cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 587 results. Next

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).

A020988 a(n) = (2/3)*(4^n-1).

Original entry on oeis.org

0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442, 187649984473770, 750599937895082
Offset: 0

Views

Author

Keywords

Comments

Numbers whose binary representation is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005
Numbers whose base-4 representation consists entirely of 2's; twice base-4 repunits. - Franklin T. Adams-Watters, Mar 29 2006
Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n) = 1) a(n) = A060590(2n). - Henry Bottomley, Apr 05 2001
a(n) is the number of derangements of [2n + 3] with runs consisting of consecutive integers. E.g., a(1) = 10 because the derangements of {1, 2, 3, 4, 5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003
For n > 0, also smallest numbers having in binary representation exactly n + 1 maximal groups of consecutive zeros: A087120(n) = a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003
Number of walks of length 2n + 3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0) = 2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004
From Paul Barry, May 18 2003: (Start)
Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):
0 0
1 1
1 4 4 1
1 6 14 14 6 1
1 8 27 49 49 27 8 1 (End)
a(n) gives the position of the n-th zero in A173732, i.e., A173732(a(n)) = 0 for all n and this gives all the zeros in A173732. - Howard A. Landman, Mar 14 2010
Smallest number having alternating bit sum -n. Cf. A065359. For n = 0, 1, ..., the last digit of a(n) is 0, 2, 0, 2, ... . - Washington Bomfim, Jan 22 2011
Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012
For n > 0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013
Values of m such that binomial(4*m + 2, m) is odd. Cf. A002450. - Peter Bala, Oct 06 2015
For a(n) > 2, values of m such that m is two steps away from a power of 2 under the Collatz iteration. - Roderick MacPhee, Nov 10 2016
a(n) is the position of the first occurrence of 2^(n+1)-1 in A020986. See the Brillhart and Morton link, pp. 856-857. - John Keith, Jan 12 2021
a(n) is the number of monotone paths in the n-dimensional cross-polytope for a generic linear orientation. See the Black and De Loera link. - Alexander E. Black, Feb 15 2023

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) + 2, a(0) = 0.
a(n) = A026644(2*n).
a(n) = A007583(n) - 1 = A039301(n+1) - 2 = A083584(n-1) + 1.
E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003
a(n) = A007583(n+1) - 1 = A039301(n+2) - 2 = A083584(n) + 1. - Ralf Stephan, Jun 14 2003
G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011
a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011
a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012
a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012
a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017
From Seiichi Manyama, Nov 24 2017: (Start)
Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)).
Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End)
From Oboifeng Dira, May 29 2020: (Start)
a(n) = A078008(2n+1) (second bisection).
a(n) = Sum_{k=0..n} binomial(2n+1, ((n+2) mod 3)+3k). (End)
From John Reimer Morales, Aug 04 2025: (Start)
a(n) = A000302(n) - A047849(n).
a(n) = A020522(n) + A000079(n) - A047849(n). (End)

Extensions

Edited by N. J. A. Sloane, Sep 06 2006

A027306 a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0

Views

Author

Keywords

Comments

Inverse binomial transform of A027914. Hankel transform (see A001906 for definition) is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 21 2005
Number of walks of length n on a line that starts at the origin and ends at or above 0. - Benjamin Phillabaum, Mar 05 2011
Number of binary integers (i.e., with a leading 1 bit) of length n+1 which have a majority of 1-bits. E.g., for n+1=4: (1011, 1101, 1110, 1111) a(3)=4. - Toby Gottfried, Dec 11 2011
Number of distinct symmetric staircase walks connecting opposite corners of a square grid of side n > 1. - Christian Barrientos, Nov 25 2018
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of integer compositions of n + 1 with alternating sum > 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A345917. For example, the a(0) = 1 through a(4) = 11 compositions are:
(1) (2) (3) (4) (5)
(21) (31) (32)
(111) (112) (41)
(211) (113)
(122)
(212)
(221)
(311)
(1121)
(2111)
(11111)
The following relate to these compositions:
- The unordered version is A027193.
- The complement is counted by A058622.
- The reverse unordered version is A086543.
- The version for alternating sum >= 0 is A116406.
- The version for alternating sum < 0 is A294175.
- Ranked by A345917. (End)
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Examples

			From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
  1   11   101   1011   10011
           110   1101   10101
           111   1110   10110
                 1111   10111
                        11001
                        11010
                        11011
                        11100
                        11101
                        11110
                        11111
The version allowing an initial zero is A058622.
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)

Crossrefs

a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by A008315.
Column k=2 of A226873. - Alois P. Heinz, Jun 21 2013
The even bisection is A000302.
The odd bisection appears to be A032443.

Programs

  • GAP
    List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
  • Haskell
    a027306 n = a008949 n (n `div` 2)  -- Reinhard Zumkeller, Nov 14 2014
    
  • Magma
    [2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
    
  • Maple
    a:= proc(n) add(binomial(n, j), j=0..n/2) end:
    seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
    (* Second program: *)
    a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
  • PARI
    a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k).
Odd terms are 2^(n-1). Also a(2n) - 2^(2n-1) is given by A001700. a(n) = 2^n + (n mod 2)*binomial(n, (n-1)/2).
E.g.f.: (exp(2x) + I_0(2x))/2.
O.g.f.: 2*x/(1-2*x)/(1+2*x-((1+2*x)*(1-2*x))^(1/2)). - Vladeta Jovovic, Apr 27 2003
a(n) = A008949(n, floor(n/2)); a(n) + a(n-1) = A248574(n), n > 0. - Reinhard Zumkeller, Nov 14 2014
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 2*x - 1/(1 - x) )^n.
O.g.f.: (1/2)*( 1/sqrt(1 - 4*x^2) + 1/(1 - 2*x) ).
Inverse binomial transform is (-1)^n*A246437(n).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + ... is the o.g.f. for A001405. (End)
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n-1,(2n+1-(-1)^n)/4 -k). - Anthony Browne, Jun 18 2016
D-finite with recurrence: n*a(n) + 2*(-n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017

Extensions

Better description from Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000

A001025 Powers of 16: a(n) = 16^n.

Original entry on oeis.org

1, 16, 256, 4096, 65536, 1048576, 16777216, 268435456, 4294967296, 68719476736, 1099511627776, 17592186044416, 281474976710656, 4503599627370496, 72057594037927936, 1152921504606846976, 18446744073709551616, 295147905179352825856, 4722366482869645213696, 75557863725914323419136, 1208925819614629174706176
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 16), L(1, 16), P(1, 16), T(1, 16). Essentially same as Pisot sequences E(16, 256), L(16, 256), P(16, 256), T(16, 256). See A008776 for definitions of Pisot sequences.
Convolution-square (auto-convolution) of A098430. - R. J. Mathar, May 22 2009
Subsequence of A161441: A160700(a(n)) = 1. - Reinhard Zumkeller, Jun 10 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 16-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A131865.

Programs

Formula

G.f.: 1/(1-16*x).
E.g.f.: exp(16*x).
From Muniru A Asiru, Nov 07 2018: (Start)
a(n) = 16^n.
a(0) = 1, a(n) = 16*a(n-1). (End)
a(n) = 4^A005843(n) = 2^A008586(n) = A000302(n)^2 = A000079(n)*A001018(n). - Muniru A Asiru, Nov 10 2018
a(n) = ( Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k) ) * ( Sum_{k = 0..n} (-1)^k/(2*k + 1)*binomial(2*n + 1, n - k) ). - Peter Bala, Feb 12 2019
a(n) = Sum_{k = 0..2*n} A000984(k) * A000984(2*n-k). - Peter Bala, Aug 23 2025

A133494 Diagonal of the array of iterated differences of A047848.

Original entry on oeis.org

1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0

Views

Author

Paul Barry, Paul Curtz, Dec 23 2007

Keywords

Comments

a(n) is the number of ways to choose a composition C, and then choose a composition of each part of C. - Geoffrey Critzer, Mar 19 2012
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the reptend length of 1/3^(n+1) in decimal. - Jianing Song, Nov 14 2018
Also the number of pairs of integer compositions, the first summing to n and the second with sum equal to the length of the first. If an integer composition is regarded as an arrow from sum to length, these are composable pairs, and the obvious composition operation founds a category of integer compositions. For example, we have (2,1,1,4) . (1,2,1) . (1,2) = (2,6), where dots represent the composition operation. The version without empty compositions is A000244. Composable triples are counted by 1 followed by A000302. The unordered version is A022811. - Gus Wiseman, Jul 14 2022

Examples

			From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
  ()  (1)  (2)      (3)
           (1,1)    (1,2)
           (1),(1)  (2,1)
                    (1,1,1)
                    (1),(2)
                    (2),(1)
                    (1),(1,1)
                    (1,1),(1)
                    (1),(1),(1)
(End)
		

Crossrefs

The strict version is A336139.
Splittings of partitions are A323583.
Multiset partitions of partitions are A001970.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict compositions of each part of a composition are A307068.
Compositions of each part of a strict composition are A336127.

Programs

Formula

Binomial transform of A078008. - Paul Curtz, Aug 04 2008
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: (1 - 2*x)/(1 - 3*x).
a(n) = A000244(n-1), n > 0. (End)
From Philippe Deléham, Nov 13 2008: (Start)
a(n) = Sum_{k=0..n} A112467(n,k)*2^k.
a(n) = Sum_{k=0..n} A071919(n,k)*2^k. (End)
Let A(x) be the g.f. Then B(x) = x*A(x) satisfies B(x/(1-x)) = x/(1 - 2*B(x)). - Vladimir Kruchinin, Dec 05 2011
G.f.: 1/(1 - (Sum_{k>=1} (x/(1 - x))^k)). - Joerg Arndt, Sep 30 2012
For n > 0, a(n) = 2*(Sum_{k=0..n-1} a(k)) - 1 = 3^(n-1). - J. Conrad, Oct 29 2015
G.f.: 1 + x/(1 + x)*(1 + 4*x/(1 + 4*x)*(1 + 7*x/(1 + 7*x)*(1 + 10*x/(1 + 10*x)*(1 + .... - Peter Bala, May 27 2017
Invert transform of A011782(n) = 2^(n-1). Second invert transform of A000012. - Gus Wiseman, Jul 19 2020
a(n) = ceiling(3^(n-1)). - Alois P. Heinz, Jul 26 2020
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: (2 + exp(3*x))/3.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

Definition clarified by R. J. Mathar, Nov 11 2008

A008549 Number of ways of choosing at most n-1 items from a set of size 2*n+1.

Original entry on oeis.org

0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0

Views

Author

Keywords

Comments

Area under Dyck excursions (paths ending in 0): a(n) is the sum of the areas under all Dyck excursions of length 2*n (nonnegative walks beginning and ending in 0 with jumps -1,+1).
Number of inversions in all 321-avoiding permutations of [n+1]. Example: a(2)=6 because the 321-avoiding permutations of [3], namely 123,132,312,213,231, have 0, 1, 2, 1, 2 inversions, respectively. - Emeric Deutsch, Jul 28 2003
Convolution of A001791 and A000984. - Paul Barry, Feb 16 2005
a(n) = total semilength of "longest Dyck subpath" starting at an upstep U taken over all upsteps in all Dyck paths of semilength n. - David Callan, Jul 25 2008
[1,6,29,130,562,2380,...] is convolution of A001700 with itself. - Philippe Deléham, May 19 2009
From Ran Pan, Feb 04 2016: (Start)
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x to the right. This is related to paired pattern P_2 in Pan and Remmel's link and more details can be found in Section 3.2 in the link.
a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) horizontally cross the diagonal y = x. This is related to paired pattern P_3 in Pan and Remmel's link and more details can be found in Section 3.3 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) bounce off the diagonal y = x. This is related to paired pattern P_2 and P_4 in Pan and Remmel's link and more details can be found in Section 4.2 in the link.
2*a(n) is the total number of times that all the North-East lattice paths from (0,0) to (n+1,n+1) cross the diagonal y = x. This is related to paired pattern P_3 and P_4 in Pan and Remmel's link and more details can be found in Section 4.3 in the link. (End)
From Gus Wiseman, Jul 17 2021: (Start)
Also the number of integer compositions of 2*(n+1) with alternating sum < 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(3) = 29 compositions of 8 are:
(1,7) (1,5,2) (1,1,1,5) (1,1,1,4,1) (1,1,1,1,1,3)
(2,6) (1,6,1) (1,1,2,4) (1,2,1,3,1) (1,1,1,2,1,2)
(3,5) (2,5,1) (1,2,1,4) (1,3,1,2,1) (1,1,1,3,1,1)
(1,2,2,3) (1,4,1,1,1) (1,2,1,1,1,2)
(1,3,1,3) (1,2,1,2,1,1)
(1,3,2,2) (1,3,1,1,1,1)
(1,4,1,2)
(1,4,2,1)
(1,5,1,1)
(2,1,1,4)
(2,2,1,3)
(2,3,1,2)
(2,4,1,1)
Also the number of integer compositions of 2*(n+1) with reverse-alternating sum < 0. For a bijection, keep the odd-length compositions and reverse the even-length ones.
Also the number of 2*(n+1)-digit binary numbers with more 0's than 1's. For example, the a(2) = 6 binary numbers are: 100000, 100001, 100010, 100100, 101000, 110000; or in decimal: 32, 33, 34, 36, 40, 48.
(End)

Examples

			a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.

Crossrefs

Odd bisection of A294175 (even is A000346).
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is A000302.
- The weak (k <= 0) version is (also) A000302.
- The k = 0 version is A001700 or A088218.
- The reverse-alternating version is also A008549 (this sequence).
- These compositions are ranked by A053754 /\ A345919.
- The complement (k >= 0) is counted by A114121.
- The case of reversed integer partitions is A344743(n+1).
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
  • Mathematica
    Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
    a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
    
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A008549(n):
        return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017

Formula

a(n) = 4^n - C(2*n+1, n).
a(n) = Sum_{k=1..n} Catalan(k)*4^(n-k): convolution of Catalan numbers and powers of 4.
G.f.: x*c(x)^2/(1 - 4*x), c(x) = g.f. of Catalan numbers. - Wolfdieter Lang
Note Sum_{k=0..2*n+1} binomial(2*n+1, k) = 2^(2n+1). Therefore, by the symmetry of Pascal's triangle, Sum_{k=0..n} binomial(2*n+1, k) = 2^(2*n) = 4^n. This explains why the following two expressions for a(n) are equal: Sum_{k=0..n-1} binomial(2*n+1, k) = 4^n - binomial(2*n+1, n). - Dan Velleman
G.f.: (2*x^2 - 1 + sqrt(1 - 4*x^2))/(2*(1 + 2*x)*(2*x - 1)*x^3).
a(n) = Sum_{k=0..n} C(2*k, k)*C(2*(n-k), n-k-1). - Paul Barry, Feb 16 2005
Second binomial transform of 2^n - C(n, floor(n/2)) = A045621(n). - Paul Barry, Jan 13 2006
a(n) = Sum_{0 < i <= k < n} binomial(n, k+i)*binomial(n, k-i). - Mircea Merca, Apr 05 2012
D-finite with recurrence (n+1)*a(n) + 2*(-4*n-1)*a(n-1) + 8*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n > -5. - Michael Somos, Jan 25 2014
Convolution square is A045894. - Michael Somos, Jan 25 2014
HANKEL transform is [0, -1, 2, -3, 4, -5, ...]. - Michael Somos, Jan 25 2014
BINOMIAL transform of [0, 0, 1, 3, 11, 35,...] (A109196) is [0, 0, 1, 6, 29, 130, ...]. - Michael Somos, Jan 25 2014
(n+1) * a(n) = A153338(n+1). - Michael Somos, Jan 25 2014
a(n) = Sum_{m = n+2..2*n+1} binomial(2*n+1,m), n >= 0. - Wolfdieter Lang, May 22 2015
E.g.f.: (exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 30 2016

Extensions

Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000

A032443 a(n) = Sum_{i=0..n} binomial(2*n, i).

Original entry on oeis.org

1, 3, 11, 42, 163, 638, 2510, 9908, 39203, 155382, 616666, 2449868, 9740686, 38754732, 154276028, 614429672, 2448023843, 9756737702, 38897306018, 155111585372, 618679078298, 2468152192772, 9848142504068, 39301087452632, 156861290196878, 626155256640188
Offset: 0

Views

Author

J. H. Conway, Dec 11 1999

Keywords

Comments

Array interpretation: first row is filled with 1's, first column with powers of 2, b(i,j) = b(i-1,j) + b(i,j-1); then a(n) = b(n,n). - Benoit Cloitre, Apr 01 2002
1 1 1 1 1 1 1 ...
2 3 4 5 6 7 8 ...
4 7 11 16 22 ...
8 15 26 42 64 ...
16 31 .. 99 163 ...
From Gary W. Adamson, Dec 27 2008: (Start)
This is an analog of the Catalan sequence: Let M denote an infinite Cartan matrix (-1's in the super and subdiagonals and (2,2,2,...) in the main diagonal which we modify to (1,2,2,2,...)). Then A000108 can be generated by accessing the leftmost term in M^n * [1,0,0,0,...]. Change the operation to M^n * [1,2,3,...] to get this sequence. Or, take iterates M * [1,2,3,...] -> M * ANS, -> M * ANS,...; accessing the leftmost term. (End)
Convolved with the Catalan sequence, A000108: (1, 1, 2, 5, 14, ...) = powers of 4, A000302: (1, 4, 16, 64, ...). - Gary W. Adamson, May 15 2009
Row sums of A094527. - Paul Barry, Sep 07 2009
Hankel transform of the aeration of this sequence is C(n+2, 2). - Paul Barry, Sep 26 2009
Number of 4-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012
Number of options available to a voter who has up to n (0-n) votes to allot among 2n candidates. - Lorraine Lee, Apr 27 2019
2*a(n-1) is the number of all triangulations that can be obtained from a Möbius strip with n chosen points on its edge. See Bazier-Matte et al. - Michel Marcus, Sep 15 2020

Examples

			G.f. = 1 + 3*x + 11*x^2 + 42*x^3 + 163*x^4 + 638*x^5 + 2510*x^6 + 9908*x^7 + ...
According to the second formula, we see the fourth row of Pascal's triangle has the terms 1,4,6,4,1 and the partial sums are 1,5,11,15,16. Using these we get 1*1 + 4*5 + 6*11 + 4*15*1*16 = 1 + 20 + 66 + 60 + 16 = 163 = a(4). - _J. M. Bergot_, Apr 29 2014
		

References

  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.

Crossrefs

Binomial transform of A027914. Hankel transform is {1, 2, 3, 4, ..., n, ...}.

Programs

Formula

a(n) = (4^n+binomial(2*n, n))/2. - David W. Wilson
a(n) = Sum_{0 <= i_1 <= i_2 <= n} binomial(n, i_2) * binomial(n, i_1+i_2). - Benoit Cloitre, Oct 14 2004
Sequence with interpolated zeros has a(n) = Sum_{k=0..floor(n/2)} (if((n-2k) mod 2)=0, C(n, k), 0). - Paul Barry, Jan 14 2005
a(n) = Sum_{k=0..n} C(n+k-1, k)*2^(n-k). - Paul Barry, Sep 28 2007
E.g.f.: exp(2*x)*(exp(2*x) + BesselI(0,2*x))/2. For BesselI see Abramowitz-Stegun (reference and link under A008277), p. 375, eq. 9.6.10. See also A000984 for its e.g.f. - Wolfdieter Lang, Jan 16 2012
From Sergei N. Gladkovskii, Aug 13 2012: (Start)
G.f.: (1/sqrt(1-4*x) + 1/(1-4*x))/2 = G(0)/2 where G(k) = 1 + ((2*k)!)/(k!)^2/(4^k - 4*x*(16^k)/( 4*x*(4^k) + ((2*k)!)/(k!)^2/G(k+1))); (continued fraction).
E.g.f.: G(0)/2 where G(k) = 1 + ((2*k)!)/(k!)^2/(4^k - 4*x*(16^k)/( 4*x*(4^k) + (k+1)*((2*k)!)/(k!)^2/G(k+1))); (continued fraction).
(End)
O.g.f.: (1 - x*(2 + c(x)))/(1 - 4*x)^(3/2), with c the o.g.f. of A000108 (Catalan). - Wolfdieter Lang, Nov 22 2012
D-finite with recurrence: n*a(n) + 2*(-4*n+3)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Dec 04 2012
a(n) = binomial(2*n-1,n) + floor(4^n/2), or a(n+1) = A001700(n) + A004171(n), for all n >= 0. See A000346 for the difference. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n > -4. - Michael Somos, Jan 25 2014
a(n) = coefficient of x^n in (4*x + 1 / (1 + x))^n. - Michael Somos, Jan 25 2014
Binomial transform is A110166. - Michael Somos, Jan 25 2014
Asymptotics: a(n) ~ 2^(2*n-1)*(1+1/sqrt(Pi*n)). - Fung Lam, Apr 13 2014
Self-convolution is A240879. - Fung Lam, Apr 13 2014
a(0) = 1, a(n+1) = A001700(n) + 2^(2n+1). - Philippe Deléham, Oct 11 2014
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 10*x^2 + 35*x^3 + 126*x^4 + ... is the o.g.f. for A001700. - Peter Bala, Jul 21 2015
a(n) = 4*a(n-1) - A000108(n-1). - Bob Selcoe, Apr 02 2017
a(n) = [x^n] 1/((1 - x)^n*(1 - 2*x)). - Ilya Gutkovskiy, Oct 12 2017
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 08 2022
O.g.f.: ( hypergeom([1/4, 3/4], [1/2], 4*x) )^2. - Peter Bala, Mar 04 2022
a(n) = binomial(2*n, n) * hypergeom([1, -n], [n + 1], -1). - Peter Luschny, Oct 06 2023

A001021 Powers of 12.

Original entry on oeis.org

1, 12, 144, 1728, 20736, 248832, 2985984, 35831808, 429981696, 5159780352, 61917364224, 743008370688, 8916100448256, 106993205379072, 1283918464548864, 15407021574586368, 184884258895036416, 2218611106740436992
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 12), L(1, 12), P(1, 12), T(1, 12). Essentially same as Pisot sequences E(12, 144), L(12, 144), P(12, 144), T(12, 144). See A008776 for definitions of Pisot sequences.
Central terms of the triangle in A100851. - Reinhard Zumkeller, Mar 04 2006
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 12-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Starting with 12, this sequence appears in the film "Vollmond" (1998, dir. Fredi Murer), when the children write it on the sidewalk at night. - Alonso del Arte, Dec 21 2011

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: 1/(1-12*x).
E.g.f.: exp(12x).
a(n) = 12*a(n-1). - Zerinvary Lajos, Apr 27 2009
a(n) = A159991(n)/A000351(n). - Reinhard Zumkeller, May 02 2009
From Reinhard Zumkeller, Mar 31 2012: (Start)
a(n) = A000302(n) * A000244(n). - Reinhard Zumkeller, Mar 31 2012
A001222(a(n)) = A008585(n); A000005(a(n)) = A000384(a(n)). (End)
a(n) = det(|ps(i+2, j)|, 1 <= i, j <= n), where ps(n, k) are Legendre-Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A006127 a(n) = 2^n + n.

Original entry on oeis.org

1, 3, 6, 11, 20, 37, 70, 135, 264, 521, 1034, 2059, 4108, 8205, 16398, 32783, 65552, 131089, 262162, 524307, 1048596, 2097173, 4194326, 8388631, 16777240, 33554457, 67108890, 134217755, 268435484, 536870941, 1073741854, 2147483679, 4294967328, 8589934625
Offset: 0

Views

Author

Keywords

Comments

For numbers m=n+2^n such that equation x=2^(m-x) has solution x=2^n, see A103354. - Zak Seidov, Mar 23 2005
Primes of the form x^x+1 must be of the form 2^2^(a(n))+1, that is, Fermat number F_(a(n)) (Sierpiński 1958). - David W. Wilson, May 08 2005
a(n) = n-th Mersenne number + n + 1 = A000225(n) + n + 1. Partial sums of a(n) are A132925(n+1). - Jaroslav Krizek, Oct 16 2009
Intersection of A188916 and A188917: A188915(a(n)) = (2^n)^2 = 2^(2*n) = A000302(n). - Reinhard Zumkeller, Apr 14 2011
a(n) is also the number of all connected subtrees of a star tree, having n leaves. The star tree is a tree, where all n leaves are connected to one parent P. - Viktar Karatchenia, Feb 29 2016

Examples

			From _Viktar Karatchenia_, Feb 29 2016: (Start)
a(0) = 1. There are n=0 leaves, it is a trivial tree consisting of a single parent node P.
a(1) = 3. There is n=1 leaf, the tree is P-A, the subtrees are: 2 singles: P, A; 1 pair: P-A; 2+1 = 3 subtrees in total.
a(2) = 6. When n=2, the tree is P-A P-B, the subtrees are: 3 singles: P, A, B; 2 pairs: P-A, P-B; 1 triple: A-P-B (the whole tree); 3+2+1 = 6.
a(3) = 11. For n=3 leaf nodes, the tree is P-A P-B P-C, the subtrees are: 4 singles: P, A, B, C; 3 pairs: P-A, P-B, P-C; 3 triples: A-P-B, A-P-C, B-P-C; 1 quad: P-A P-B P-C (the whole tree); 4+3+3+1 = 11 in total.
a(4) = 20. For n=4 leaves, the tree is P-A P-B P-C P-D, the subtrees are: 5 singles: P, A, B, C, D; 4 pairs: P-A, P-B, P-C, P-D; 6 triples: A-P-B, A-P-C, B-P-C, A-P-D, B-P-D, C-P-D; 4 quads: P-A P-B P-C, P-A P-B P-D, P-A P-C P-D, P-B P-C P-D; the whole tree counts as 1; 5+4+6+4+1 = 20.
In general, for n leaves, connected to the parent node P, there will be: (n+1) singles; (n, 1) pairs; (n, 2) triples; (n, 3) quads; ... ; (n, n-1) subtrees having (n-1) edges; 1 whole tree, having all n edges. Thus, the total number of all distinct subtrees is: (n+1) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + 1 = (n + (n, 0)) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + (n, n) = n + (sum of all binomial coefficients of size n) = n + (2^n). (End)
		

References

  • John H. Conway, R. K. Guy, The Book of Numbers, Copernicus Press, p. 84.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A135227, A000079, A052944; A000051 (first differences).
Cf. A000325.

Programs

  • Haskell
    a006127 n = a000079 n + n
    a006127_list = s [1] where
       s xs = last xs : (s $ zipWith (+) [1..] (xs ++ reverse xs))
    Reinhard Zumkeller, May 19 2015, Feb 05 2011
    
  • Maple
    A006127:=(-1+z+z**2)/(2*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2^n + n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
    Table[BitXOr(i, 2^i), {i, 1, 100}] (* Peter Luschny, Jun 01 2011 *)
    LinearRecurrence[{4,-5,2},{1,3,6},40] (* Harvey P. Dale, Feb 08 2023 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jul 19 2011
    
  • Python
    print([2**n + n for n in range(34)]) # Karl V. Keller, Jr., Aug 18 2020
    
  • Python
    def A006127(n): return (1<Chai Wah Wu, Jan 11 2023

Formula

Row sums of triangle A135227. - Gary W. Adamson, Nov 23 2007
Partial sums of A094373. G.f.: (1-x-x^2)/((1-x)^2(1-2x)). - Paul Barry, Aug 05 2004
Binomial transform of [1,2,1,1,1,1,1,...]. - Franklin T. Adams-Watters, Nov 29 2006
a(n) = 2*a(n-1) - n + 2 (with a(0)=1). - Vincenzo Librandi, Dec 30 2010
E.g.f.: exp(x)*(exp(x) + x). - Stefano Spezia, Dec 10 2021
Previous Showing 41-50 of 587 results. Next