A038761
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=9.
Original entry on oeis.org
1, 9, 53, 309, 1801, 10497, 61181, 356589, 2078353, 12113529, 70602821, 411503397, 2398417561, 13979001969, 81475594253, 474874563549, 2767771787041, 16131756158697, 94022765165141, 548004834832149, 3194006243827753, 18616032628134369, 108502189524978461
Offset: 0
A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
Cf.
A001109,
A001541,
A001542,
A001652,
A001653,
A038762,
A046090,
A048654,
A055997,
A101386,
A124124,
A253811.
-
I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
-
LinearRecurrence[{6,-1},{1,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
-
a(n)=([0,1; -1,6]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. -
Wolfdieter Lang, Feb 05 2015
A075528
Triangular numbers that are half other triangular numbers.
Original entry on oeis.org
0, 3, 105, 3570, 121278, 4119885, 139954815, 4754343828, 161507735340, 5486508657735, 186379786627653, 6331426236682470, 215082112260576330, 7306460390622912753, 248204571168918457275, 8431648959352604634600, 286427860046819639119128
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..653
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- Harvey J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Cf.
A000129,
A000217,
A001652,
A002315,
A029546,
A029549,
A046090,
A046729,
A053141,
A084159,
A096979.
-
CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)
-
concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015
A005319
a(n) = 6*a(n-1) - a(n-2).
Original entry on oeis.org
0, 4, 24, 140, 816, 4756, 27720, 161564, 941664, 5488420, 31988856, 186444716, 1086679440, 6333631924, 36915112104, 215157040700, 1254027132096, 7309005751876, 42600007379160, 248291038523084, 1447146223759344, 8434586304032980
Offset: 0
G.f. = 4*x + 24*x^2 + 140*x^3 + 816*x^4 + 4756*x^5 + ... - _Michael Somos_, Jun 26 2022
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Marius A. Burtea, Table of n, a(n) for n = 0..100
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Eric Weisstein's World of Mathematics, Edge Cover
- Eric Weisstein's World of Mathematics, Triangular Snake Graph
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
a:=[0,4]; [n le 2 select a[n] else 6*Self(n-1) - Self(n-2):n in [1..22]]; // Marius A. Burtea, Sep 19 2019
-
LinearRecurrence[{6, -1}, {0, 4}, 22] (* Jean-François Alcover, Sep 26 2017 *)
Table[((3 + 2 Sqrt[2])^n - (3 - 2 Sqrt[2])^n)/Sqrt[2], {n, 20}] // Expand (* Eric W. Weisstein, Jun 08 2019 *)
CoefficientList[Series[(4 x)/(1 - 6 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 08 2019 *)
a[ n_] := 4*ChebyshevU[n-1, 3]; (* Michael Somos, Jun 26 2022 *)
-
{a(n) = 4*polchebyshev(n-1, 2, 3)}; /* Michael Somos, Jun 26 2022 */
A008844
Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.
Original entry on oeis.org
1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201, 67453191674820837076801, 2291422880374557112953025
Offset: 0
From _Ravi Kumar Davala_, May 26 2013: (Start)
A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly
a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true.
A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly
a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2
a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2.
(End)
1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes, and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Steven C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011
- Eric Weisstein's World of Mathematics, Hexagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a; # Muniru A Asiru, Jan 17 2018
-
I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
-
CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
-
LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *)
CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
-
a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
-
vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
Original entry on oeis.org
0, 1, 7, 42, 246, 1435, 8365, 48756, 284172, 1656277, 9653491, 56264670, 327934530, 1911342511, 11140120537, 64929380712, 378436163736, 2205687601705, 12855689446495, 74928449077266, 436715005017102, 2545361581025347, 14835454481134981, 86467365305784540
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Cf.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
Table[(Fibonacci[2n + 1, 2] - 1)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{7, -7, 1}, {0, 1, 7}, 30] (* G. C. Greubel, Jul 15 2018 *)
-
{a=1+sqrt(2); b=1-sqrt(2); P(n) = (a^n - b^n)/(a-b)};
for(n=0, 30, print1(round((P(2*n+1) - 1)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
-
x='x+O('x^30); Vec(x/((1-x)*(1-6*x+x^2))) \\ G. C. Greubel, Jul 15 2018
A001921
a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.
Original entry on oeis.org
0, 7, 104, 1455, 20272, 282359, 3932760, 54776287, 762935264, 10626317415, 148005508552, 2061450802319, 28712305723920, 399910829332567, 5570039304932024, 77580639439715775, 1080558912851088832, 15050244140475527879, 209622859053806301480
Offset: 0
G.f. = 7*x + 104*x^2 + 1455*x^3 + 20272*x^4 + 282359*x^5 + 3932760*x^6 + ... - _Michael Somos_, Aug 17 2018
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
- E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
[Round(-1/2 - (1/6)*Sqrt(3)*(7-4*Sqrt(3))^n + (1/6)*Sqrt(3)*(7+4*Sqrt(3))^n + (1/4)*(7+4*Sqrt(3))^n + (1/4)*(7-4*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
A001921:=z*(-7+z)/(z-1)/(z**2-14*z+1); # Conjectured by Simon Plouffe in his 1992 dissertation.
-
t = {0, 7}; Do[AppendTo[t, 14*t[[-1]] - t[[-2]] + 6], {20}]; t (* T. D. Noe, Aug 17 2012 *)
LinearRecurrence[{15, -15, 1}, {0, 7, 104}, 19] (* Michael De Vlieger, Jan 02 2017 *)
a[ n_] := -1/2 + (ChebyshevT[n + 1, 7] - ChebyshevT[n, 7]) / 12; (* Michael Somos, Aug 17 2018 *)
-
concat(0, Vec(x*(x-7)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Jan 06 2015
-
{a(n) = -1/2 + (polchebyshev(n + 1, 1, 7) - polchebyshev(n, 1, 7)) / 12}; /* Michael Somos, Aug 17 2018 */
Original entry on oeis.org
0, 1, 5, 30, 174, 1015, 5915, 34476, 200940, 1171165, 6826049, 39785130, 231884730, 1351523251, 7877254775, 45912005400, 267594777624, 1559656660345, 9090345184445, 52982414446326, 308804141493510, 1799842434514735, 10490250465594899, 61141660359054660, 356359711688733060
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Sergio Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 11.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 6.
- Index entries for linear recurrences with constant coefficients, signature (5,5,-1).
-
[Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
with(combinat): a:=n->fibonacci(n,2)*fibonacci(n-1,2)/2: seq(a(n), n=1..22); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{5,5,-1},{0,1,5},30] (* Harvey P. Dale, Sep 07 2011 *)
-
Pell(n)=([2, 1; 1, 0]^n)[2, 1];
a(n)=Pell(n)*Pell(n+1)/2 \\ Charles R Greathouse IV, Mar 21 2016
-
a(n)=([0,1,0; 0,0,1; -1,5,5]^n*[0;1;5])[1,1] \\ Charles R Greathouse IV, Mar 21 2016
-
[(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/16 for n in (0..30)] # G. C. Greubel, Aug 18 2022
A055997
Numbers k such that k*(k - 1)/2 is a square.
Original entry on oeis.org
1, 2, 9, 50, 289, 1682, 9801, 57122, 332929, 1940450, 11309769, 65918162, 384199201, 2239277042, 13051463049, 76069501250, 443365544449, 2584123765442, 15061377048201, 87784138523762, 511643454094369, 2982076586042450, 17380816062160329, 101302819786919522
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
- P. Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 35 pages 346-347.
- Colin Barker, Table of n, a(n) for n = 1..100
- Dario Alpern, a^4+b^3=c^2.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 46, 56.
- Phil Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Kenneth Ramsey, Generalized Proof re Square Triangular Numbers, message 62 in Triangular_and_Fibonacci_Numbers Yahoo group, Oct 10, 2011.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
A001109(n-1) = sqrt{[(a(n))^2 - (a(n))]/2}.
Identical to
A115599, but with additional leading term.
-
I:=[1,2,9]; [n le 3 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
A:= gfun:-rectoproc({a(n) = 6*a(n-1)-a(n-2)-2, a(1) = 1, a(2) = 2}, a(n), remember):
map(A,[$1..100]); # Robert Israel, Jul 22 2015
-
Table[ 1/4*(2 + (3 - 2*Sqrt[2])^k + (3 + 2*Sqrt[2])^k ) // Simplify, {k, 0, 20}] (* Jean-François Alcover, Mar 06 2013 *)
CoefficientList[Series[(1 - 5 x + 2 x^2) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
(1 + ChebyshevT[#, 3])/2 & /@ Range[0, 20] (* Bill Gosper, Jul 20 2015 *)
a[1]=1;a[2]=2;a[n_]:=(a[n-1]+1)^2/a[n-2];a/@Range[25] (* Bradley Klee, Jul 25 2015 *)
LinearRecurrence[{7,-7,1},{1,2,9},30] (* Harvey P. Dale, Dec 06 2015 *)
-
Vec((1-5*x+2*x^2)/((1-x)*(1-6*x+x^2))+O(x^66)) /* Joerg Arndt, Mar 06 2013 */
-
t(n)=(1+sqrt(2))^(n-1);
for(k=1,24,print1(round((1/4)*(t(k)^2 + t(k)^(-2) + 2)),", ")) \\ Hugo Pfoertner, Nov 29 2019
-
a(n) = (1 + polchebyshev(n-1, 1, 3))/2; \\ Michel Marcus, Apr 21 2020
A118674
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31)^2 = y^2.
Original entry on oeis.org
0, 9, 60, 93, 140, 429, 620, 893, 2576, 3689, 5280, 15089, 21576, 30849, 88020, 125829, 179876, 513093, 733460, 1048469, 2990600, 4274993, 6111000, 17430569, 24916560, 35617593, 101592876, 145224429, 207594620, 592126749, 846430076
Offset: 1
-
I:=[0,9,60,93,140,429,620]; [n le 7 select I[n] else Self(n-1) - 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
-
ClearAll[a]; Evaluate[Array[a, 6]] = {0, 9, 60, 93, 140, 429}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 62; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,9,60,93,140,429,620}, 50] (* G. C. Greubel, Mar 31 2018 *)
-
{forstep(n=0, 850000000, [1, 3], if(issquare(2*n^2+62*n+961), print1(n, ",")))};
A129836
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 97)^2 = y^2.
Original entry on oeis.org
0, 15, 228, 291, 368, 1575, 1940, 2387, 9416, 11543, 14148, 55115, 67512, 82695, 321468, 393723, 482216, 1873887, 2295020, 2810795, 10922048, 13376591, 16382748, 63658595, 77964720, 95485887, 371029716, 454411923, 556532768
Offset: 1
-
m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(15+213*x+63*x^2-13*x^3-71*x^4-13*x^5)/((1-x)*(1-6*x^3 + x^6)))); // G. C. Greubel, May 07 2018
-
ClearAll[a]; Evaluate[Array[a, 6]] = {0, 15, 228, 291, 368, 1575}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 194; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,15,228,291,368,1575,1940}, 50] (* G. C. Greubel, May 07 2018 *)
-
forstep(n=0, 600000000, [3, 1], if(issquare(2*n^2+194*n+9409), print1(n, ",")))
Comments