cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A000254 Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.

Original entry on oeis.org

0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880, 19802759040, 283465647360, 4339163001600, 70734282393600, 1223405590579200, 22376988058521600, 431565146817638400, 8752948036761600000, 186244810780170240000
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of n+1 elements with exactly two cycles.
Number of cycles in all permutations of [n]. Example: a(3) = 11 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) have 11 cycles altogether. - Emeric Deutsch, Aug 12 2004
Row sums of A094310: In the symmetric group S_n, each permutation factors into k independent cycles; a(n) = sum k over S_n. - Harley Flanders (harley(AT)umich.edu), Jun 28 2004
The sum of the top levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, the levels of their last columns being 2 and 1, respectively. - Emeric Deutsch, Aug 12 2006
a(n) is divisible by n for all composite n >= 6. a(2*n) is divisible by 2*n + 1. - Leroy Quet, May 20 2007
For n >= 2 the determinant of the n-1 X n-1 matrix M(i,j) = i + 2 for i = j and 1 otherwise (i,j = 1..n-1). E.g., for n = 3 the determinant of [(3, 1), (1, 4)]. See 53rd Putnam Examination, 1992, Problem B5. - Franz Vrabec, Jan 13 2008, Mar 26 2008
The numerator of the fraction when we sum (without simplification) the terms in the harmonic sequence. (1 + 1/2 = 2/2 + 1/2 = 3/2; 3/2 + 1/3 = 9/6 + 2/6 = 11/6; 11/6 + 1/4 = 44/24 + 6/24 = 50/24;...). The denominator of this fraction is n!*A000142. - Eric Desbiaux, Jan 07 2009
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=1) ~ exp(-x)/x^2*(1 - 3/x + 11/x^2 - 50/x^3 + 274/x^4 - 1764/x^5 + 13068/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the number of permutations of [n+1] containing exactly 2 cycles. Example: a(2) = 3 because the permutations (1)(23), (12)(3), (13)(2) are the only permutations of [3] with exactly 2 cycles. - Tom Woodward (twoodward(AT)macalester.edu), Nov 12 2009
It appears that, with the exception of n= 4, a(n) mod n = 0 if n is composite and = n-1 if n is prime. - Gary Detlefs, Sep 11 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012
Numerator of harmonic number H(n) = Sum_{i=1..n} 1/i when not reduced. See A001008 (Wolstenholme numbers) for the reduced numerators. - Rahul Jha, Feb 18 2015
The Stirling transform of this sequence is A222058(n) (Harmonic-geometric numbers). - Anton Zakharov, Aug 07 2016
a(n) is the (n-1)-st elementary symmetric function of the first n numbers. - Anton Zakharov, Nov 02 2016
The n-th iterated integral of log(x) is x^n * (n! * log(x) - a(n))/(n!)^2 + a polynomial of degree n-1 with arbitrary coefficients. This can be proven using the recurrence relation a(n) = (n-1)! + n*a(n-1). - Mohsen Maesumi, Oct 31 2018
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Aug 08 2019
Total number of left-to-right maxima (or minima) in all permutations of [n]. a(3) = 11 = 3+2+2+2+1+1: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21. - Alois P. Heinz, Aug 01 2020

Examples

			(1-x)^-1 * (-log(1-x)) = x + 3/2*x^2 + 11/6*x^3 + 25/12*x^4 + ...
G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identities 186-190.
  • N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1986, see page 2. MR0863284 (89d:41049)
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation).
  • K. Javorszky, Natural Orders: De Ordinibus Naturalibus, 2016, ISBN 978-3-99057-139-2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a:=[]; for n in [1..22] do a:=a cat [Abs(StirlingFirst(n,2))]; end for; a; // Marius A. Burtea, Jan 01 2020
  • Maple
    A000254 := proc(n) option remember; if n<=1 then n else n*A000254(n-1)+(n-1)!; fi; end: seq(A000254(n),n=0..21);
    a := n -> add(n!/k, k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[ (PolyGamma[ m ]+EulerGamma) (m-1)!, {m, 1, 24} ] (* Wouter Meeussen *)
    Table[ n!*HarmonicNumber[n], {n, 0, 19}] (* Robert G. Wilson v, May 21 2005 *)
    Table[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}],{n,1,30}] (* Alexander Adamchuk, Jul 11 2006 *)
    Abs[StirlingS1[Range[20],2]] (* Harvey P. Dale, Aug 16 2011 *)
    Table[Gamma'[n + 1] /. EulerGamma -> 0, {n, 0, 30}] (* Li Han, Feb 14 2024*)
  • Maxima
    a(n):=(-1)^(n+1)/2*(n+1)*sum(k*bern(k-1)*stirling1(n,k),k,1,n); /* Vladimir Kruchinin, Nov 20 2016 */
    
  • MuPAD
    A000254 := proc(n) begin n*A000254(n-1)+fact(n-1) end_proc: A000254(1) := 1:
    
  • PARI
    {a(n) = if( n<0, 0, (n+1)! / 2 * sum( k=1, n, 1 / k / (n+1-k)))} /* Michael Somos, Feb 05 2004 */
    
  • Sage
    [stirling_number1(i, 2) for i in range(1, 22)]  # Zerinvary Lajos, Jun 27 2008
    

Formula

Let P(n,X) = (X+1)*(X+2)*(X+3)*...*(X+n); then a(n) is the coefficient of X; or a(n) = P'(n,0). - Benoit Cloitre, May 09 2002
Sum_{k > 0} a(k) * x^k/ k!^2 = exp(x) *(Sum_{k>0} (-1)^(k+1) * x^k / (k * k!)). - Michael Somos, Mar 24 2004; corrected by Warren D. Smith, Feb 12 2006
a(n) is the coefficient of x^(n+2) in (-log(1-x))^2, multiplied by (n+2)!/2.
a(n) = n! * Sum_{i=1..n} 1/i = n! * H(n), where H(n) = A001008(n)/A002805(n) is the n-th harmonic number.
a(n) ~ 2^(1/2)*Pi^(1/2)*log(n)*n^(1/2)*e^-n*n^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: log(1 - x) / (x-1). (= (log(1 - x))^2 / 2 if offset 1). - Michael Somos, Feb 05 2004
D-finite with recurrence: a(n) = a(n-1) * (2*n - 1) - a(n-2) * (n - 1)^2, if n > 1. - Michael Somos, Mar 24 2004
a(n) = A081358(n)+A092691(n). - Emeric Deutsch, Aug 12 2004
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n, k)/k. - Vladeta Jovovic, Jan 29 2005
p^2 divides a(p-1) for prime p > 3. a(n) = (Sum_{i=1..n} 1/i) / Product_{i=1..n} 1/i. - Alexander Adamchuk, Jul 11 2006
a(n) = 3* A001710(n) + 2* A001711(n-3) for n > 2; e.g., 11 = 3*3 + 2*1, 50 = 3*12 + 2*7, 274 = 3*60 + 2*47, ... - Gary Detlefs, May 24 2010
a(n) = A138772(n+1) - A159324(n). - Gary Detlefs, Jul 05 2010
a(n) = A121633(n) + A002672(n). - Gary Detlefs, Jul 18 2010
a(n+1) = Sum_{i=1..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 14 2010
From Gary Detlefs, Sep 11 2010: (Start)
a(n) = (a(n-1)*(n^2 - 2*n + 1) + (n + 1)!)/(n - 1) for n > 2.
It appears that, with the exception of n = 2, (a(n+1)^2 - a(n)^2) mod n^2 = 0 if n is composite and 4*n if n is prime.
It appears that, with the exception of n = 2, (a(n+1)^3 - a(n)^2) mod n = 0 if n is composite and n - 2 if n is prime.
It appears that, with the exception of n = 2, (a(n)^2 + a(n+1)^2) mod n = 0 if n is composite and = 2 if n is prime. (End)
a(n) = Integral_{x=0..oo} (x^n - n!)*log(x)*exp(-x) dx. - Groux Roland, Mar 28 2011
a(n) = 3*n!/2 + 2*(n-2)!*Sum_{k=0..n-3} binomial(k+2,2)/(n-2-k) for n >= 2. - Gary Detlefs, Sep 02 2011
a(n)/(n-1)! = ml(n) = n*ml(n-1)/(n-1) + 1 for n > 1, where ml(n) is the average number of random draws from an n-set with replacement until the total set has been observed. G.f. of ml: x*(1 - log(1 - x))/(1 - x)^2. - Paul Weisenhorn, Nov 18 2011
a(n) = det(|S(i+2, j+1)|, 1 <= i,j <= n-2), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
E.g.f.: x/(1 - x)*E(0)/2, where E(k) = 2 + E(k+1)*x*(k + 1)/(k + 2). - Sergei N. Gladkovskii, Jun 01 2013 [Edited by Michael Somos, Nov 28 2013]
0 = a(n) * (a(n+4) - 6*a(n+3) + 7*a(n+2) - a(n+1)) - a(n+1) * (4*a(n+3) - 6*a(n+2) + a(n+1)) + 3*a(n+2)^2 unless n=0. - Michael Somos, Nov 28 2013
For a simple way to calculate the sequence, multiply n! by the integral from 0 to 1 of (1 - x^n)/(1 - x) dx. - Rahul Jha, Feb 18 2015
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Inverse binomial transform of A073596.
a(n) ~ sqrt(2*Pi*n) * n^n * (log(n) + gamma)/exp(n), where gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = ((-1)^(n+1)/2*(n+1))*Sum_{k=1..n} k*Bernoulli(k-1)*Stirling1(n,k). - Vladimir Kruchinin, Nov 20 2016
a(n) = (n)! * (digamma(n+1) + gamma), where gamma is the Euler-Mascheroni constant A001620. - Pedro Caceres, Mar 10 2018
From Andy Nicol, Oct 21 2021: (Start)
Gamma'(x) = a(x-1) - (x-1)!*gamma, where Gamma'(x) is the derivative of the gamma function at positive integers and gamma is the Euler-Mascheroni constant. E.g.:
Gamma'(1) = -gamma, Gamma'(2) = 1-gamma, Gamma'(3) = 3-2*gamma,
Gamma'(22) = 186244810780170240000 - 51090942171709440000*gamma. (End)
From Peter Bala, Feb 03 2022: (Start)
The following are all conjectural:
E.g.f.: for nonzero m, (1/m)*Sum_{n >= 1} (-1)^(n+1)*(1/n)*binomial(m*n,n)* x^n/(1 - x)^(m*n+1) = x + 3*x^2/2! + 11*x^3/3! + 50*x^4/4! + ....
For nonzero m, a(n) = (1/m)*n!*Sum_{k = 1..n} (-1)^(k+1)*(1/k)*binomial(m*k,k)* binomial(n+(m-1)*k,n-k).
a(n)^2 = (1/2)*n!^2*Sum_{k = 1..n} (-1)^(k+1)*(1/k^2)*binomial(n,k)* binomial(n+k,k). (End)
From Mélika Tebni, Jun 20 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A021009(n, k+1).
a(n) = Sum_{k=0..n} k!*A094587(n, k+1). (End)
a(n) = n! * 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n - 1)^2/((2*n - 1)))))). - Peter Bala, Mar 16 2024

A001705 Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).

Original entry on oeis.org

0, 1, 5, 26, 154, 1044, 8028, 69264, 663696, 6999840, 80627040, 1007441280, 13575738240, 196287356160, 3031488633600, 49811492505600, 867718162483200, 15974614352793600, 309920046408806400, 6320046028584960000, 135153868608460800000, 3024476051557847040000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the sum of the positions of the right-to-left minima in all permutations of [n]. Example: a(3)=26 because the positions of the right-to-left minima in the permutations 123,132,213,231,312 and 321 are 123, 13, 23, 3, 23 and 3, respectively and 1 + 2 + 3 + 1 + 3 + 2 + 3 + 3 + 2 + 3 + 3 = 26. - Emeric Deutsch, Sep 22 2008
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=2) ~ exp(-x)/x^2*(1 - 5/x + 26/x^2 - 154/x^3 + 1044/x^4 - 8028/x^5 + 69264/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the total number of cycles (excluding fixed points) in all permutations of [n+1]. - Olivier Gérard, Oct 23 2012; Dec 31 2012
A length n sequence is formed by randomly selecting (one-by-one) n real numbers in (0,1). a(n)/(n+1)! is the expected value of the sum of the new maximums in such a sequence. For example for n=3: If we select (in this order): 0.591996, 0.646474, 0.163659 we would add 0.591996 + 0.646474 which would be a bit above the average of a(3)/4! = 26/24. - Geoffrey Critzer, Oct 17 2013

Examples

			(1-x)^-2 * (-log(1-x)) = x + 5/2*x^2 + 13/3*x^3 + 77/12*x^4 + ...
Examples: a(6) = 6!*(1/6 + 2/5 + 3/4 + 4/3 + 5/2 + 6/1) = 8028; a(20) = 20!*(1/20 + 2/19 + 3/18 + 4/17 + 5/16 + ... + 16/5 + 17/4 + 18/3 + 19/2 + 20/1) = 135153868608460800000. - _Alexander Adamchuk_, Oct 09 2004
From _Olivier Gérard_, Dec 31 2012: (Start)
The cycle decomposition of all permutations of 4 elements gives the following list: {{{1},{2},{3},{4}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4,3}}, {{1},{2,3,4}}, {{1},{2,4},{3}}, {{1,2},{3},{4}}, {{1,2},{3,4}}, {{1,3,2},{4}},{{1,4,3,2}}, {{1,3,4,2}}, {{1,4,2},{3}}, {{1,2,3},{4}}, {{1,2,4,3}},{{1,3},{2},{4}}, {{1,4,3},{2}}, {{1,3},{2,4}}, {{1,4,2,3}}, {{1,2,3,4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{1,4},{2},{3}}, {{1,3,2,4}}, {{1,4},{2,3}}}.
Deleting the fixed points gives the following 26 items: {{3,4}, {2,3}, {2,4,3}, {2,3,4}, {2,4}, {1,2}, {1,2}, {3,4}, {1,3,2}, {1,4,3,2}, {1,3,4,2}, {1,4,2}, {1,2,3}, {1,2,4,3}, {1,3}, {1,4,3}, {1,3}, {2,4}, {1,4,2,3}, {1,2,3,4}, {1,2,4}, {1,3,4}, {1,4}, {1,3,2,4}, {1,4}, {2,3}}. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000254 (total number of cycles in permutations, including fixed points).
Cf. A002104 (number of different cycles in permutations, without fixed points).
Cf. A006231 (number of different cycles in permutations, including fixed points).
Related to n!*the k-th successive summation of the harmonic numbers:
(k=0) A000254, (k=1) A001705, (k=2) A001711, (k=3) A001716,
(k=4) A001721, (k=5) A051524, (k=6) A051545, (k=7) A051560,
(k=8) A051562, (k=9) A051564.

Programs

  • Maple
    a := n-> add((n+1)!/k, k=2..n+1): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008; edited Johannes W. Meijer, Nov 28 2012
    a := n -> ((n+1)!*(h(n+1)-1)): h := n-> harmonic(n): seq(a(n), n=0..21); # Gary Detlefs, Dec 18 2009; corrected by Johannes W. Meijer, Nov 28 2012
  • Mathematica
    Table[n!*Sum[Sum[1/k,{k,1,m}], {m,1,n}], {n,0,20}] (* Alexander Adamchuk, Apr 14 2006 *)
    a[n_] := (n + 1)! (EulerGamma - 1 + PolyGamma[n + 2]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 19 2022 *)
  • Maxima
    a(n):=n!*sum(((-1)^(k+1)*binomial(n+1,k+1))/k,k,1,n); /* Vladimir Kruchinin, Oct 10 2016 */
    
  • PARI
    for(n=0,25, print1(n!*sum(k=0,n-1,(k+1)/(n-k)), ", ")) \\ G. C. Greubel, Jan 20 2017
    
  • Python
    from math import factorial
    def A001705(n):
        f = factorial(n)
        return sum(f*(k+1)//(n-k) for k in range(n)) # Chai Wah Wu, Jun 23 2022

Formula

Partial sum of first n harmonic numbers multiplied by n!.
a(n) = n!*Sum_{m=1..n} Sum_{k=1..m} 1/k = n!*Sum_{m=1..n} H(m), where H(m) = Sum_{k=1..m} 1/k = A001008(m)/A002805(m) is m-th Harmonic number.
E.g.f.: - log (1 - x) / (1 - x)^2.
a(n) = (n+1)! * H(n) - n*n!, H(n) = Sum_{k=1..n} (1/k).
a(n) = A112486(n, 1).
a(n) = a(n-1)*(n+1) + n! = A000254(n+1) - A000142(n+1) = A067176(n+1, 1). - Henry Bottomley, Jan 09 2002
a(n) = Sum_{k=0..n-1} ((-1)^(n-1+k) * (k+1) * 2^k * Stirling1(n, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=1..n} (k*StirlingCycle(n+1,k+1)). - David Callan, Sep 25 2006
a(n) = Sum_{k=n..n*(n+1)/2} k*A143947(n,k). - Emeric Deutsch, Sep 22 2008
For n >= 1, a(n) = Sum_{j=0..n-1} ((-1)^(n-j-1) * 2^j * (j+1) * Stirling1(n,j+1)). - Milan Janjic, Dec 14 2008
a(n) = (2*n+1)*a(n-1) - n^2*a(n-2). - Gary Detlefs, Nov 27 2009
a(n) = (n+1)!*(H(n+1) - 1) where H(n) is the n-th harmonic number. - Gary Detlefs, Dec 18 2009
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n+1,k+1)/k. - Vladimir Kruchinin, Oct 10 2016
a(n) = (n+1)!*Sum_{k = 1..n} (-1)^(k+1)*binomial(n+1,k+1)*k/(k+1). - Peter Bala, Feb 15 2022
a(n) = Gamma(n + 2) * (Digamma(n + 2) + EulerGamma - 1). - Peter Luschny, Feb 19 2022
From Mélika Tebni, Jun 22 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A066667(n, k+1).
a(n) = Sum_{k=0..n} k!*A132159(n, k+1). (End)
a(n) = n*(n + 1)!*hypergeom([1, 1, 1 - n], [2, 3], 1)/2. - Peter Luschny, Jun 22 2022

Extensions

More terms from Sascha Kurz, Mar 22 2002

A028421 Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0

Views

Author

Peter Wiggen (wiggen(AT)math.psu.edu)

Keywords

Comments

Previous name was: Number triangle f(n, k) from n-th differences of the sequence {1/m^2}{m >= 1}, for n >= 0; the n-th difference sequence is {(-1)^n*n!*P(n, m)/D(n, m)^2}{m >= 1} where P(n, x) is the row polynomial P(n, x) = Sum_{k=0..n} f(n,k)*x^k and D(n, x) = x*(x+1)*...*(x+n).
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the general formula of the asymptotic expansion of E(x,m,n) can be found in A163932.
We used the general formula and the asymptotic expansion of E(x,m=1,n), see A130534, to determine that E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2 + 6*n + 3*n^2)/x^2 - (6 + 22*n + 18*n^2 + 4*n^3)/x^3 + ...) which can be verified with the EA(x,2,n) formula, see A163932. The coefficients in the denominators of this expansion lead to the sequence given above.
The asymptotic expansion of E(x,m=2,n) leads for n from one to ten to known sequences, see the cross-references. With these sequences one can form the triangles A165674 (left hand columns) and A093905 (right hand columns).
(End)
For connections to an operator relation between log(x) and x^n(d/dx)^n, see A238363. - Tom Copeland, Feb 28 2014
From Wolfdieter Lang, Nov 25 2018: (Start)
The signed triangle t(n, k) := (-1)^{n-k}*f(n, k) gives (n+1)*N(-1;n,x) = Sum_{k=0..n} t(n, k)*x^k, where N(-1;n,x) are the Narumi polynomials with parameter a = -1 (see the Weisstein link).
The members of the n-th difference sequence of the sequence {1/m^2}_{m>=1} mentioned above satisfies the recurrence delta(n, m) = delta(n-1, m+1) - delta(n-1, m), for n >= 1, m >= 1, with input delta(0, m) = 1/m^2. The solution is delta(n, m) = (n+1)!*N(-1;n,-m)/risefac(m, n+1)^2, with Narumi polynomials N(-1;n,x) and the rising factorials risefac(x, n+1) = D(n, x) = x*(x+1)*...*(x+n).
The above mentioned row polynomials P satisfy P(n, x) = (-1)^n*(n + 1)*N(-1;n,-x), for n >= 0. The recurrence is P(n, x) = (-x^2*P(n-1, x+1) + (n+x)^2*P(n-1, x))/n, for n >= 1, and P(0, x) = 1. (End)
The triangle is the exponential Riordan square (cf. A321620) of -log(1-x) with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
n\k       0        1        2        3        4       5       6      7     8   9 10
------------------------------------------------------------------------------------
0:        1
1:        1        2
2:        2        6        3
3:        6       22       18        4
4:       24      100      105       40        5
5:      120      548      675      340       75       6
6:      720     3528     4872     2940      875     126       7
7:     5040    26136    39396    27076     9800    1932     196      8
8:    40320   219168   354372   269136   112245   27216    3822    288     9
9:   362880  2053152  3518100  2894720  1346625  379638   66150   6960   405  10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
		

Crossrefs

Row sums give A000254(n+1), n >= 0.
Cf. A132393 (unsigned Stirling1), A061356, A139526, A321620.
From Johannes W. Meijer, Oct 07 2009: (Start)
A000142, A052517, 3*A000399, 5*A000482 are the first four left hand columns; A000027, A002411 are the first two right hand columns.
The asymptotic expansion of E(x,m=2,n) leads to A000254 (n=1), A001705 (n=2), A001711 (n=3), A001716 (n=4), A001721 (n=5), A051524 (n=6), A051545 (n=7), A051560 (n=8), A051562 (n=9), A051564 (n=10), A093905 (triangle) and A165674 (triangle).
Cf. A163931 (E(x,m,n)), A130534 (m=1), A163932 (m=3), A163934 (m=4), A074246 (E(x,m=2,n+1)). (End)

Programs

  • Maple
    A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
    seq(seq(A028421(n,k), k=0..n), n=0..8);
    # Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
    egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
    ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
    seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
  • Mathematica
    f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019

Formula

E.g.f.: d/dt(-log(1-t)/(1-t)^x). - Vladeta Jovovic, Oct 12 2003
The e.g.f. with offset 1: y = x + (1 + 2*t)*x^2/2! + (2 + 6*t + 3*t^2)*x^3/3! + ... has series reversion with respect to x equal to y - (1 + 2*t)*y^2/2! + (1 + 3*t)^2*y^3/3! - (1 + 4*t)^3*y^4/4! + .... This is an e.g.f. for a signed version of A139526. - Peter Bala, Jul 18 2013
Recurrence: T(n, k) = 0 if n < k; if k = 0 then T(0, 0) = 1 and T(n, 0) = n * T(n-1, 0) for n >= 1, otherwise T(n, k) = n*T(n-1, k) + ((k+1)/k)*T(n-1, k-1). From the unsigned Stirling1 recurrence. - Wolfdieter Lang, Nov 25 2018

Extensions

Edited by Wolfdieter Lang, Nov 23 2018

A001716 Generalized Stirling numbers.

Original entry on oeis.org

1, 9, 74, 638, 5944, 60216, 662640, 7893840, 101378880, 1397759040, 20606463360, 323626665600, 5395972377600, 95218662067200, 1773217155225600, 34758188233574400, 715437948072960000, 15429680577561600000, 347968129734973440000, 8190600438533990400000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=4) ~ exp(-x)/x^2*(1 - 9/x + 74/x^2 - 638/x^3 + 5944/x^4 - 60216/x^5 + 662640/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
From Petros Hadjicostas, Jun 23 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation.
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0.
As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) for n, m >= 0.
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current sequence, a(n) = R_{n+1}^1(a=-4, b=-1) for n >= 0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564.

Programs

  • Mathematica
    f[k_] := k + 3; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* Clark Kimberling, Dec 29 2011 *)
    Rest[CoefficientList[Series[(1-x)^(-4)*Log[1/(1-x)],{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Jan 19 2014 *)
  • PARI
    R(n, m, a, b) =  sum(k=0, n-m, (-1)^k*a^k*b^(n-m-k)*binomial(m+k, k)*stirling(n, m+k, 1));
    aa(n) = R(n+1, 1, -4, -1);
    for(n=0, 19, print1(aa(n), ", ")) \\ Petros Hadjicostas, Jun 23 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k) * (k+1) * 4^k * stirling1(n+1, k+1). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
a(n-1) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-4,k)/(n-k) for n >= 1. [Milan Janjic, Dec 14 2008] [Edited by Petros Hadjicostas, Jun 23 2020]
a(n)= n! * [3]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n (with offset 1). [Gary Detlefs, Jan 04 2011]
a(n) = (n+1)! * Sum_{k=0..n} (-1)^k*binomial(-4,k)/(n+1-k). [Gary Detlefs, Jul 16 2011]
a(n) = (n+4)! * Sum_{k=1..n+1} 1/(k+3)/6. [Gary Detlefs, Sep 14 2011]
E.g.f. (for offset 1): 1/(1-x)^4 * log(1/(1-x)). - Vaclav Kotesovec, Jan 19 2014
E.g.f.: (1 + 4*log(1/(1 - x)))/(1 - x)^5. - Ilya Gutkovskiy, Jan 23 2017
From Petros Hadjicostas, Jun 23 2020: (Start)
a(n) = [x] Product_{r=0..n} (x + 4 + r) = (Product_{r=0..n} (4 + r)) * Sum_{i=0..n} 1/(4 + i).
Since a(n) = R_{n+1}^1(a=-4, b=-1) and R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b), we conclude that:
(i) a(n) = (n+3)!/6 + (n+4)*a(n-1) for n >= 1;
(ii) a(n) = (2*n+7)*a(n-1) - (n+3)^2*a(n-2) for n >= 2. (End)

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A001721 Generalized Stirling numbers.

Original entry on oeis.org

1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, 284574960, 4243508640, 67285058400, 1131047366400, 20099588140800, 376612896038400, 7422410595801600, 153516757766400000, 3325222830101760000, 75283691519393280000, 1778358268603445760000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=5) ~ exp(-x)/x^2*(1 - 11/x + 107/x^2 - 1066/x^3 + 11274/x^4 - 127860/x^5 + 1557660/x^6 - ... ) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to n!*(the k-th successive summation of the harmonic numbers): k=0..A000254, k=1..A001705,k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564.

Programs

  • Mathematica
    f[k_] := k + 4; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+1, 1)*5^k*Stirling1(n+1, k+1). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
a(n) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-5,k)/(n-k). - Milan Janjic, Dec 14 2008
a(n) = n!*[4]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. With offset 1. - Gary Detlefs, Jan 04 2011
E.g.f.: (1 + 5*log(1/(1-x)))/(1 - x)^6. - Ilya Gutkovskiy, Jan 23 2017

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A051524 Second unsigned column of triangle A051338.

Original entry on oeis.org

0, 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, 703404576, 11277554400, 191338156800, 3427105248000, 64651956364800, 1281740285145600, 26648514872985600, 579892995734169600, 13183403757582643200
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=6) ~ exp(-x)/x^2*(1 - 13/x + 146/x^2 - 1650/x^3 + 19524/x^4 - 245004/x^5 + 3272688/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S.: see reference given for triangle A051338.

Crossrefs

Cf. A001725 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs, Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 5; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051338(n, 1)*(-1)^(n-1);
E.g.f.: -log(1-x)/(1-x)^6.
For n>=1, a(n) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-6,k)/(n-k). - Milan Janjic, Dec 14 2008
a(n) = n!*[5]h(n), where [k]h(n) denotes the k-th successive summation of h(n) from 0 to n. - Gary Detlefs, Jan 04 2011
Conjecture: a(n) +(-2*n-9)*a(n-1) +(n+4)^2*a(n-2)=0. - R. J. Mathar, Aug 04 2013

A051545 Second unsigned column of triangle A051339.

Original entry on oeis.org

0, 1, 15, 191, 2414, 31594, 434568, 6314664, 97053936, 1576890000, 27046454400, 488849155200, 9293295110400, 185464792800000, 3878247384345600, 84822225638169600, 1937048605944883200, 46113230058645657600
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=7) ~ exp(-x)/x^2*(1 - 15/x + 191/x^2 - 2414/x^3 + 31594/x^4 - 434568/x^5 + 6314664/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051339.

Crossrefs

Cf. A001730 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..(this sequence), k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs, Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 6; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051339(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^7.
a(n) = n!*Sum_{k=0,..,n-1}((-1)^k*binomial(-7,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[6]h(n), where [k]h(n) denotes the k-th successive summation of The harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011

A051560 Second unsigned column of triangle A051379.

Original entry on oeis.org

0, 1, 17, 242, 3382, 48504, 725592, 11393808, 188204400, 3270729600, 59753750400, 1146140409600, 23046980025600, 485075533132800, 10669304848204800, 244861798361241600, 5854837379724748800
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=8) ~ exp(-x)/x^2*(1 - 17/x + 242/x^2 - 3382/x^3 + 48504/x^4 - 725592/x^5 + 11393808/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.

Crossrefs

Cf. A049388 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 7; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051379(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^8.
a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-8,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[7]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011
Conjecture: a(n) +(-2*n-13)*a(n-1) +(n+6)^2*a(n-2)=0. - R. J. Mathar, Aug 04 2013

A051562 Second unsigned column of triangle A051380.

Original entry on oeis.org

0, 1, 19, 299, 4578, 71394, 1153956, 19471500, 343976400, 6366517200, 123418922400, 2503748556000, 53091962697600, 1175271048201600, 27123099523027200, 651708291206649600, 16282170039031142400
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=9) ~ exp(-x)/x^2*(1 - 19/x + 299/x^2 - 4578/x^3 + 71394/x^4 - 1153956/x^5 + 19471500/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051380.

Crossrefs

Cf. A049389 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 8; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051380(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^9.
a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-9,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[8]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011
Showing 1-10 of 29 results. Next