A002896
Number of 2n-step polygons on cubic lattice.
Original entry on oeis.org
1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0
1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..645
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
- Nikolai Beluhov, Powers of 2 in Balanced Grid Colourings, arXiv:2504.21451 [math.CO], 2025.
- C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger, The (Symbolic and Numeric) Computational Challenges of Counting 0-1 Balanced Matrices, arXiv:2410.07435 [math.CO], 2024. See p. 5.
- Li Gan, On the algebraic area of cubic lattice walks, arXiv:2307.08732 [math-ph], 2023.
- S. Hassani, J.-M. Maillard, and N. Zenine, On the diagonals of rational functions: the minimal number of variables (unabridged version), arXiv:2502.05543 [math-ph], 2025. See p. 23.
- W. K. Hayman, A Generalisation of Stirling's Formula, Journal für die reine und angewandte Mathematik, (1956), vol. 196, pp. 67-95.
- John A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
- Heng Huat Chan, Yoshio Tanigawa, Yifan Yang, and Wadim Zudilin, New analogues of Clausen's identities arising from the theory of modular forms, Advances in Mathematics, 228:2 (2011), pp. 1294-1314; doi:10.1016/j.aim.2011.06.011.
- G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
- Nobu C. Shirai and Naoyuki Sakumichi, Universal Negative Energetic Elasticity in Polymer Chains: Crossovers among Random, Self-Avoiding, and Neighbor-Avoiding Walks, arXiv:2408.14992 [cond-mat.soft], 2024. See p. 5.
- Chunwei Song and Bowen Yao, On Combinatorial Rectangles with Minimum oo-Discrepancy, arXiv:1909.05648 [math.CO], 2019. See p. 7 for another interpretation.
- Ralph A. Raimi and Jet Wimp, Review of book "A=B" by M. Petkovsek et al., Mathematical Intelligencer, 23 (No. 4, 2001), pp. 72-77.
-
a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end;
# second Maple program
a:= proc(n) option remember; `if`(n<2, 5*n+1,
(2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
-36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4):
seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
-
Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *)
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
-
a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
-
def A002896():
x, y, n = 1, 6, 1
while True:
yield x
n += 1
x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
a = A002896()
[next(a) for i in range(17)] # Peter Luschny, Oct 09 2013
A002931
Number of self-avoiding polygons of length 2n on square lattice (not allowing rotations).
Original entry on oeis.org
0, 1, 2, 7, 28, 124, 588, 2938, 15268, 81826, 449572, 2521270, 14385376, 83290424, 488384528, 2895432660, 17332874364, 104653427012, 636737003384, 3900770002646, 24045500114388, 149059814328236, 928782423033008, 5814401613289290, 36556766640745936
Offset: 1
At length 8 there are 7 polygons, consisting of the 2, 1, 4 resp. rotations of:
._. .___. .___.
| | | . | | ._|
| | |___| |_|
|_|
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by:
p(1,n) = 0,
p(2,n) = 1 - 2*n + n^2,
p(3,n) = 4 - 6*n + 2*n^2,
p(4,n) = 26 - 28*n + 7*n^2,
p(5,n) = 164 - 140*n + 28*n^2,
p(6,n) = 1046 - 740*n + 124*n^2,
p(7,n) = 6672 - 4056*n + 588*n^2,
p(8,n) = 42790 - 22904*n + 2938*n^2,
p(9,n) = 275888 - 132344*n + 15268*n^2,
...
The quadratic coefficients give a(n), so the first few are 0, 1, 2, 7, 28, 124, .... - _Eric W. Weisstein_, Apr 05 2018
- N. Clisby and I. Jensen: A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice, J. Phys. A: Math. Theor. 45 (2012). Also arXiv:1111.5877, 2011. [Extends sequence to a(65)]
- I. G. Enting: Generating functions for enumerating self-avoiding rings on the square lattice, J. Phys. A: Math. Gen. 13 (1980). pp. 3713-3722. See Table 2.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.
- I. Jensen: A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 36 (2003). [Extends sequence to a(55)]
- I. Jensen and A. J. Guttmann: Self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 32 (1999). Also arXiv:cond-mat/9905291. [Extends sequence to a(45)]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..65 [Formed from tables in several references, the most recent being Clisby-Jensen, 2011/2012]
- Jérôme Bastien, Construction and enumeration of circuits capable of guiding a miniature vehicle, arXiv:1603.08775 [math.CO], 2016. Cites this sequence.
- Nathan Clisby, Lattice enumeration, Slides of talk at Enting fest, CSIRO, Aspendale, 2015; Lattice enumeration [Local copy].
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 364.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-13, 56-57, 142-143, 150-151 from of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989. (Annotated scanned copy)
- A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice, J. Phys. A 21 (1988), L165-L172.
- Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- I. Jensen, A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, Journal of Physics A, Vol. 36 (2003), pp. 5731-5745.
- I. Jensen, More terms
- G. S. Rushbrooke and J. Eve, On Noncrossing Lattice Polygons, Journal of Chemical Physics, 31 (1959), 1333-1334.
- S. G. Whittington and J. P. Valleau, Figure eights on the square lattice: enumeration and Monte Carlo estimation, J. Phys. A 3 (1970), 21-27. See Table 2.
Cf.
A302335 (constant coefficients in p(k,n)).
Cf.
A302336 (linear coefficients in p(k,n)).
A005789
3-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, 7646001090, 145862174640, 2861142656400, 57468093927120, 1178095925505960, 24584089974896430, 521086299271824330, 11198784501894470250, 243661974372798631650, 5360563436201569896300
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Snover, Stephen L.; and Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Joerg Arndt, The a(3)=42 Young tableaux of shape [3,3,3].
- Nicolas Borie, Three-dimensional Catalan numbers and product-coproduct prographs, arXiv:1704.00212 [math.CO], 2017.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- Paul Drube, Maxwell Krueger, Ashley Skalsky, and Meghan Wren, Set-Valued Young Tableaux and Product-Coproduct Prographs, arXiv:1710.02709 [math.CO], 2017.
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - _N. J. A. Sloane_, Jul 07 2012
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Martin Griffiths and Nick Lord, The hook-length formula and generalised Catalan numbers, The Mathematical Gazette Vol. 95, No. 532 (March 2011), pp. 23-30
- Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson, Bipolar orientations on planar maps and SLE_12, arXiv preprint arXiv:1511.04068 [math.PR], 2015. Also The Annals of Probability (2019) Vol. 47, No. 3, 1240-1269.
- Joel Brewster Lewis, Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux, arXiv:0909.4966 [math.CO], 2009-2011. [From _Joel B. Lewis_, Oct 04 2009]
- Joel Brewster Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012. - From _N. J. A. Sloane_, Oct 12 2012
- Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018.
- Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 13.
- Maya Sankar, Further Bijections to Pattern-Avoiding Valid Hook Configurations, arXiv:1910.08895 [math.CO], 2019.
- Stephen Snover, Letter to N. J. A. Sloane, May 1991
- Robert A. Sulanke, Three-dimensional Narayana and Schröder numbers, Theoretical Computer Science, Volume 346, Issues 2-3, 28 November 2005, Pages 455-468.
- Robert A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. (see page 16)
- Stephanie F. Troyer and Stephen L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
- Wolfgang Unger, Combinatorics of Lattice QCD at Strong Coupling, arXiv:1411.4493 [hep-lat], 2014.
- Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235 [cs.CG], 2016 and Discr. Comp. Geom. 58 (2017) 505-525.
- Sherry H. F. Yan, On Wilf equivalence for alternating permutations, Elect. J. Combinat.; 20 (2013), #P58.
-
[2*Factorial(3*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2)): n in [0..20]]; // Vincenzo Librandi, Oct 14 2017
-
a:= n-> (3*n)! *mul(i!/(n+i)!, i=0..2):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 23 2012
-
Needs["Combinatorica`"]
Table[ NumberOfTableaux@ {n, n, n}, {n, 0, 17}] (* Robert G. Wilson v, Nov 15 2006 *)
Table[2*(3*n)!/(n!*(n+1)!*(n+2)!),{n,0,20}] (* Vaclav Kotesovec, Nov 13 2014 *)
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
-
a(n) = 2*(3*n)!/(n!*(n+1)!*(n+2)!); \\ Altug Alkan, Mar 14 2018
A005572
Number of walks on cubic lattice starting and finishing on the xy plane and never going below it.
Original entry on oeis.org
1, 4, 17, 76, 354, 1704, 8421, 42508, 218318, 1137400, 5996938, 31940792, 171605956, 928931280, 5061593709, 27739833228, 152809506582, 845646470616, 4699126915422, 26209721959656, 146681521121244, 823429928805936
Offset: 0
a(3) = 76 = sum of top row terms of M^3; i.e., (37 + 29 + 9 + 1).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Rodrigo De Castro, Andrés Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. See also Sci. Annals Comp. Sci. (2014) Vol. XXIV, Issue 1, 137-171. See p. 157.
- Y. Cha, Closed form solutions of difference equations, (2011) PhD Thesis, Florida State University, example 5.1.2.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- Rigoberto Flórez, Leandro Junes and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- P.-Y. Huang, S.-C. Liu and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 153
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- N. J. A. Sloane, Transforms
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
Binomial transform of
A002212. Sequence shifted right twice is
A025228.
-
a := n -> simplify(2^n*hypergeom([3/2, -n], [3], -2)):
seq(a(n), n=0..21); # Peter Luschny, Feb 03 2015
a := n -> simplify(GegenbauerC(n, -n-1, -2))/(n+1):
seq(a(n), n=0..21); # Peter Luschny, May 09 2016
-
RecurrenceTable[{a[0]==1,a[1]==4,a[n]==((2n+1)a[n-1]-3(n-1)a[n-2]) 4/(n+2)}, a[n],{n,30}] (* Harvey P. Dale, Oct 04 2011 *)
a[n_]:=If[n==0,1,Coefficient[(1+4x+x^2)^(n+1),x^n]/(n+1)]
Table[a[n],{n,0,40}] (* Emanuele Munarini, Apr 06 2012 *)
-
a(n):=coeff(expand((1+4*x+x^2)^(n+1)),x^n)/(n+1); makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 06 2012 */
-
a(n)=polcoeff((1-4*x-sqrt(1-8*x+12*x^2+x^3*O(x^n)))/2,n+2)
-
{ A005572(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * 4^(n-2*k) / (k+1) ) } /* Max Alekseyev, Feb 02 2015 */
-
{a(n)=sum(k=0,n, binomial(n,k) * 2^(n-k) * binomial(2*k+2, k)/(k+1) )}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 02 2015
-
def A005572(n):
A108198 = lambda n,k: (-1)^k*catalan_number(k+1)*rising_factorial(-n,k)/factorial(k)
return sum(A108198(n,k)*2^(n-k) for k in (0..n))
[A005572(n) for n in range(22)] # Peter Luschny, Feb 05 2015
A026736
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and k=(n-2)/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 6, 11, 10, 5, 1, 1, 7, 22, 21, 15, 6, 1, 1, 8, 29, 43, 36, 21, 7, 1, 1, 9, 37, 94, 79, 57, 28, 8, 1, 1, 10, 46, 131, 173, 136, 85, 36, 9, 1, 1, 11, 56, 177, 398, 309, 221, 121, 45, 10, 1, 1, 12, 67, 233, 575, 707, 530, 342, 166, 55, 11, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 6, 4, 1;
1, 6, 11, 10, 5, 1;
1, 7, 22, 21, 15, 6, 1;
1, 8, 29, 43, 36, 21, 7, 1;
1, 9, 37, 94, 79, 57, 28, 8, 1;
1, 10, 46, 131, 173, 136, 85, 36, 9, 1;
1, 11, 56, 177, 398, 309, 221, 121, 45, 10, 1;
1, 12, 67, 233, 575, 707, 530, 342, 166, 55, 11, 1;
...
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
-
T[, 0] = T[n, n_] = 1; T[n_, k_] := T[n, k] = If[EvenQ[n] && k == (n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2018 *)
-
T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
-
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 16 2019
A005700
a(n) = C(n)*C(n+2) - C(n+1)^2 where C() are the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, 37975756, 403127256, 4415203280, 49671036900, 571947380775, 6721316278650, 80419959684900, 977737404590100, 12058761323277900, 150656212896017400, 1904342169333848400, 24328661192286773400, 313839729380499376860
Offset: 0
Example: a(2)=3 counts EWEW, EEWW, ENSW.
G.f. = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 594*x^5 + 4719*x^6 + 40898*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, From Kreweras to Gessel: A walk through patterns in the quarter plane, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.
- Jonathan Bloom and Sergi Elizalde, Pattern avoidance in matchings and partitions, arXiv preprint arXiv:1211.3442 [math.CO], 2012. See Table 1.
- N. Bonichon, A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths, Discr. Math., 298 (2005), 104-114.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020. See Section 2.
- W. Y. C. Cheng, E. Y. P. Deng, R. R. X. Du, R. P. Stanley and C. H. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
- C. P. Davis-Stober, A bijection between a set of lexicographic semiorders and pairs of non-crossing Dyck paths, Journal of Mathematical Psychology, 54, 471-474.
- Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique, PhD Dissertation, Université Bordeaux I, 1983. (Annotated scanned copy of pages III.42-III.45)
- Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011. See Theorem 8.4.
- E. Fusy, D. Poulalhon, and G. Schaeffer, Bijective counting of plane bipolar orientations and Schnyder words, Eur. J. Combinat. 30 (2009) 1646-1658, eq (2).
- Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, and Michael D. Weiner, From Dyck paths to standard Young tableaux, arXiv:1708.00513 [math.CO], 2017.
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer 1986.
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
- D. Gouyou-Beauchamps. Standard Young tableaux of height 4 and 5, European J. Combin. 10 (1989) 69 - 82.
- Nicholas M. Katz, A Note on Random Matrix Integrals, Moment Identities, and Catalan Numbers, preprint, 2015; Mathemtika, Volume 62, Issue 3 2016 , pp. 811-817.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Alec Mihailovs, Enumeration of walks on lattices, arXiv:math/9803128 (1998).
- Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
- Maya Sankar, Further Bijections to Pattern-Avoiding Valid Hook Configurations, arXiv:1910.08895 [math.CO], 2019.
- Robert Scherer, Topics in Number Theory and Combinatorics, Ph. D. Dissertation, Univ. of California Davis (2021).
- Index entries for sequences related to Young tableaux.
A column of the triangle in
A179898. A diagonal of the triangle in
A185249.
-
p_tensor(2*n,[0,1],B2)|[0,0]
-
p_tensor(2*n,[1,0],C2)|[0,0]
-
[6*Factorial(2*n)*Factorial(2*n+2)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+3)): n in [0..25]]; // Vincenzo Librandi, Aug 04 2011
-
CoefficientList[ Series[ HypergeometricPFQ[ {1, 1/2, 3/2}, {3, 4}, 16 x], {x, 0, 19}], x]
a[ n_] := If[ n < 1, Boole[n == 0], Det[ Table[ Binomial[i + 1, j - i + 2], {i, n}, {j, n}]]]; (* Michael Somos, Feb 25 2014 *) (* slight modification of David Callan formula *)
a[ n_] := 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!); (* Michael Somos, Oct 02 2014 *)
-
a(n)=6*binomial(2*n+2,n)*(2*n)!/(n+1)!/(n+3)! \\ Charles R Greathouse IV, Aug 04 2011
-
{a(n) = if( n<0, if( n<-2, 0, [-3/2, -1/4][-n]), 6 * (2*n)! * (2*n+2)! / (n! * (n+1)! * (n+2)! * (n+3)!))}; /* Michael Somos, Oct 02 2014 */
A002898
Number of n-step closed paths on hexagonal lattice.
Original entry on oeis.org
1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640, 1588356, 8676360, 47977776, 266378112, 1488801600, 8355739392, 47104393050, 266482019232, 1512589408044, 8610448069080, 49144928795820, 281164160225520, 1612061452900080, 9261029179733760, 53299490722049520
Offset: 0
O.g.f.: 1 + 6*x^2 + 12*x^3 + 90*x^4 + 360*x^5 + 2040*x^6 + ...
O.g.f.: 1 + 6*x^2*(1+2*x) + 90*x^4*(1+2*x)^2 + 1680*x^6*(1+2*x)^3 + 34650*x^8*(1+2*x)^4 + ... + A006480(n)*x^(2*n)*(1+2*x)^n + .... - _Paul D. Hanna_, Feb 26 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001 (>6 Mb).
- Volker Braun, Philip Candelas, and Xenia de la Ossa, Two One-Parameter Special Geometries, arXiv preprint arXiv:1512.08367 [hep-th], 2015.
- Gunther Cornelissen, David Hokken, and Berend Ringeling, The asymptotic Mahler measure of Gaussian periods, arXiv:2507.09303 [math.NT], 2025. See p. 40.
- Cyril Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
- Davidson Noby Joseph and Igor Boettcher, Walking on Archimedean Lattices: Insights from Bloch Band Theory, arXiv:2507.12662 [cond-mat.stat-mech], 2025. See p. 18.
- Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, Solution to 1995 Putnam problem A-6, Am. Math. Monthly, 1996, p. 674.
- Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavík, Iceland DMTCS proc. AO, 2011, 599-610.
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
- Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Grzegorz Siudem and Agata Fronczak, Bell polynomials in the series expansions of the Ising model, arXiv:2007.16132 [math-ph], 2020.
-
a:= proc(n) option remember; `if`(n<3, [1, 0, 6][n+1], ((n-1)*
n*a(n-1) +24*(n-1)^2*a(n-2) +36*(n-1)*(n-2)*a(n-3))/n^2)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 08 2020
-
a[n_] := Sum[(-2)^(n-i)*Binomial[i, j]^3*Binomial[n, i], {i, 0, n}, {j, 0, i}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 21 2011, after Vasu Tewari *)
-
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+2*x+x*O(x^n))^m),n)} /* Paul D. Hanna, Feb 26 2012 */
More terms from David Bloom, Mar 1997
A330979
The squares visited on the Ulam Spiral when starting at square 1 and then stepping to the closest unvisited square which contains a prime number. If two or more squares are the same distance from the current square then the one with the smallest prime number is chosen.
Original entry on oeis.org
1, 2, 3, 11, 29, 13, 31, 59, 61, 97, 139, 191, 251, 193, 101, 103, 67, 37, 17, 5, 19, 7, 23, 47, 79, 163, 281, 353, 283, 433, 521, 617, 523, 619, 439, 359, 223, 167, 83, 173, 229, 293, 227, 367, 449, 541, 743, 857, 977, 853
Offset: 1
a(4) = 11 as a(3) = 3, and in the Ulam Spiral 3 has adjacent surrounding neighbors 1,2,4,11,12,13,14,15. 2 is only 1 unit away but has already been visited. The other closest primes are 11 and 13, both of which are sqrt(2) units away, but 11 is chosen as 11 is less than 13.
- Scott R. Shannon, Table of n, a(n) for n = 1..20000
- Scott R. Shannon, Image for the steps from n = 1 to 20000. The starting square a(1) = 1 is shown as a green dot and the square a(20000) = 1449733 is shown as a red dot. The smallest unvisited prime 727 is shown as a yellow dot. The longest step of sqrt(674) from a(7877) is shown as an orange line, and the largest difference between terms of 85126 from a(18627) is shown as a pink line.
- Scott R. Shannon, Image for the steps from n = 1 to 20000 with color. The color of each step is graduated across the spectrum from red to violet to show the relative visit order of the squares.
- Scott R. Shannon, Image for the steps from n = 1 to 10 million with color. The lowest unvisited prime 2701871 is show as a yellow dot on the left edge of an unvisited patch of squares directly above the starting square, which is shown as a larger white square. This is a large image which may take some seconds to load.
- Wikipedia, Ulam Spiral.
a(121) and beyond, and associated images, correct by
Scott R. Shannon, Feb 02 2020
A001334
Number of n-step self-avoiding walks on hexagonal [ =triangular ] lattice.
Original entry on oeis.org
1, 6, 30, 138, 618, 2730, 11946, 51882, 224130, 964134, 4133166, 17668938, 75355206, 320734686, 1362791250, 5781765582, 24497330322, 103673967882, 438296739594, 1851231376374, 7812439620678, 32944292555934, 138825972053046
Offset: 0
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 459.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Jensen, Table of n, a(n) for n = 0..40 (from the Jensen link below)
- Sergio Caracciolo, Anthony J. Guttmann, Iwan Jensen, Andrea Pelissetto, Andrew N. Rogers, Alan D. Sokal, Correction-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks, Journal of Statistical Physics, September 2005, Volume 120, Issue 5, pp. 1037-1100.
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-13, 56-57, 142-143, 150-151 from of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989. (Annotated scanned copy)
- A. J. Guttmann and J. Wang, The extension of self-avoiding random walk series in two dimensions, J. Phys. A 24 (1991), 3107-3109.
- B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, Tables and references for self-avoiding walks counts [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"]
- I. Jensen, Series Expansions for Self-Avoiding Walks
- J. L. Martin, M. F. Sykes and F. T. Hioe, Probability of initial ring closure for self-avoiding walks on the face-centered cubic and triangular lattices, J. Chem. Phys., 46 (1967), 3478-3481.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- D. C. Rapaport, End-to-end distance of linear polymers in two dimensions: a reassessment, J. Phys. A 18 (1985), L201.
- S. Redner, Distribution functions in the interior of polymer chains, J. Phys. A 13 (1980), 3525-3541, doi:10.1088/0305-4470/13/11/023.
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
- Joris van der Hoeven, On asymptotic extrapolation, Journal of symbolic computation, 2009, p. 1010.
-
mo={{2, 0},{-1, 1},{-1, -1},{-2, 0},{1, -1},{1, 1}}; a[0]=1;
a[tg_, p_:{{0, 0}}] := Block[{e, mv = Complement[Last[p]+# & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg-1, Append[p, e]], {e, mv}]]];
a /@ Range[0, 6]
(* Robert FERREOL, Nov 28 2018; after the program of Giovanni Resta in A001411 *)
-
def add(L,x):
M=[y for y in L];M.append(x)
return(M)
plus=lambda L,M : [x+y for x,y in zip(L,M)]
mo=[[2,0],[-1,1],[-1, -1],[-2,0],[1,-1],[1, 1]]
def a(n,P=[[0, 0]]):
if n==0: return(1)
mv1 = [plus(P[-1],x) for x in mo]
mv2=[x for x in mv1 if x not in P]
if n==1: return(len(mv2))
else: return(sum(a(n-1,add(P,x)) for x in mv2))
[a(n) for n in range(11)]
# Robert FERREOL, Dec 11 2018
A054878
Number of closed walks of length n along the edges of a tetrahedron based at a vertex.
Original entry on oeis.org
1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- R. J. Mathar, Counting Walks on Finite Graphs, (Nov 2020), Section 2.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
{a(n)/3} for n>0 is
A015518, non-closed walks.
-
[(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011
-
A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
-
Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *)
CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* Michael De Vlieger, Sep 15 2017 *)
-
a(n) = (3^n + 3*(-1)^n)/4; \\ Altug Alkan, Sep 17 2017
Comments