cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 193 results. Next

A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022

Examples

			From _Gus Wiseman_, Aug 04 2022: (Start)
Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4   9  16  25  36  49  64  81
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
The T(4,5) = 21 chains:
  (1,1,1,1,1)  (4,2,1,1,1)  (4,4,2,2,2)
  (2,1,1,1,1)  (4,2,2,1,1)  (4,4,4,1,1)
  (2,2,1,1,1)  (4,2,2,2,1)  (4,4,4,2,1)
  (2,2,2,1,1)  (4,2,2,2,2)  (4,4,4,2,2)
  (2,2,2,2,1)  (4,4,1,1,1)  (4,4,4,4,1)
  (2,2,2,2,2)  (4,4,2,1,1)  (4,4,4,4,2)
  (4,1,1,1,1)  (4,4,2,2,1)  (4,4,4,4,4)
The T(6,3) = 16 chains:
  (1,1,1)  (3,1,1)  (6,2,1)  (6,6,1)
  (2,1,1)  (3,3,1)  (6,2,2)  (6,6,2)
  (2,2,1)  (3,3,3)  (6,3,1)  (6,6,3)
  (2,2,2)  (6,1,1)  (6,3,3)  (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  3  3  4  1
  1  2  6  4  5  1
  1  4  3 10  5  6  1
  1  2  9  4 15  6  7  1
  1  4  3 16  5 21  7  8  1
  1  3 10  4 25  6 28  8  9  1
  1  4  6 20  5 36  7 36  9 10  1
  1  2  9 10 35  6 49  8 45 10 11  1
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Mathematica
    T[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; Table[T[n-k,k],{n,1,13},{k,0,n-1}]//Flatten
  • PARI
    T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
    matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020

Formula

T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).

Extensions

Duplicate term removed by Stefano Spezia, Jun 03 2020

A006011 a(n) = n^2*(n^2 - 1)/4.

Original entry on oeis.org

0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0

Views

Author

Keywords

Comments

Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009
Partial sums of A059270. - J. M. Bergot, Jun 27 2013
Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1)) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013

Examples

			From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
   3;
   4, 14;
   5, 16, 39;
   6, 18, 42,  84;
   7, 20, 45,  88, 155;
   8, 22, 48,  92, 160, 258;
   9, 24, 51,  96, 165, 264, 399;
  10, 26, 54, 100, 170, 270, 406, 584;
  11, 28, 57, 104, 175, 276, 413, 592, 819;
  12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A006011 := proc(n)
        n^2*(n^2-1)/4 ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
    Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013

Formula

G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024

A006322 4-dimensional analog of centered polygonal numbers.

Original entry on oeis.org

1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855, 369741, 411958, 457691, 507130
Offset: 1

Views

Author

Albert Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums give A006414. - L. Edson Jeffery, Dec 13 2011
Also the number of (w,x,y,z) with all terms in {1,...,n} and w<=x>=y<=z, see A211795. - Clark Kimberling, May 19 2012

Examples

			An illustration for a(5)=190: 5*(1+2+3+4+5)+4*(2+3+4+5)+3*(3+4+5)+2*(4+5)+1*(5) gives 75+56+36+18+5=190. - _J. M. Bergot_, Feb 13 2018
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).

Crossrefs

Programs

  • GAP
    List([1..40], n->5*Binomial(n+2,4) + Binomial(n+1,2)); # Muniru A Asiru, Feb 13 2018
    
  • Magma
    [n*(n+1)*(5*n^2 +5*n +2)/24: n in [1..40]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    a:=n->5*binomial(n+2,4) + binomial(n+1,2): seq(a(n), n=1..40); # Muniru A Asiru, Feb 13 2018
  • Mathematica
    Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    CoefficientList[Series[(1+3x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190},40] (* Harvey P. Dale, Sep 27 2016 *)
  • PARI
    a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017
    
  • Sage
    [n*(n+1)*(5*n^2 +5*n +2)/24 for n in (1..40)] # G. C. Greubel, Sep 02 2019

Formula

a(n) = 5*C(n+2,4) + C(n+1,2) = (C(5*n+4,4) - 1)/5^3 = n*(n+1)*(5*n^2 + 5*n + 2)/24.
a(n) = (((n+1)^5-n^5) - ((n+1)^3-n^3))/24. - Xavier Acloque, Jan 14 2003, corrected by Eric Rowland, Aug 15 2017
Partial sums of A004068. - Xavier Acloque, Jan 15 2003
G.f.: x*(1+3*x+x^2)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n} Sum_{j=1..n} i * min(i,j). - Enrique Pérez Herrero, Jan 30 2013
a(n) = A000537(n) - A000332(n+2). - J. M. Bergot, Jun 03 2017
Sum_{n>=1} 1/a(n) = 42 - 4*sqrt(15)*Pi*tanh(sqrt(3/5)*Pi/2). - Amiram Eldar, May 28 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(12 + 30*x + 5*x^2)/24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)

A035287 Number of ways to place a non-attacking white and black rook on n X n chessboard.

Original entry on oeis.org

0, 4, 36, 144, 400, 900, 1764, 3136, 5184, 8100, 12100, 17424, 24336, 33124, 44100, 57600, 73984, 93636, 116964, 144400, 176400, 213444, 256036, 304704, 360000, 422500, 492804, 571536, 659344, 756900, 864900, 984064, 1115136, 1258884
Offset: 1

Views

Author

Keywords

Comments

a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n} such that for fixed different x_1, x_2 in {1,2,3,4} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 17 2007
The third differences of certain values of the hypergeometric function 3F2 lead to this sequence, i.e., 3F2([1,n+1,n+1], [n+2,n+2], z=1) - 3*3F2([1,n+2,n+2], [n+3,n+3], z=1) + 3*3F2([1,n+3,n+3], [n+4,n+4], z=1) - 3F2([1,n+4,n+4], [n+5,n+5], z=1) = (1/((n+2)*(n+3)))^2 with n = -1, 0, 1, 2, ... See also A162990. - Johannes W. Meijer, Jul 21 2009
a(n) is the denominator (m*n)^2 of the term (1/m^2 - 1/n^2) = (2*n-1)/(m*n)^2, n = m+1, m > 0 in the Rydberg formula, while A005408 is the numerator 2n-1. So the quotient A005408/A035287 simulates the hydrogen spectral series of all hydrogen-like elements. - Freimut Marschner, Aug 10 2013

Crossrefs

Cf. A002378.
Cf. A000290.

Programs

Formula

a(n) = n^2 * (n-1)^2.
a(n) = A002378(n-1)^2. - Zerinvary Lajos, Apr 11 2006
From Stephen Crowley, Jul 19 2009: (Start)
a(n) = n!*(2*n+1) / lim_{x->0} (d^n/dx^n) (polylog(2,x)*(1-1/x));
Sum_{n >= 2} 1/a(n) = 2*zeta(2) - 3 = A145426. (End) [Comment from Jianing Song, Dec 31 2022: Note that polylog(2,x)*(1-1/x) = -1 + Sum_{n>=1} ((2*n+1)/(n^2*(n+1)^2))*x^n, so (d^n/dx^n) (polylog(2,x)*(1-1/x)) = n!*(2*n+1)/(n^2*(n+1)^2) for n >= 1. - Jianing Song, Dec 31 2022]
a(n) = 4*A000537(n-1) = 2*A163102(n-1). - Omar E. Pol, Nov 29 2011
G.f.: 4*x^2*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 04 2012
a(n) = 4*A000217(n-1)^2. - J. M. Bergot, Nov 01 2012
E.g.f.: x^2*(2 + 4*x + x^2)*exp(x). - Ilya Gutkovskiy, May 24 2016
Sum_{n>=2} (-1)^n/a(n) = 3 - 4*log(2). - Amiram Eldar, Jul 02 2020
Product_{n>=2} (1 - 1/a(n)) = -cos(sqrt(5)*Pi/2)*cosh(sqrt(3)*Pi/2)/Pi^2. - Amiram Eldar, Jan 29 2021
(n^2)^2 + (n^2+1)^2 + ... + (n^2 + n)^2 + a(n) = (n^2 + n + 1)^2 + ... + (n^2 + 2*n)^2. - Charlie Marion, Jun 18 2022
a(n) = A000290(n-1) * A000290(n). - Leo Tavares, Dec 03 2022
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n >= 6. - Jianing Song, Dec 30 2022

A062392 a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.

Original entry on oeis.org

0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n. - Roberto E. Martinez II, Jan 07 2002
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - Peter Luschny, Jul 12 2009
Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - J. M. Bergot, Jul 05 2013
a(n) is the sum of all positive numbers less than A002378(n). - J. M. Bergot, Aug 30 2013
Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - Waldemar Puszkarz, Sep 14 2017
a(n) is the semiperimeter of the unique primitive Pythagorean triple such that (a-b+c)/2 = T(n) = A000217(n). Its long leg and hypotenuse are consecutive natural numbers and the triple is (2*T(n) - 1, 2*T(n)*(T(n) - 1), 2*T(n)*(T(n) - 1) + 1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

Examples

			From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1   =                 -(1) + (2);
15  =             -(1 + 2) + (3 + 4 + 5 + 2*3);
66  =         -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 =     -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
Cf. A236770 (see crossrefs).

Programs

  • Maple
    a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n-1) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
a(n) = A000384(A000217(n)). - Bruno Berselli, Jan 31 2014
a(n) = A110450(n) - A002378(n). - Gionata Neri, May 13 2015
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
E.g.f.: exp(x)*x*(2 + 13*x + 8*x^2 + x^3)/2. - Stefano Spezia, Apr 27 2025
a(n) = A000217(n)*(2*A000217(n)-1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

A000541 Sum of 7th powers: 1^7 + 2^7 + ... + n^7.

Original entry on oeis.org

0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456, 8080425, 18080425, 37567596, 73399404, 136147921, 241561425, 412420800, 680856256, 1091194929, 1703414961, 2597286700, 3877286700, 5678375241, 8172733129, 11577558576, 16164030000, 22267545625
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777) - Artur Jasinski, Oct 10 2007
This sequence is related to A000540 by a(n) = n*A000540(n) - Sum_{i=0..n-1} A000540(i). - Bruno Berselli, Apr 26 2010

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 7 of array A103438.

Programs

  • Magma
    [n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24: n in [0..30]]; // Vincenzo Librandi, Feb 20 2016
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^7 od: seq(a[n], n=0..25); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^7, {k, 1, n}], {n, 0, 100}] (* Artur Jasinski, Oct 10 2007 *)
    s = 0; lst = {s}; Do[s += n^7; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24 \\ Edward Jiang, Sep 10 2014
    
  • PARI
    a(n) = sum(i=1, n, i^7); \\ Michel Marcus, Sep 11 2014
    
  • Python
    A000541_list, m = [0], [5040, -15120, 16800, -8400, 1806, -126, 1, 0, 0]
    for _ in range(10**2):
        for i in range(8):
            m[i+1] += m[i]
        A000541_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(3*n^4 + 6*n^3 - n^2 - 4*n + 2)/24.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^7). - Alexander Adamchuk, Oct 26 2004
Jacobi formula: a(n) = 2(A000217(n))^4 - A000539(n). - Artur Jasinski, Oct 10 2007
G.f.: x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1-x)^9. - Colin Barker, May 25 2012
a(n) = 8*a(n-1) - 28* a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 5040. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..7} j*Stirling1(n+1,n+1-j)*Stirling2(n+7-j,n). - Mircea Merca, Jan 25 2014
a(n) = 2*A000217(n)^4 - (4/3)*A000217(n)^3 + (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016
a(n) = 72*A288876(n-2) + 48*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, Apr 27 2024
a(n) = Sum_{i=1..n} J_7(i)*floor(n/i), where J_7 is A069092. - Ridouane Oudra, Jul 17 2025

A006007 4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.

Original entry on oeis.org

0, 1, 5, 16, 40, 85, 161, 280, 456, 705, 1045, 1496, 2080, 2821, 3745, 4880, 6256, 7905, 9861, 12160, 14840, 17941, 21505, 25576, 30200, 35425, 41301, 47880, 55216, 63365, 72385, 82336, 93280, 105281, 118405, 132720, 148296, 165205, 183521
Offset: 0

Views

Author

Keywords

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n^2+n+4)/12: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    f[n_]:=n^3;lst={};s=0;Do[s+=(f[n]+f[n+1]+f[n+2]);AppendTo[lst,s/9],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
    Table[2Binomial[n+2,4]+Binomial[n+1,2],{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,16,40},40] (* Harvey P. Dale, Sep 30 2011 *)
  • PARI
    a(n)=n*(n+1)*(n^2+n+4)/12 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: (1+x^2)/(1-x)^5.
a(n) = 2*binomial(n + 2, 4) + binomial(n + 1, 2).
a(n) = A061316(n)/3 = A061315(n, 3) = sqrt(A061318(n)-A061316(n)).
a(0)=0, a(1)=1, a(2)=5, a(3)=16, a(4)=40, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 30 2011
For n>0, a(n) = (A000217(n-1)^2 + A000217(n)^2 + A000217(n+1)^2 - 1)/9. - Richard R. Forberg, Dec 25 2013
Sum_{n>=1} 1/a(n) = 15/4 - tanh(sqrt(15)*Pi/2)*Pi*sqrt(3/5). - Amiram Eldar, Aug 23 2022
E.g.f.: exp(x)*(12 + 48*x + 42*x^2 + 12*x^3 + x^4)/12. - Stefano Spezia, Aug 31 2023

Extensions

More terms from Henry Bottomley, Apr 24 2001

A101094 a(n) = n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120.

Original entry on oeis.org

1, 11, 57, 203, 574, 1386, 2982, 5874, 10791, 18733, 31031, 49413, 76076, 113764, 165852, 236436, 330429, 453663, 612997, 816431, 1073226, 1394030, 1791010, 2277990, 2870595, 3586401, 4445091, 5468617, 6681368, 8110344, 9785336
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Comments

Partial sums of A024166. Third partial sums of cubes (A000578).
Antidiagonal sums of the array A213564. - Clark Kimberling, Jun 18 2012

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 : n in [1..35]]; // Vincenzo Librandi, Apr 23 2015
  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)*(1 + 3*n + n^2)/120, {n, 31}] (* Michael De Vlieger, Apr 20 2015 *)
  • Sage
    [n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 for n in range(1,32)] # Danny Rorabaugh, Apr 20 2015
    

Formula

This sequence could be obtained from the general formula n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k)+(k-1)*k/6)/((k+3)!/6) at k=3. - Alexander R. Povolotsky, May 17 2008
G.f.: -x*(1+4*x+x^2) / (x-1)^7. - R. J. Mathar, Dec 06 2011
Sum_{n>0} 1/a(n) = (8/3)*(25-9*sqrt(5)*Pi*tan(sqrt(5)*Pi/2)). - Enrique Pérez Herrero, Dec 02 2014
a(k) = MagicNKZ(3,k,7) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n. (Cf. A101104.) - Danny Rorabaugh, Apr 23 2015

Extensions

Edited by Ralf Stephan, Dec 16 2004

A143127 a(n) = Sum_{k=1..n} k*d(k) where d(k) is the number of divisors of k.

Original entry on oeis.org

1, 5, 11, 23, 33, 57, 71, 103, 130, 170, 192, 264, 290, 346, 406, 486, 520, 628, 666, 786, 870, 958, 1004, 1196, 1271, 1375, 1483, 1651, 1709, 1949, 2011, 2203, 2335, 2471, 2611, 2935, 3009, 3161, 3317, 3637, 3719, 4055, 4141, 4405, 4675, 4859, 4953, 5433
Offset: 1

Views

Author

Gary W. Adamson, Jul 26 2008

Keywords

Comments

a(n) is also the sum of all parts of all partitions of all positive integers <= n into equal parts. - Omar E. Pol, May 29 2017
a(n) is also the sum of the multiples of k, not exceeding n, for k = 1, 2, ..., n. See a formula and an example below. - Wolfdieter Lang, Oct 18 2021

Examples

			a(3) = 11 = (1 + 4 + 6), where n*d(n) = (1, 4, 6, 12, 10, 24, ...).
a(4) = 23 = (8 + 7 + 5 + 3), where (8, 7, 5, 3) = row 4 of triangle A110661.
a(4) = 23 is the sum of [1 2 3 4|2 4|3|4] (multiples of k=1..4, not exceeding n). - _Wolfdieter Lang_, Oct 18 2021
a(4) = [1] + [2 + 1 + 1] + [3 + 1 + 1 + 1] + [4 + 2 + 2 + 1 + 1 + 1 + 1] = 23. - _Omar E. Pol_, Oct 18 2021
		

Crossrefs

Partial sums of A038040.
Row sums of triangle A110661.
Row sums of triangle A143310. - Gary W. Adamson, Aug 06 2008
Cf. A018804.

Programs

  • Haskell
    a143127 n = a143127_list !! (n-1)
    a143127_list = scanl1 (+) a038040_list
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Mathematica
    Accumulate[DivisorSigma[0, Range[48]] Range[48]] (* Giovanni Resta, May 29 2018 *)
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)); \\ Michel Marcus, May 29 2018
    
  • Python
    from math import isqrt
    def A143127(n): return -((k:=isqrt(n))*(k+1)>>1)**2+sum(i*(m:=n//i)*(1+m) for i in range(1,k+1)) # Chai Wah Wu, Jul 11 2023

Formula

a(n) = Sum_{k=1..n} A038040(k).
a(n) = Sum_{m=1..floor(sqrt(n))} m*(m+floor(n/m))*(floor(n/m)+1-m) - A000330(floor(sqrt(n))) = 2*A083356(n) - A000330(floor(sqrt(n))). - Max Alekseyev, Jan 31 2012
G.f.: x*f'(x)/(1 - x), where f(x) = Sum_{k>=1} x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017 [Sum_{k>=1} k*x^k/((1-x)*(1-x^k)^2), see A038040. - Wolfdieter Lang, Oct 18 2021]
a(n) = Sum_{k=1..n} k/2 * floor(n/k) * floor(1 + n/k). - Daniel Suteu, May 28 2018
a(n) ~ log(n) * n^2 / 2 + (gamma - 1/4)*n^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 08 2018
From Daniel Hoying, May 21 2020: (Start)
a(n) = (Sum_{i=1..floor(sqrt(n))} i*floor(n/i)*(1+floor(n/i))) - (floor(sqrt(n))*(1+floor(sqrt(n)))/2)^2;
= (Sum_{i=1..floor(sqrt(n))} i*floor(n/i)*(1+floor(n/i))) - A000537(floor(sqrt(n))).
a(n) = A000537(floor(sqrt(n))) ; n=1;
= A000537(floor(sqrt(n))) + n*(n+1) - floor(n/2)*(floor(n/2)+1) ; 1
= A000537(floor(sqrt(n))) + n*(n+1) - floor(n/2)*(floor(n/2)+1) + Sum_{i=floor(sqrt(n))+1..floor(n/2)} i*floor(n/i)*(1+floor(n/i)) ; n>=6. (End)
a(n) = Sum_{i=1..n} A018804(i)*floor(n/i). - Ridouane Oudra, Mar 15 2021
a(n) = Sum_{k=1..n} b(n,k), with b(n, k) = Sum_{j=1..floor(n/k)} j*k = k * floor(n/k) * (floor(n/k) + 1)/2. See the formula by Daniel Suteu above. - Wolfdieter Lang, Oct 18 2021

Extensions

More terms from Carl Najafi, Dec 24 2011
Edited by Max Alekseyev, Jan 31 2012

A085780 Numbers that are a product of 2 triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Is there a fast algorithm for detecting these numbers? - Charles R Greathouse IV, Jan 26 2013
The number of rectangles with positive width 1<=w<=i and positive height 1<=h<=j contained in an i*j rectangle is t(i)*t(j), where t(k)=A000217(k), see A096948. - Dimitri Boscainos, Aug 27 2015

Examples

			18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
		

Crossrefs

Cf. A000217, A085782, A068143, A000537 (subsequence), A006011 (subsequence), A033487 (subsequence), A188630 (subsequence).
Cf. A072389 (this times 4).

Programs

  • Maple
    isA085780 := proc(n)
         local d;
         for d in numtheory[divisors](n) do
            if d^2 > n then
                return false;
            end if;
            if isA000217(d) then
                if isA000217(n/d) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 1 to 1000 do
        if isA085780(n) then
            printf("%d,",n) ;
        end if ;
    end do: # R. J. Mathar, Nov 29 2015
  • Mathematica
    t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
  • PARI
    A003056(n)=(sqrtint(8*n+1)-1)\2
    list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A085780_gen(startvalue=0): # generator of terms
        if startvalue <= 0:
            yield 0
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    yield n
                    break
    A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022

Formula

Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009
Previous Showing 21-30 of 193 results. Next