A289780
p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0
Example 1: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
-
P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
-
x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
A020988
a(n) = (2/3)*(4^n-1).
Original entry on oeis.org
0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442, 187649984473770, 750599937895082
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi)
- Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019) [link is not very stable].
- Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
- Peter Bala, A characterization of A002450, A020988 and A080674.
- Alexander E. Black, Monotone Paths on Polytopes: Combinatorics and Optimization, Ph. D. Dissertation, Univ. Calif. Davis (2024). See p. 59.
- Alexander Black and Jesús De Loera, Monotone paths on cross-polytopes, arXiv:2102.01237 [math.CO], Feb 2021
- John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
- Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3).
- Jonathan L. Merzel, Ján Minač, Tung T. Nguyen, and Nguyên Duy Tân, On divisibility relation graphs, 2025. See p. 14.
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
-
[(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
-
A020988 := proc(n)
2*(4^n-1)/3 ;
end proc: # R. J. Mathar, Feb 19 2015
-
(2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)
-
vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015
-
Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015
-
def A020988(n): return (2 * ((1 << (2 * n)) - 1)) // 3 # John Reimer Morales, Aug 05 2025
-
(((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).map(2 * )).scanLeft(0: BigInt)( + ) // _Alonso del Arte, Sep 12 2019
A027306
a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
Original entry on oeis.org
1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0
From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
1 11 101 1011 10011
110 1101 10101
111 1110 10110
1111 10111
11001
11010
11011
11100
11101
11110
11111
The version allowing an initial zero is A058622.
(End)
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by
A008315.
The odd bisection appears to be
A032443.
-
List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
-
a027306 n = a008949 n (n `div` 2) -- Reinhard Zumkeller, Nov 14 2014
-
[2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
-
a:= proc(n) add(binomial(n, j), j=0..n/2) end:
seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
-
Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
(* Second program: *)
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
-
a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
Better description from
Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000
A001025
Powers of 16: a(n) = 16^n.
Original entry on oeis.org
1, 16, 256, 4096, 65536, 1048576, 16777216, 268435456, 4294967296, 68719476736, 1099511627776, 17592186044416, 281474976710656, 4503599627370496, 72057594037927936, 1152921504606846976, 18446744073709551616, 295147905179352825856, 4722366482869645213696, 75557863725914323419136, 1208925819614629174706176
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Muniru A Asiru, Table of n, a(n) for n = 0..820 (terms n = 0..100 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 280
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (16).
-
List([0..20],n->16^n); # Muniru A Asiru, Nov 07 2018
-
a001025 = (16 ^)
a001025_list = iterate (* 16) 1 -- Reinhard Zumkeller, Nov 07 2012
-
A001025:=-1/(-1+16*z); # Simon Plouffe in his 1992 dissertation
-
Table[4^(2*n), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Mar 01 2009 *)
-
A001025(n):=16^n$
makelist(A001025(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=1<<(4*n) \\ Charles R Greathouse IV, Feb 01 2012
-
print([16**n for n in range(20)]) # Stefano Spezia, Nov 10 2018
-
[lucas_number1(n,16,0) for n in range(1, 18)] # Zerinvary Lajos, Apr 29 2009
A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
A008549
Number of ways of choosing at most n-1 items from a set of size 2*n+1.
Original entry on oeis.org
0, 1, 6, 29, 130, 562, 2380, 9949, 41226, 169766, 695860, 2842226, 11576916, 47050564, 190876696, 773201629, 3128164186, 12642301534, 51046844836, 205954642534, 830382690556, 3345997029244, 13475470680616, 54244942336114, 218269673491780, 877940640368572
Offset: 0
a(2) = 6 because there are 6 ways to choose at most 1 item from a set of size 5: You can choose the empty set, or you can choose any of the five one-element sets.
G.f. = x + 6*x^2 + 29*x^3 + 130*x^4 + 562*x^5 + 2380*x^6 + 9949*x^7 + ...
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- Indranil Ghosh, Table of n, a(n) for n = 0..1500 (terms 0..200 from T. D. Noe)
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, 18 (2015), Article 15.5.1.
- Octavio Arizmendi, Daniel Perales, and Josue Vazquez-Becerra, Finite Free Convolution: Infinitesimal Distributions, arXiv:c [math.PR], 2025. See p. 34.
- Jean Christophe Aval, Adrien Boussicault, Patxi Laborde-Zubieta, and Mathias Pétréolle, Generating series of Periodic Parallelogram polyominoes, arXiv:1612.03759, 2016.
- Roland Bacher, On generating series of complementary plane trees, arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Cyril Banderier, Analytic combinatorics of random walks and planar maps, Ph. D. Thesis, 2001. [Broken link]
- Adrien Boussicault and P. Laborde-Zubieta, Periodic Parallelogram Polyominoes, arXiv preprint arXiv:1611.03766 [math.CO], 2016.
- AJ Bu, Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers), arXiv:2310.17026 [math.CO], 2023.
- AJ Bu and Doron Zeilberger, Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas, arXiv:2305.09030 [math.CO], 2023.
- Alexander Burstein and Sergi Elizalde, Total occurrence statistics on restricted permutations, arXiv:1305.3177 [math.CO], 2013.
- Robin Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Niklas G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015.
- Miles Jones, Sergey Kitaev, and Jeffrey Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332 [math.CO], 2013.
- James A. Mingo and Josue Vazquez-Becerra, The Asymptotic Infinitesimal Distribution of a Real Wishart Random Matrix, arXiv:2112.15231 [math.PR], 2021.
- Henri Mühle, Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices, arXiv:1509.06942v1 [math.CO], 2015.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Elisa Pergola, Two bijections for the area of Dyck paths, Discrete Math., 241 (2001), 435-447.
- Wen-jin Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
For integer compositions of 2*(n+1) with alternating sum k < 0 we have:
- The opposite (k > 0) version is
A000302.
- The weak (k <= 0) version is (also)
A000302.
- The reverse-alternating version is also
A008549 (this sequence).
- The complement (k >= 0) is counted by
A114121.
- The case of reversed integer partitions is
A344743(n+1).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A058622,
A120452,
A163493,
A239830,
A344611.
-
[4^n-Binomial(2*n+1, n): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
-
A008549:=n->4^n-binomial(2*n+1,n): seq(A008549(n), n=0..30);
-
Table[4^n-Binomial[2n+1,n],{n,0,30}] (* Harvey P. Dale, May 11 2011 *)
a[ n_] := If[ n<-4, 0, 4^n - Binomial[2 n + 2, n + 1] / 2] (* Michael Somos, Jan 25 2014 *)
-
{a(n)=if(n<0, 0, 4^n - binomial(2*n+1, n))} /* Michael Somos Oct 31 2006 */
-
{a(n) = if( n<-4, 0, n++; (4^n / 2 - binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
-
import math
def C(n,r):
f=math.factorial
return f(n)/f(r)/f(n-r)
def A008549(n):
return int((4**n)-C(2*n+1,n)) # Indranil Ghosh, Feb 18 2017
Better description from Dan Velleman (djvelleman(AT)amherst.edu), Dec 01 2000
A032443
a(n) = Sum_{i=0..n} binomial(2*n, i).
Original entry on oeis.org
1, 3, 11, 42, 163, 638, 2510, 9908, 39203, 155382, 616666, 2449868, 9740686, 38754732, 154276028, 614429672, 2448023843, 9756737702, 38897306018, 155111585372, 618679078298, 2468152192772, 9848142504068, 39301087452632, 156861290196878, 626155256640188
Offset: 0
G.f. = 1 + 3*x + 11*x^2 + 42*x^3 + 163*x^4 + 638*x^5 + 2510*x^6 + 9908*x^7 + ...
According to the second formula, we see the fourth row of Pascal's triangle has the terms 1,4,6,4,1 and the partial sums are 1,5,11,15,16. Using these we get 1*1 + 4*5 + 6*11 + 4*15*1*16 = 1 + 20 + 66 + 60 + 16 = 163 = a(4). - _J. M. Bergot_, Apr 29 2014
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Véronique Bazier-Matte, Ruiyan Huang, and Hanyi Luo, Number of Triangulations of a Möbius Strip, arXiv:2009.05785 [math.CO], 2020.
- A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7.
- Celeste Damiani, Paul Martin, and Eric C. Rowell, Generalisations of Hecke algebras from Loop Braid Groups, arXiv:2008.04840 [math.GT], 2020.
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Binomial transform of
A027914. Hankel transform is {1, 2, 3, 4, ..., n, ...}.
-
[(4^n+Binomial(2*n, n))/2:n in [0.. 30]]; // Vincenzo Librandi, Oct 18 2014
-
A032443:=n->(4^n + binomial(2*n, n))/2; seq(A032443(n), n=0..30); # Wesley Ivan Hurt, Apr 15 2014
-
a[ n_] := If[ n<-3, 0, (4^n + Binomial[2 n, n]) / 2]; Table[a[n], {n, 0, 30}] (* Michael Somos, Jan 25 2014 *)
-
A032443 = n->sum(i=0,n,binomial(2*n,i)) \\ M. F. Hasler, Jan 02 2014
-
A032443 = n->binomial(2*n-1,n)+4^n\2 \\ M. F. Hasler, Jan 02 2014
-
{a(n) = if( n<-3, 0, (4^n + binomial(2*n, n)) / 2)} /* Michael Somos, Jan 25 2014 */
Original entry on oeis.org
1, 12, 144, 1728, 20736, 248832, 2985984, 35831808, 429981696, 5159780352, 61917364224, 743008370688, 8916100448256, 106993205379072, 1283918464548864, 15407021574586368, 184884258895036416, 2218611106740436992
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 276.
- Tanya Khovanova, Recursive Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (12).
A083420
a(n) = 2*4^n - 1.
Original entry on oeis.org
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers, Fig 11.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9, 2016.
- Eric Weisstein's World of Mathematics, Rule 220
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
A006127
a(n) = 2^n + n.
Original entry on oeis.org
1, 3, 6, 11, 20, 37, 70, 135, 264, 521, 1034, 2059, 4108, 8205, 16398, 32783, 65552, 131089, 262162, 524307, 1048596, 2097173, 4194326, 8388631, 16777240, 33554457, 67108890, 134217755, 268435484, 536870941, 1073741854, 2147483679, 4294967328, 8589934625
Offset: 0
From _Viktar Karatchenia_, Feb 29 2016: (Start)
a(0) = 1. There are n=0 leaves, it is a trivial tree consisting of a single parent node P.
a(1) = 3. There is n=1 leaf, the tree is P-A, the subtrees are: 2 singles: P, A; 1 pair: P-A; 2+1 = 3 subtrees in total.
a(2) = 6. When n=2, the tree is P-A P-B, the subtrees are: 3 singles: P, A, B; 2 pairs: P-A, P-B; 1 triple: A-P-B (the whole tree); 3+2+1 = 6.
a(3) = 11. For n=3 leaf nodes, the tree is P-A P-B P-C, the subtrees are: 4 singles: P, A, B, C; 3 pairs: P-A, P-B, P-C; 3 triples: A-P-B, A-P-C, B-P-C; 1 quad: P-A P-B P-C (the whole tree); 4+3+3+1 = 11 in total.
a(4) = 20. For n=4 leaves, the tree is P-A P-B P-C P-D, the subtrees are: 5 singles: P, A, B, C, D; 4 pairs: P-A, P-B, P-C, P-D; 6 triples: A-P-B, A-P-C, B-P-C, A-P-D, B-P-D, C-P-D; 4 quads: P-A P-B P-C, P-A P-B P-D, P-A P-C P-D, P-B P-C P-D; the whole tree counts as 1; 5+4+6+4+1 = 20.
In general, for n leaves, connected to the parent node P, there will be: (n+1) singles; (n, 1) pairs; (n, 2) triples; (n, 3) quads; ... ; (n, n-1) subtrees having (n-1) edges; 1 whole tree, having all n edges. Thus, the total number of all distinct subtrees is: (n+1) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + 1 = (n + (n, 0)) + (n, 1) + (n, 2) + (n, 3) + ... + (n, n-1) + (n, n) = n + (sum of all binomial coefficients of size n) = n + (2^n). (End)
- John H. Conway, R. K. Guy, The Book of Numbers, Copernicus Press, p. 84.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 435
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Sierpiński Number of the First Kind
- Eric Weisstein's World of Mathematics, Star Graph
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
a006127 n = a000079 n + n
a006127_list = s [1] where
s xs = last xs : (s $ zipWith (+) [1..] (xs ++ reverse xs))
Reinhard Zumkeller, May 19 2015, Feb 05 2011
-
A006127:=(-1+z+z**2)/(2*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[2^n + n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
Table[BitXOr(i, 2^i), {i, 1, 100}] (* Peter Luschny, Jun 01 2011 *)
LinearRecurrence[{4,-5,2},{1,3,6},40] (* Harvey P. Dale, Feb 08 2023 *)
-
a(n)=1<Charles R Greathouse IV, Jul 19 2011
-
print([2**n + n for n in range(34)]) # Karl V. Keller, Jr., Aug 18 2020
-
def A006127(n): return (1<Chai Wah Wu, Jan 11 2023
Comments