskell
    a055229 n = product $ zipWith (^) ps (map (flip mod 2) es) where
       (ps, es) = unzip $
                  filter ((> 1) . snd) $ zip (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Oct 27 2015
  • Mathematica
    a[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]}& /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    a(n)=my(c=core(n));gcd(c,n/c) \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = gcd[A008833(n), A007913(n)].
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p for odd e>1. - Vladeta Jovovic, Apr 30 2002
A220218(a(n)) = 1; A060476(a(n)) > 1 for n > 1. - Reinhard Zumkeller, Nov 30 2015
a(n) = core(n)*rad(n/core(n))/rad(n), where core = A007913 and rad = A007947. - Conjecture by Velin Yanev, proof by David J. Seal, Sep 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 + p^2 + p - 1)/(p^2 * (p + 1))) = 1.2249749939341923764... . - Amiram Eldar, Oct 08 2022

A162642 Number of odd exponents in the canonical prime factorization of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

a(n) is also known as the squarefree rank of n. - Jason Kimberley, Jul 08 2017
The number of primes that are infinitary divisors of n. - Amiram Eldar, Oct 01 2023

Crossrefs

Programs

Formula

a(n) = A001221(n) - A162641(n).
a(n) = A001221(A007913(n)). - Jason Kimberley, Jan 06 2016
a(A000290(n)) = 0, n > 0. - Michel Marcus, Jan 08 2016
G.f.: Sum_{i>=1} Sum_{j>=1} (-1)^j x^(prime(i)^j)/(x^(prime(i)^j) - 1). - Robert Israel, Jan 15 2016
From Antti Karttunen, Nov 28 2017: (Start)
Additive with a(p^e) = A000035(e).
a(n) = A056169(n) + A295662(n).
A056169(n) <= a(n) <= A056169(n) + A295659(n).
a(n) <= A295664(n).
(End)
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = gamma + Sum_{p prime} (log(1-1/p) + 1/(p+1)) = A077761 - A179119 = -0.0687327134... and gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021

A248663 Binary encoding of the prime factors of the squarefree part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19
Offset: 1

Views

Author

Peter Kagey, Jan 11 2015

Keywords

Comments

The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)

Examples

			a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From _Peter Munn_, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
                     |<-----    encoded polynomials    ----->|
  n  A007913(n) a(n) |         N[x]    GF(2)[x,y]    GF(2)[x]|
                     |Cf.:  A206284       A329329     A048720|
--------------------------------------------------------------
  24                            x+3         x+y+1
          6                     x+1           x+1
                  3                                       x+1
--------------------------------------------------------------
  36                           2x+2          xy+y
          1                       0             0
                  0                                         0
--------------------------------------------------------------
  60                        x^2+x+2       x^2+x+y
         15                   x^2+x         x^2+x
                  6                                     x^2+x
--------------------------------------------------------------
  90                       x^2+2x+1      x^2+xy+1
         10                   x^2+1         x^2+1
                  5                                     x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
		

Crossrefs

A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.

Programs

  • Haskell
    import Data.Bits (xor)
    a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
    -- Peter Kagey, Sep 16 2016
    
  • Maple
    f:= proc(n)
    local F,f;
    F:= select(t -> t[2]::odd, ifactors(n)[2]);
    add(2^(numtheory:-pi(f[1])-1), f = F)
    end proc:
    seq(f(i),i=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1),factor(core(n))[,1])); \\ Antti Karttunen, Feb 15 2021
    
  • Python
    from sympy import factorint, primepi
    from sympy.ntheory.factor_ import core
    def a048675(n):
        f=factorint(n)
        return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
    def a(n): return a048675(core(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017
  • Ruby
    require 'prime'
    def f(n)
      a = 0
      reverse_primes = Prime.each(n).to_a.reverse
      reverse_primes.each do |prime|
        a <<= 1
        while n % prime == 0
          n /= prime
          a ^= 1
        end
      end
      a
    end
    (Scheme, with memoizing-macro definec)
    (definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
    ;; Alternatively:
    (definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
    ;; Antti Karttunen, Dec 11 2015
    

Formula

a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)

Extensions

New name from Peter Munn, Nov 01 2023
Previous Showing 51-60 of 310 results. Next