cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 71 results. Next

A036040 Irregular triangle of multinomial coefficients, read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1, 1, 9, 36, 84, 126, 36, 252
Offset: 1

Views

Author

Keywords

Comments

This is different from A080575 and A178867.
T(n,m) = count of set partitions of n with block lengths given by the m-th partition of n.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (See, e.g., Coffey (2006) and program below.)
The complete Bell polynomial of the first n primes gives A007446. (End)
From Tom Copeland, Apr 29 2011: (Start)
A relation between partition polynomials formed from these "refined" Stirling numbers of the second kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
For simple diagrams of the relation between connected graphs, cumulants, and A036040, see the references on statistical physics below. In some sense, these graphs are duals of the umbral bouquets presented in "Lagrange a la Lah". (End)
These M3 (Abramowitz-Stegun) partition polynomials are the complete Bell polynomials (see a comment above) with recurrence (see the Wikipedia link) B_0 = 1, B_n = Sum_{k=0..n-1} binomial(n-1,k) * B_{n-1-k}*x[k+1], n >= 1. - Wolfdieter Lang, Aug 31 2016
With the indeterminates (x_1, x_2, x_3,...) = (t, -c_2*t, -c_3*t, ...) with c_n > 0, umbrally B(n,a.) = B(n,t)|{t^n = a_n} = 0 and B(j,a.)B(k,a.) = B(j,t)B(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A134685. - Tom Copeland, Feb 09 2018
For applications to functionals in quantum field theory, see Figueroa et al., Brouder, Kreimer and Yeats, and Balduf. In the last two papers, the Bell polynomials with the indeterminates (x_1, x_2, x_3,...) = (c_1, 2!c_2, 3!c_3, ...) are equivalent to the partition polynomials of A130561 in the indeterminates c_n. - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced below. (End)
From Tom Copeland, Jun 12 2021: (Start)
These Bell polynomials and their relations to the Faa di Bruno Hopf bialgebra, correlation functions in quantum field theory, and the moment-cumulant duality are given on pp. 134 -144 of Zeidler.
An interpretation of the coefficients of the polynomials is given in expositions of the exponential formula, or principle, in Cameron et al., Duchamp, Duchamp et al., Labelle and Leroux, and Scott and Sokal along with some history. The simplest applications of this principle are given in A060540. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  3,  6,  1;
  1,  5, 10, 10, 15, 10,  1;
  1,  6, 15, 10, 15, 60, 15, 20, 45, 15, 1;
  ...
The first partition of 3 (i.e., (3)) induces the set {{1, 2, 3}}, so T(3, 1) = 1; the second one (i.e., (2, 1)) the sets {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}, so T(3, 2) = 3; and the third one (i.e., (1, 1, 1)) the set {{1}, {2}, {3}}, so T(3, 1) = 1. - _Lorenzo Sauras Altuzarra_, Jun 20 2022
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_3".
  • C. Itzykson and J. Drouffe, Statistical Field Theory Vol. 2, Cambridge Univ. Press, 1989, page 412.
  • S. Ma, Statistical Mechanics, World Scientific, 1985, page 205.
  • E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics, Springer, 2009.

Crossrefs

See A080575 for another version.
Row sums are the Bell numbers A000110.
Cf. A000040, A007446, A178866 and A178867 (version 3).
Cf. A127671.
Cf. A060540 for the coefficients of the compositions e^{ x^m/m! }.

Programs

  • Maple
    with(combinat): nmax:=8: for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n,m):= n!/(mul((t!)^q(t)*q(t)!,t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jun 21 2010, Jul 12 2016
  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[temp=Map[Reverse, Sort@ (Sort/@ IntegerPartitions[w]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs/@ temp)!, {1}], {w, 6}]
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin
    M := matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1] := -1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]: end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix (x,n))): end_proc:
    for i from 1 to 10 do print(i, completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    A036040_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))} \\ Row n of the sequence is made of the coefficients of the monomials ordered by increasing total order (sum of powers) and then lexicographically. - M. F. Hasler, Nov 16 2013, updated Jul 12 2014
    
  • Sage
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036040_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [multinomial(p)//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036040_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

E.g.f.: A(t) = exp(Sum_{k>=1} x[k]*(t^k)/k!).
T(n,m) is the coefficient of ((t^n)/n!)* x[1]^e(m,1)*x[2]^e(m,2)*...*x[n]^e(m,n) in A(t). Here the m-th partition of n, counted in Abramowitz-Stegun(A-St) order, is [1^e(m,1), 2^e(m,2), ..., n^e(m,n)] with e(m,j) >= 0 and if e(m, j)=0 then j^0 is not recorded.
a(n, m) = n!/Product_{j=1..n} j!^e(m,j)*e(m,j)!, with [1^e(m,1), 2^e(m,2), ..., n^e(m, n)] the m-th partition of n in the mentioned A-St order.
With the notation in the Lang reference, x(1) treated as a variable and D the derivative w.r.t. x(1), a raising operator for the polynomial S(n,x(1)) = P3_n(x[1], ..., x[n]) is R = Sum_{n>=0} x(n+1) D^n / n! ; i.e., R S(n, x(1)) = S(n+1, x(1)). The lowering operator is D; i.e., D S(n, x(1)) = n S(n-1, x(1)). The sequence of polynomials is an Appell sequence, so [S(.,x(1)) + y]^n = S(n, x(1) + y). For x(j) = (-1)^(j-1)* (j-1)! for j > 1, S(n, x(1)) = [x(1) - 1]^n + n [x(1) - 1]^(n-1). - Tom Copeland, Aug 01 2008
Raising and lowering operators are given for the partition polynomials formed from A036040 in the link in "Lagrange a la Lah Part I" on page 22. - Tom Copeland, Sep 18 2011
The n-th row is generated by the determinant of [Sum_{k=0..n-1} (x_(k+1)*(dP_n)^k/k!) - S_n], where dP_n is the n X n submatrix of A132440 and S_n is the n X n submatrix of A129185. The coefficients are flagged by the partitions of n represented by the monomials in the indeterminates x_k. Letting all x_n = t, generates the Bell / Touchard / exponential polynomials of A008277. - Tom Copeland, May 03 2014
The partition polynomials of A036039 are obtained by substituting (n-1)! x[n] for x[n] in the partition polynomials of this entry. - Tom Copeland, Nov 17 2015
-(n-1)! F(n, B(1, x[1]), B(2, x[1], x[2])/2!, ..., B(n, x[1], ..., x[n])/n!) = x[n] extracts the indeterminates of the complete Bell partition polynomials B(n, x[1], ..., x[n]) of this entry, where F(n, x[1], ..., x[n]) are the Faber polynomials of A263916. (Compare with A263634.) - Tom Copeland, Nov 29 2015; Sep 09 2016
T(n, m) = A127671(n, m)/A264753(n, m), n >= 1 and 1 <= m <= A000041(n). - Johannes W. Meijer, Jul 12 2016
From Tom Copeland, Sep 07 2016: (Start)
From the connections among the elementary Schur polynomials and the partition polynomials of A130561, A036039 and this array, the partition polynomials of this array satisfy (d/d(x_m)) P(n, x_1, ..., x_n) = binomial(n,m) * P(n-m, x_1, ..., x_(n-m)) with P(k, x_1, ..., x_n) = 0 for k < 0.
Just as in the discussion and example in A130561, the umbral compositional inverse sequence is given by the sequence P(n, x_1, -x_2, -x_3, ..., -x_n).
(End)
The partition polynomials with an index shift can be generated by (v(x) + d/dx)^n v(x). Cf. Guha, p. 12. - Tom Copeland, Jul 19 2018

Extensions

More terms from David W. Wilson
Additional comments from Wouter Meeussen, Mar 23 2003

A001818 Squares of double factorials: (1*3*5*...*(2n-1))^2 = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 9, 225, 11025, 893025, 108056025, 18261468225, 4108830350625, 1187451971330625, 428670161650355625, 189043541287806830625, 100004033341249813400625, 62502520838281133375390625, 45564337691106946230659765625, 38319607998220941779984862890625
Offset: 0

Views

Author

Keywords

Comments

Number of permutations in S_{2n} in which all cycles have even length (cf. A087137).
Also number of permutations in S_{2n} in which all cycles have odd length. - Vladeta Jovovic, Aug 10 2007
a(n) is the sum over all multinomials M2(2*n,k), k from {1..p(2*n)} restricted to partitions with only even parts. p(2*n)= A000041(2*n) (partition numbers) and for the M2-multinomial numbers in A-St order see A036039(2*n,k). - Wolfdieter Lang, Aug 07 2007
From Zhi-Wei Sun, Jun 26 2022: (Start)
Conjecture 1: For any primitive 2n-th root zeta of unity, the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} coincides with a(n) = ((2n-1)!!)^2, where m(j,k) is (1+zeta^(j-k))/(1-zeta^(j-k)) if j is not equal to k, and 1 otherwise.
The determinant of [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n-1)!!)^2/(2n-1) by Han Wang and Zhi-Wei Sun in 2022.
Conjecture 2: Let p be an odd prime. Then the permanent of (p-1) X (p-1) matrix [f(j,k)]_{j,k=1..p-1} is congruent to a((p-1)/2) = ((p-2)!!)^2 modulo p^2, where f(j,k) is (j+k)/(j-k) if j is not equal to k, and f(j,k) = 1 otherwise. (End)

Examples

			Multinomial representation for a(2): partitions of 2*2=4 with even parts only: (4) with position k=1, (2^2) with k=3; M2(4,1)= 6 and M2(4,3)= 3, adding up to a(2)=9.
G.f. = 1 + x + 9*x^2 + 225*x^3 + 11025*x^4 + 893025*x^5 + 108056025*x^6 + ...
		

References

  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.34(c).

Crossrefs

Bisection of A012248.
Right-hand column 1 in triangle A008956.

Programs

  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((2*n-1))^2: n in [0..20] ]; // Vincenzo Librandi, Jul 21 2017
  • Maple
    a := proc(m) local k; 4^m*mul((-1)^k*(k-m-1/2),k=1..2*m) end; # Peter Luschny, Jun 01 2009
  • Mathematica
    FoldList[Times,1,Range[1,25,2]]^2 (* or *) Join[{1},(Range[1,29,2]!!)^2] (* Harvey P. Dale, Jun 06 2011, Apr 10 2012 *)
    Table[((2 n - 1)!!)^2, {n, 0, 30}] (* Vincenzo Librandi, Jul 21 2017 *)
  • PARI
    a(n)=((2*n)!/(n!*2^n))^2
    
  • PARI
    {a(n) = if( n<0, 1 / a(-n), sqr((2*n)! / (n! * 2^n)))}; /* Michael Somos, Jan 06 2017 */
    

Formula

a(n) = A001147(n)^2.
a(n) = A111595(2*n, 0).
a(n) = (2*n-1)!*Sum_{k=0..n-1} binomial(2*k,k)/4^k, n >= 1. - Wolfdieter Lang, Aug 23 2005
arcsinh(x) = Sum_{n>=1} (-1)^(n-1)*a(n)*x^(2*n-1)/(2*n-1)!. - James R. Buddenhagen, Mar 24 2009
From Karol A. Penson, Oct 21 2009: (Start)
G.f.: Sum_{n>=0} a(n)*x^n/(n!)^2 = 2*EllipticK(2*sqrt(x))/Pi.
Asymptotically: a(n) = (2/((exp(-1/2))^2*(exp(1/2))^2)-1/(6*(exp(-1/2))^2*(exp(1/2))^2*n)+1/(144*(exp(-1/2))^2*(exp(1/2))^2*n^2)+O(1/n^3))*(2^n)^2/(((1/n)^n)^2*(exp(n))^2), n->infinity.
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = Integral_{x>=0} x^n*BesselK(0,sqrt(x))/(Pi*sqrt(x)).
This solution is unique.
(End)
D-finite with recurrence: a(0) = 1, a(n) = (2*n-1)^2*a(n-1), n > 0.
a(n) ~ 2*2^(2*n)*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/sqrt(1-x^2) = Sum_{n >= 0} a(n)*x^(2*n)/(2*n)!. Also arcsin(x) = Sum_{n >= 0} a(n)*x^(2*n+1)/(2*n+1)!. - Michael Somos, Jul 03 2002
(-1)^n*a(n) is the coefficient of x^0 in prod(k=1, 2*n, x+2*k-2*n-1). - Benoit Cloitre and Michael Somos, Nov 22 2002
-arccos(x) + Pi/2 = x + x^3/3! + 9*x^5/5! + 225*x^7/7! + 11205*x^9/9! + ... - Tom Copeland, Oct 23 2008
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (4*k^2+4*k+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(V(i+1,j), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices. - Mircea Merca, Apr 04 2013
a(n) = (1+x^2)^(n+1/2) * (d/dx)^(2*n) (1+x^2)^(n-1/2). See Tao link. - Robert Israel, Jun 04 2015
a(n) = 4^n * gamma(n + 1/2)^2 / Pi. - Daniel Suteu, Jan 06 2017
0 = a(n)*(+384*a(n+2) - 60*a(n+3) + a(n+4)) + a(n+1)*(-36*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) and a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 06 2017
From Robert FERREOL, Jul 30 2020: (Start)
a(n) = ((2*n)!/4^n)*binomial(2*n,n).
a(n) = (2*n-1)!*Sum_{k=0..n-1} a(k)/(2*k)!, n >= 1.
a(n) = A184877(2*n-1) for n>=1. (End)
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + L_0(1)*Pi/2, where L is the modified Struve function (see A197037).
Sum_{n>=0} (-1)^n/a(n) = 1 - H_0(1)*Pi/2, where H is the Struve function. (End)

Extensions

Incorrect formula deleted by N. J. A. Sloane, Jul 03 2009

A025192 a(0)=1; a(n) = 2*3^(n-1) for n >= 1.

Original entry on oeis.org

1, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0

Views

Author

Keywords

Comments

Warning: there is considerable overlap between this entry and the essentially identical A008776.
Shifts one place left when plus-convolved (PLUSCONV) with itself. a(n) = 2*Sum_{i=0..n-1} a(i). - Antti Karttunen, May 15 2001
Let M = { 0, 1, ..., 2^n-1 } be the set of all n-bit numbers. Consider two operations on this set: "sum modulo 2^n" (+) and "bitwise exclusive or" (XOR). The results of these operations are correlated.
To give a numerical measure, consider the equations over M: u = x + y, v = x XOR y and ask for how many pairs (u,v) is there a solution? The answer is exactly a(n) = 2*3^(n-1) for n >= 1. The fraction a(n)/4^n of such pairs vanishes as n goes to infinity. - Max Alekseyev, Feb 26 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+2, s(0) = 3, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
Number of compositions of n into parts of two kinds. For a string of n objects, before the first, choose first kind or second kind; before each subsequent object, choose continue, first kind, or second kind. For example, compositions of 3 are 3; 2,1; 1,2; and 1,1,1. Using parts of two kinds, these produce respectively 2, 4, 4 and 8 compositions, 2+4+4+8 = 18. - Franklin T. Adams-Watters, Aug 18 2006
In the compositions the kinds of parts are ordered inside a run of identical parts, see example. Replacing "ordered" by "unordered" gives A052945. - Joerg Arndt, Apr 28 2013
Number of permutations of {1, 2, ..., n+1} such that no term is more than 2 larger than its predecessor. For example, a(3) = 18 because all permutations of {1, 2, 3, 4} are valid except 1423, 1432, 2143, 3142, 2314, 3214, in which 1 is followed by 4. Proof: removing (n + 1) gives a still-valid sequence. For n >= 2, can insert (n + 1) either at the beginning or immediately following n or immediately following (n - 1), but nowhere else. Thus the number of such permutations triples when we increase the sequence length by 1. - Joel B. Lewis, Nov 14 2006
Antidiagonal sums of square array A081277. - Philippe Deléham, Dec 04 2006
Equals row sums of triangle A160760. - Gary W. Adamson, May 25 2009
Let M = a triangle with (1, 2, 4, 8, ...) as the left border and all other columns = (0, 1, 2, 4, 8, ...). A025192 = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n with no 3-element antichain. ("Uniform" used in the sense of Retakh, Serconek and Wilson. By "graded" we mean that all maximal chains have the same length n.) - David Nacin, Feb 13 2012
Equals partial sums of A003946 prefaced with a 1: (1, 1, 4, 12, 36, 108, ...). - Gary W. Adamson, Feb 15 2012
Number of vertices (or sides) of the (n-1)-th iteration of a Gosper island. - Arkadiusz Wesolowski, Feb 07 2013
Row sums of triangle in A035002. - Jon Perry, May 30 2013
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop, 1-loop, 2-loop, 2-loop, 3-loop, 3-loop, ...). - David Neil McGrath, Jan 01 2015
From Tom Copeland, Dec 03 2015: (Start)
For n > 0, a(n) are the traces of the even powers of the adjacency matrix M of the simple Lie algebra B_3, tr(M^(2n)) where M = Matrix(row 1; row 2; row 3) = Matrix[0,1,0; 1,0,2; 0,1,0], same as the traces of Matrix[0,2,0; 1,0,1; 0,1,0] (cf. Damianou). The traces of the odd powers vanish.
The characteristic polynomial of M equals determinant(x*I - M) = x^3 - 3x = A127672(3,x), so 1 - 3*x^2 = det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n), implying Sum_{n>=1} a(n+1) x^(2n) / (2n) = -log(1 - 3*x^2), giving a logarithmic generating function for the aerated sequence, excluding a(0) and a(1).
a(n+1) = tr(M^(2n)), where tr(M^n) = 3^(n/2) + (-1)^n * 3^(n/2) = 2^n*(cos(Pi/6)^n + cos(5*Pi/6)^n) = n-th power sum of the eigenvalues of M = n-th power sum of the zeros of the characteristic polynomial.
The relation det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n) = Sum_{n>=0} P_n(-tr(M), -tr(M^2), ..., -tr(M^n)) x^n/n! = exp(P.(-tr(M), -tr(M^2), ...)x), where P_n(x(1), ..., x(n)) are the partition polynomials of A036039 implies that with x(2n) = -tr(M^(2n)) = -a(n+1) for n > 0 and x(n) = 0 otherwise, the partition polynomials evaluate to zero except for P_2(x(1), x(2)) = P_2(0,-6) = -6.
Because of the inverse relation between the partition polynomials of A036039 and the Faber polynomials F_k(b1,b2,...,bk) of A263916, F_k(0,-3,0,0,...) = tr(M^k) gives aerated a(n), excluding n=0,1. E.g., F_2(0,-3) = -2(-3) = 6, F_4(0,-3,0,0) = 2 (-3)^2 = 18, and F_6(0,-3,0,0,0,0) = -2(-3)^3 = 54. (Cf. A265185.)
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is the largest. - Sergey Kitaev, Dec 08 2020
For n > 0, a(n) is the number of 3-colorings of the grid graph P_2 X P_(n-1). More generally, for q > 1, the number of q-colorings of the grid graph P_2 X P_n is given by q*(q - 1)*((q - 1)*(q - 2) + 1)^(n - 1). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the largest solution to the equation phi(x) = a(n-1). - M. Farrokhi D. G., Oct 25 2023
Number of dotted compositions of degree n. - Diego Arcis, Feb 01 2024

Examples

			There are a(3)=18 compositions of 3 into 2 kinds of parts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  2:0  ]
06:  [ 1:0  2:1  ]
07:  [ 1:1  1:0  1:0  ]
08:  [ 1:1  1:0  1:1  ]
09:  [ 1:1  1:1  1:0  ]
10:  [ 1:1  1:1  1:1  ]
11:  [ 1:1  2:0  ]
12:  [ 1:1  2:1  ]
13:  [ 2:0  1:0  ]
14:  [ 2:0  1:1  ]
15:  [ 2:1  1:0  ]
16:  [ 2:1  1:1  ]
17:  [ 3:0  ]
18:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 54*x^4 + 162*x^5 + 486*x^6 + 1458*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

First differences of 3^n (A000244). Other self-convolved sequences: A000108, A007460, A007461, A007462, A007463, A007464, A061922.
Apart from initial term, same as A008776.

Programs

  • Haskell
    a025192 0 = 1
    a025192 n = 2 * 3 ^ (n -1)
    a025192_list = 1 : iterate (* 3) 2  -- Reinhard Zumkeller, Nov 27 2012
  • Maple
    A025192 := proc(n): if n=0 then 1 else 2*3^(n-1) fi: end: seq(A025192(n),n=0..26);
  • Mathematica
    Join[{1},2*3^(Range[30]-1)]  (* Harvey P. Dale, Mar 22 2011 *)
  • PARI
    a(n)=max(1,2*3^(n-1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    Vec((1-x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    [1]+[2*3**(n-1) for n in range(1,30)] # David Nacin, Mar 04 2012
    

Formula

G.f.: (1-x)/(1-3*x).
E.g.f.: (2*exp(3*x) + exp(0))/3. - Paul Barry, Apr 20 2003
a(n) = phi(3^n) = A000010(A000244(n)). - Labos Elemer, Apr 14 2003
a(0) = 1, a(n) = Sum_{k=0..n-1} (a(k) + a(n-k-1)). - Benoit Cloitre, Jun 24 2003
a(n) = A002326((3^n-1)/2). - Vladimir Shevelev, May 26 2008
a(1) = 2, a(n) = 3*a(n-1). - Vincenzo Librandi, Jan 01 2011
a(n) = lcm(a(n-1), Sum_{k=1..n-1} a(k)) for n >= 3. - David W. Wilson, Sep 27 2011
a(n) = ((2*n-1)*a(n-1) + (3*n-6)*a(n-2))/(n-1); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 16 2012
From Sergei N. Gladkovskii, Jul 17 2012: (Start)
For the e.g.f. E(x) = (2/3)*exp(3*x) + exp(0)/3 we have
E(x) = 2*G(0)/3 where G(k) = 1 + k!/(3*(9*x)^k - 3*(9*x)^(2*k+1)/((9*x)^(k+1) + (k+1)!/G(k+1))); (continued fraction, 3rd kind, 3-step).
E(x) = 1+2*x/(G(0)-3*x) where G(k) = 3*x + 1 + k - 3*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). (End)
a(n) = A114283(0,0). - Reinhard Zumkeller, Nov 27 2012
G.f.: 1 + ((1/2)/G(0) - 1)/x where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: 1 + x*W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: 1 / (1 - 2*x / (1 - x)). - Michael Somos, Apr 03 2014
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(2,2,2,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
G.f.: 1 + 2*x/(1 + 2*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 8*x/(1 + 8*x)*( 1 + 11*x/(1 + 11*x)*( 1 + .... - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 7/4. - Bernard Schott, Oct 02 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 5/8.
Product_{n>=1} (1 - 1/a(n)) = A132019. (End)

Extensions

Additional comments from Barry E. Williams, May 27 2000
a(22) corrected by T. D. Noe, Feb 08 2008
Maple programs simplified by Johannes W. Meijer, Jun 02 2011

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334439 for partitions of 9. Namely, this sequence has (4,4,1) before (5,2,2), while A334439 has (5,2,2) before (4,4,1). - Gus Wiseman, May 08 2020
This is also a list of all the possible prime signatures of a number, arranged in graded colexicographic ordering. - N. J. A. Sloane, Feb 09 2014
This is also the Abramowitz-Stegun ordering of reversed partitions (A036036) if the partitions are reversed again after sorting. Partitions sorted first by sum and then colexicographically are A211992. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
{{1}}
{{2}, {1, 1}}
{{3}, {2, 1}, {1, 1, 1}}
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)
  (2)        (2,2,1)      (7)
  (1,1)      (2,1,1,1)    (6,1)
  (3)        (1,1,1,1,1)  (5,2)
  (2,1)      (6)          (4,3)
  (1,1,1)    (5,1)        (5,1,1)
  (4)        (4,2)        (4,2,1)
  (3,1)      (3,3)        (3,3,1)
  (2,2)      (4,1,1)      (3,2,2)
  (2,1,1)    (3,2,1)      (4,1,1,1)
  (1,1,1,1)  (2,2,2)      (3,2,1,1)
  (5)        (3,1,1,1)    (2,2,2,1)
  (4,1)      (2,2,1,1)    (3,1,1,1,1)
(End)
		

Crossrefs

See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
See also A036038, A036039, A036040: (multinomial coefficients).
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)

Extensions

Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020

A126120 Catalan numbers (A000108) interpolated with 0's.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 06 2007

Keywords

Comments

Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019

Examples

			G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From _Gus Wiseman_, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
  o  .  (oo)  .  ((oo)o)  .  (((oo)o)o)  .  ((((oo)o)o)o)
                 (o(oo))     ((o(oo))o)     (((o(oo))o)o)
                             ((oo)(oo))     (((oo)(oo))o)
                             (o((oo)o))     (((oo)o)(oo))
                             (o(o(oo)))     ((o((oo)o))o)
                                            ((o(o(oo)))o)
                                            ((o(oo))(oo))
                                            ((oo)((oo)o))
                                            ((oo)(o(oo)))
                                            (o(((oo)o)o))
                                            (o((o(oo))o))
                                            (o((oo)(oo)))
                                            (o(o((oo)o)))
                                            (o(o(o(oo))))
(End)
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.

Crossrefs

Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.

Programs

  • Magma
    &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
    
  • Maple
    with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # Zerinvary Lajos, Apr 25 2007
    BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
    BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
    seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # Peter Luschny, Jan 31 2015
    # Using function CompInv from A357588.
    CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
    bot[n_]:=If[n==1,{{}},Join@@Table[Tuples[bot/@c],{c,Table[{k,n-k-1},{k,n-1}]}]];
    Table[Length[bot[n]],{n,10}] (* Gus Wiseman, Nov 14 2022 *)
    Riffle[CatalanNumber[Range[0,50]],0,{2,-1,2}] (* Harvey P. Dale, May 28 2024 *)
  • Python
    from math import comb
    def A126120(n): return 0 if n&1 else comb(n,m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    def A126120_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append(abs(D[1]))
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A126120_list(46) # Peter Luschny, Jun 03 2012
    

Formula

a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x))/(2*Pi) dx. - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

An erroneous comment removed by Tom Copeland, Jul 23 2016

A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 3628800
Offset: 0

Views

Author

Paul Barry, May 13 2004

Keywords

Comments

Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - N. J. A. Sloane, Mar 31 2016
Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - Paul Barry, Mar 27 2007
From Tom Copeland, Nov 01 2007: (Start)
T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
4) B(x) = (1-xDx)^(-1) A(x), formally
5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
From Peter Bala, Jul 10 2008: (Start)
This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0.....................1...............2.......3......4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
(n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - Gary W. Adamson, May 03 2009
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - Johannes W. Meijer, Oct 07 2009
T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - Dennis P. Walsh, Jan 24 2011
T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - Geoffrey Critzer, Dec 11 2011
T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - Tom Copeland, Dec 03 2013
For interpretations in terms of colored necklaces, see A213936 and A173333. - Tom Copeland, Aug 18 2016
See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016
Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - Andrey Zabolotskiy, Dec 16 2016
The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - Peter Bala, Feb 13 2017
Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] = 1/(I - A132440), where I is the identity matrix. - Tom Copeland, Jul 03 2017
If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - Michael Somos, Sep 19 2021

Examples

			Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ...
For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011
Triangle begins:
     1,
     1,    1,
     2,    2,    1,
     6,    6,    3,    1,
    24,   24,   12,    4,    1,
   120,  120,   60,   20,    5,    1,
   720,  720,  360,  120,   30,    6,    1,
  5040, 5040, 2520,  840,  210,   42,    7,    1
The production matrix is:
      1,     1,
      1,     1,     1,
      2,     2,     1,    1,
      6,     6,     3,    1,    1,
     24,    24,    12,    4,    1,   1,
    120,   120,    60,   20,    5,   1,   1,
    720,   720,   360,  120,   30,   6,   1,   1,
   5040,  5040,  2520,  840,  210,  42,   7,   1,   1,
  40320, 40320, 20160, 6720, 1680, 336,  56,   8,   1,   1
which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's.
Inverse begins:
   1,
  -1,  1,
   0, -2,  1,
   0,  0, -3,  1,
   0,  0,  0, -4,  1,
   0,  0,  0,  0, -5,  1,
   0,  0,  0,  0,  0, -6,  1,
   0,  0,  0,  0,  0,  0, -7,  1
		

Crossrefs

Programs

  • Haskell
    a094587 n k = a094587_tabl !! n !! k
    a094587_row n = a094587_tabl !! n
    a094587_tabl = map fst $ iterate f ([1], 1)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9);  # Johannes W. Meijer, Oct 07 2009, revised Nov 25 2012
    # Alternative: Note that if you leave out 'abs' you get A021009.
    T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: #  Peter Luschny, Dec 30 2021
  • Mathematica
    Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* Geoffrey Critzer, Dec 11 2011 *)
  • Sage
    def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list()
    for n in (0..7): print(A094587_row(n)) # Peter Luschny, Sep 28 2017

Formula

T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - Peter Bala, Jul 10 2008
A094587 = 1 / ((-1)*A129184 * A127648 + I), I = Identity matrix. - Gary W. Adamson, May 03 2009
From Johannes W. Meijer, Oct 07 2009: (Start)
The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - Peter Bala, Oct 28 2011
A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - Tom Copeland, Oct 25 2012
From Peter Bala, Aug 28 2013: (Start)
The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
From Tom Copeland, Apr 21 & 26, and Aug 13 2014: (Start)
T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
From Tom Copeland, Nov 18 2015: (Start)
Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
(End)
The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - Tom Copeland, Aug 17 2016
The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - Tom Copeland, Nov 10 2016
From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - Tom Copeland, Nov 22 2016
From Peter Bala, Feb 18 2017: (Start)
G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) = x^n + n*R(n-1, x), for n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from Peter Bala, Aug 28 2013). - Wolfdieter Lang, Dec 23 2019
T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - Werner Schulte, Jul 26 2022

Extensions

Edited by Johannes W. Meijer, Oct 07 2009
New description from Dennis P. Walsh, Jan 24 2011

A036043 Irregular triangle read by rows: row n (n >= 0) gives number of parts in all partitions of n (in Abramowitz and Stegun order).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 8, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9
Offset: 0

Views

Author

Keywords

Comments

The sequence of row lengths of this array is p(n) = A000041(n) (partition numbers).
The sequence of row sums is A006128(n).
The number of times k appears in row n is A008284(n,k). - Franklin T. Adams-Watters, Jan 12 2006
The next level (row) gets created from each node by adding one or two more nodes. If a single node is added, its value is one more than the value of its parent. If two nodes are added, the first is equal in value to the parent and the value of the second is one more than the value of the parent. See A128628. - Alford Arnold, Mar 27 2007
The 1's in the (flattened) sequence mark the start of a new row, the value that precedes the 1 equals the row number minus one. (I.e., the 1 preceded by a 0 is the start of row 1, the 1 preceded by a 6 is the start of row 7, etc.) - M. F. Hasler, Jun 06 2018
Also the maximum part in the n-th partition in graded lexicographic order (sum/lex, A193073). - Gus Wiseman, May 24 2020

Examples

			0;
1;
1, 2;
1, 2, 3;
1, 2, 2, 3, 4;
1, 2, 2, 3, 3, 4, 5;
1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6;
1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7;
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "m".

Crossrefs

Row lengths are A000041.
Partition lengths of A036036 and A334301.
The version not sorted by length is A049085.
The generalization to compositions is A124736.
The Heinz number of the same partition is A334433.
The number of distinct elements in the same partition is A334440.
The maximum part of the same partition is A334441.
Lexicographically ordered reversed partitions are A026791.
Lexicographically ordered partitions are A193073.

Programs

  • Maple
    with(combinat): nmax:=9: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): for k from 1 to y(n) do B(k) := P(n)[k] od: for k from 1 to y(n) do s:=0: j:=0: while sJohannes W. Meijer, Jun 21 2010, revised Nov 29 2012
    # alternative implementation based on A119441 by R. J. Mathar, Jul 12 2013
    A036043 := proc(n,k)
        local pi;
        pi := ASPrts(n)[k] ;
        nops(pi) ;
    end proc:
    for n from 1 to 10 do
        for k from 1 to A000041(n) do
            printf("%d,",A036043(n,k)) ;
        end do:
        printf("\n") ;
    end do:
  • Mathematica
    Table[Length/@Sort[IntegerPartitions[n]],{n,0,30}] (* Gus Wiseman, May 22 2020 *)
  • PARI
    A036043(n,k)=#partitions(n)[k] \\ M. F. Hasler, Jun 06 2018
    
  • SageMath
    def A036043_row(n):
        return [len(p) for k in (0..n) for p in Partitions(n, length=k)]
    for n in (0..10): print(A036043_row(n)) # Peter Luschny, Nov 02 2019

Formula

a(n) = A001222(A334433(n)). - Gus Wiseman, May 22 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
a(0) inserted by Franklin T. Adams-Watters, Jun 24 2014
Incorrect formula deleted by M. F. Hasler, Jun 06 2018

A001048 a(n) = n! + (n-1)!.

Original entry on oeis.org

2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004
From Jaume Oliver Lafont, Dec 01 2009: (Start)
(1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k).
Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End)
With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - Manfred Boergens, May 20 2024
For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013
In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016
e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019
a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A059171.
Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009
From a(2)=3 onward the second topmost row of arrays A276588 and A276955.
Cf. sequences with formula (n + k)*n! listed in A282466, A334397.

Programs

Formula

a(n) = (n+1)*(n-1)!.
E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004
The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004
a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009
a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009
G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017
a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019
a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021

Extensions

More terms from James Sellers, Sep 19 2000

A145271 Coefficients for expansion of (g(x)d/dx)^n g(x); refined Eulerian numbers for calculating compositional inverse of h(x) = (d/dx)^(-1) 1/g(x); iterated derivatives as infinitesimal generators of flows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 11, 4, 7, 1, 1, 26, 34, 32, 15, 11, 1, 1, 57, 180, 122, 34, 192, 76, 15, 26, 16, 1, 1, 120, 768, 423, 496, 1494, 426, 294, 267, 474, 156, 56, 42, 22, 1, 1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1
Offset: 0

Views

Author

Tom Copeland, Oct 06 2008

Keywords

Comments

For more detail, including connections to Legendre transformations, rooted trees, A139605, A139002 and A074060, see Mathemagical Forests p. 9.
For connections to the h-polynomials associated to the refined f-polynomials of permutohedra see my comments in A008292 and A049019.
From Tom Copeland, Oct 14 2011: (Start)
Given analytic functions F(x) and FI(x) such that F(FI(x))=FI(F(x))=x about 0, i.e., they are compositional inverses of each other, then, with g(x) = 1/dFI(x)/dx, a flow function W(s,x) can be defined with the following relations:
W(s,x) = exp(s g(x)d/dx)x = F(s+FI(x)) ,
W(s,0) = F(s) ,
W(0,x) = x ,
dW(0,x)/ds = g(x) = F'[FI(x)] , implying
dW(0,F(x))/ds = g(F(x)) = F'(x) , and
W(s,W(r,x)) = F(s+FI(F(r+FI(x)))) = F(s+r+FI(x)) = W(s+r,x) . (See MF link below.) (End)
dW(s,x)/ds - g(x)dW(s,x)/dx = 0, so (1,-g(x)) are the components of a vector orthogonal to the gradient of W and, therefore, tangent to the contour of W, at (s,x) . - Tom Copeland, Oct 26 2011
Though A139605 contains A145271, the op. of A145271 contains that of A139605 in the sense that exp(s g(x)d/dx) w(x) = w(F(s+FI(x))) = exp((exp(s g(x)d/dx)x)d/du)w(u) evaluated at u=0. This is reflected in the fact that the forest of rooted trees assoc. to (g(x)d/dx)^n, FOR_n, can be generated by removing the single trunk of the planted rooted trees of FOR_(n+1). - Tom Copeland, Nov 29 2011
Related to formal group laws for elliptic curves (see Hoffman). - Tom Copeland, Feb 24 2012
The functional equation W(s,x) = F(s+FI(x)), or a restriction of it, is sometimes called the Abel equation or Abel's functional equation (see Houzel and Wikipedia) and is related to Schröder's functional equation and Koenigs functions for compositional iterates (Alexander, Goryainov and Kudryavtseva). - Tom Copeland, Apr 04 2012
g(W(s,x)) = F'(s + FI(x)) = dW(s,x)/ds = g(x) dW(s,x)/dx, connecting the operators here to presentations of the Koenigs / Königs function and Loewner / Löwner evolution equations of the Contreras et al. papers. - Tom Copeland, Jun 03 2018
The autonomous differential equation above also appears with a change in variable of the form x = log(u) in the renormalization group equation, or Beta function. See Wikipedia, Zinn-Justin equations 2.10 and 3.11, and Krajewski and Martinetti equation 21. - Tom Copeland, Jul 23 2020
A variant of these partition polynomials appears on p. 83 of Petreolle et al. with the indeterminates e_n there related to those given in the examples below by e_n = n!*(n'). The coefficients are interpreted as enumerating certain types of trees. See also A190015. - Tom Copeland, Oct 03 2022

Examples

			From _Tom Copeland_, Sep 19 2014: (Start)
Let h(x) = log((1+a*x)/(1+b*x))/(a-b); then, g(x) = 1/(dh(x)/dx) = (1+ax)(1+bx), so (0')=1, (1')=a+b, (2')=2ab, evaluated at x=0, and higher order derivatives of g(x) vanish. Therefore, evaluated at x=0,
R^0 g(x) =  1
R^1 g(x) =  a+b
R^2 g(x) = (a+b)^2 + 2ab = a^2 + 4 ab + b^2
R^3 g(x) = (a+b)^3 + 4*(a+b)*2ab = a^3 + 11 a^2*b + 11 ab^2 + b^3
R^4 g(x) = (a+b)^4 + 11*(a+b)^2*2ab + 4*(2ab)^2
         =  a^4 + 26 a^3*b + 66 a^2*b^2 + 26 ab^3 + b^4,
etc., and these bivariate Eulerian polynomials (A008292) are the first few coefficients of h^(-1)(x) = (e^(ax) - e^(bx))/(a*e^(bx) - b*e^(ax)), the inverse of h(x). (End)
Triangle starts:
  1;
  1;
  1,   1;
  1,   4,    1;
  1,  11,    4,    7,    1;
  1,  26,   34,   32,   15,   11,    1;
  1,  57,  180,  122,   34,  192,   76,  15,   26,   16,    1;
  1, 120,  768,  423,  496, 1494,  426, 294,  267,  474,  156,   56,  42,  22,    1;
  1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1;
		

References

  • D. S. Alexander, A History of Complex Dynamics: From Schröder to Fatou to Julia, Friedrich Vieweg & Sohn, 1994.
  • T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC, 2015.

Crossrefs

Cf. (A133437, A086810, A181289) = (LIF, reduced LIF, associated g(x)), where LIF is a Lagrange inversion formula. Similarly for (A134264, A001263, A119900), (A134685, A134991, A019538), (A133932, A111999, A007318).
Second column is A000295, subdiagonal is A000124, row sums are A000142, row lengths are A000041. - Peter Luschny, Jul 21 2016

Programs

  • Maple
    with(LinearAlgebra): with(ListTools):
    A145271_row := proc(n) local b, M, V, U, G, R, T;
    if n < 2 then return 1 fi;
    b := (n,k) -> `if`(k=1 or k>n+1,0,binomial(n-1,k-2)*g[n-k+1]);
    M := n -> Matrix(n, b):
    V := n -> Vector[row]([1, seq(0,i=2..n)]):
    U := n -> VectorMatrixMultiply(V(n), M(n)^(n-1)):
    G := n -> Vector([seq(g[i], i=0..n-1)]);
    R := n -> VectorMatrixMultiply(U(n), G(n)):
    T := Reverse([op(sort(expand(R(n+1))))]);
    seq(subs({seq(g[i]=1, i=0..n)},T[j]),j=1..nops(T)) end:
    for n from 0 to 9 do A145271_row(n) od; # Peter Luschny, Jul 20 2016

Formula

Let R = g(x)d/dx; then
R^0 g(x) = 1 (0')^1
R^1 g(x) = 1 (0')^1 (1')^1
R^2 g(x) = 1 (0')^1 (1')^2 + 1 (0')^2 (2')^1
R^3 g(x) = 1 (0')^1 (1')^3 + 4 (0')^2 (1')^1 (2')^1 + 1 (0')^3 (3')^1
R^4 g(x) = 1 (0')^1 (1')^4 + 11 (0')^2 (1')^2 (2')^1 + 4 (0')^3 (2')^2 + 7 (0')^3 (1')^1 (3')^1 + 1 (0')^4 (4')^1
R^5 g(x) = 1 (0') (1')^5 + 26 (0')^2 (1')^3 (2') + (0')^3 [34 (1') (2')^2 + 32 (1')^2 (3')] + (0')^4 [ 15 (2') (3') + 11 (1') (4')] + (0')^5 (5')
R^6 g(x) = 1 (0') (1')^6 + 57 (0')^2 (1')^4 (2') + (0')^3 [180 (1')^2 (2')^2 + 122 (1')^3 (3')] + (0')^4 [ 34 (2')^3 + 192 (1') (2') (3') + 76 (1')^2 (4')] + (0')^5 [15 (3')^2 + 26 (2') (4') + 16 (1') (5')] + (0')^6 (6')
where (j')^k = ((d/dx)^j g(x))^k. And R^(n-1) g(x) evaluated at x=0 is the n-th Taylor series coefficient of the compositional inverse of h(x) = (d/dx)^(-1) 1/g(x), with the integral from 0 to x.
The partitions are in reverse order to those in Abramowitz and Stegun p. 831. Summing over coefficients with like powers of (0') gives A008292.
Confer A190015 for another way to compute numbers for the array for each partition. - Tom Copeland, Oct 17 2014
Equivalent matrix computation: Multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n g(x) to obtain the matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then R^n g(x) = (1, 0, 0, 0, ...) [VP * S]^n (g_0, g_1, g_2, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. - Tom Copeland, Feb 10 2016 (An evaluation removed by author on Jul 19 2016. Cf. A139605 and A134685.)
Also, R^n g(x) = (1, 0, 0, 0, ...) [VP * S]^(n+1) (0, 1, 0, ...)^T in agreement with A139605. - Tom Copeland, Jul 21 2016
A recursion relation for computing each partition polynomial of this entry from the lower order polynomials and the coefficients of the cycle index polynomials of A036039 is presented in the blog entry "Formal group laws and binomial Sheffer sequences". - Tom Copeland, Feb 06 2018
A formula for computing the polynomials of each row of this matrix is presented as T_{n,1} on p. 196 of the Ihara reference in A139605. - Tom Copeland, Mar 25 2020
Indeterminate substitutions as illustrated in A356145 lead to [E] = [L][P] = [P][E]^(-1)[P] = [P][RT] and [E]^(-1) = [P][L] = [P][E][P] = [RT][P], where [E] contains the refined Eulerian partition polynomials of this entry; [E]^(-1), A356145, the inverse set to [E]; [P], the permutahedra polynomials of A133314; [L], the classic Lagrange inversion polynomials of A134685; and [RT], the reciprocal tangent polynomials of A356144. Since [L]^2 = [P]^2 = [RT]^2 = [I], the substitutional identity, [L] = [E][P] = [P][E]^(-1) = [RT][P], [RT] = [E]^(-1)[P] = [P][L][P] = [P][E], and [P] = [L][E] = [E][RT] = [E]^(-1)[L] = [RT][E]^(-1). - Tom Copeland, Oct 05 2022

Extensions

Title amplified by Tom Copeland, Mar 17 2014
R^5 and R^6 formulas and terms a(19)-a(29) added by Tom Copeland, Jul 11 2016
More terms from Peter Luschny, Jul 20 2016
Previous Showing 11-20 of 71 results. Next