A002697
a(n) = n*4^(n-1).
Original entry on oeis.org
0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0
From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
- Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Danny Rorabaugh, Table of n, a(n) for n = 0..1000
- F. Ellermann, Illustration of binomial transforms
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 414
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Constantinos Kourouzides, A double counting argument on the hypercube graph
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A000051,
A000302,
A000984,
A001792,
A002457,
A002699,
A027656,
A038231,
A082134,
A083672,
A125145,
A128235,
A133224,
A212698.
-
A002697:=1/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
A002697:=n->n*4^(n-1): seq(A002697(n), n=0..30); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n 4^(n - 1), {n, 0, 30}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{8, -16}, {0, 1}, 30] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[x/(1 - 4 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
a(n)=if(n<0,0,n*4^(n-1))
-
[n*4^(n-1) for n in range(22)] # Danny Rorabaugh, Mar 27 2015
A124734
Table with all compositions sorted first by total, then by length and finally lexicographically.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 1, 1, 4, 1, 2, 3, 1, 3, 2, 1, 4, 1, 2, 1
Offset: 1
The table starts:
1
2; 1 1
3; 1 2; 2 1; 1 1 1
4; 1 3; 2 2; 3 1; 1 1 2; 1 2 1; 2 1 1; 1 1 1 1;
-
Table[Sort@Flatten[Permutations /@ IntegerPartitions@n, 1], {n, 8}] // Flatten (* Robert Price, Jun 13 2020 *)
A008949
Triangle read by rows of partial sums of binomial coefficients: T(n,k) = Sum_{i=0..k} binomial(n,i) (0 <= k <= n); also dimensions of Reed-Muller codes.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 6, 16, 26, 31, 32, 1, 7, 22, 42, 57, 63, 64, 1, 8, 29, 64, 99, 120, 127, 128, 1, 9, 37, 93, 163, 219, 247, 255, 256, 1, 10, 46, 130, 256, 382, 466, 502, 511, 512, 1, 11, 56, 176, 386, 638, 848, 968, 1013, 1023, 1024, 1, 12, 67, 232, 562, 1024, 1486, 1816, 1981, 2036, 2047, 2048
Offset: 0
Triangle begins:
1;
1, 2;
1, 3, 4;
1, 4, 7, 8;
1, 5, 11, 15, 16;
1, 6, 16, 26, 31, 32;
1, 7, 22, 42, 57, 63, 64;
1, 8, 29, 64, 99, 120, 127, 128;
1, 9, 37, 93, 163, 219, 247, 255, 256;
1, 10, 46, 130, 256, 382, 466, 502, 511, 512;
1, 11, 56, 176, 386, 638, 848, 968, 1013, 1023, 1024;
...
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 376.
- Harvey P. Dale, Table of n, a(n) for n = 0..10000
- Milica Andelic, C. M. da Fonseca and A. Pereira, The mu-permanent, a new graph labeling, and a known integer sequence, arXiv:1609.04208 [math.CO], 2016.
- Stefan Forcey, Planes and axioms, Univ. Akron (2024). See p. 2.
- Stefan Forcey, Counting plane arrangements via oriented matroids, arXiv:2504.11461 [math.HO], 2025. See p. 18.
- Rob Johnson, Dividing Space.
- Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Dennis P. Walsh, A note on counting subsets of restricted size
- Wikipedia, Bernoulli's triangle
- Index entries for triangles and arrays related to Pascal's triangle
Columns are given by
A000012,
A000027,
A000124,
A000125,
A000127,
A006261,
A008859,
A008860,
A008861,
A008862,
A008863. -
Ken Shirriff, Jun 28 2011
-
T:=Flat(List([0..11],n->List([0..n],k->Sum([0..k],j->Binomial(n+j-k-1,j)*2^(k-j))))); # Muniru A Asiru, Nov 25 2018
-
a008949 n k = a008949_tabl !! n !! k
a008949_row n = a008949_tabl !! n
a008949_tabl = map (scanl1 (+)) a007318_tabl
-- Reinhard Zumkeller, Nov 23 2012
-
[[(&+[Binomial(n,j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 25 2018
-
A008949 := proc(n,k) local i; add(binomial(n,i),i=0..k) end; # Typo corrected by R. J. Mathar, Oct 26 2010
-
Table[Length[Select[Subsets[n], (Length[ # ] <= k) &]], {n, 0, 12}, {k, 0, n}] // Grid (* Geoffrey Critzer, May 13 2009 *)
Flatten[Accumulate/@Table[Binomial[n,i],{n,0,20},{i,0,n}]] (* Harvey P. Dale, Aug 08 2015 *)
T[ n_, k_] := If[ n < 0 || k > n, 0, Binomial[n, k] Hypergeometric2F1[1, -k, n + 1 - k, -1]]; (* Michael Somos, Aug 05 2017 *)
-
A008949(n)=T8949(t=sqrtint(2*n-sqrtint(2*n)),n-t*(t+1)/2)
T8949(r,c)={ 2*c > r || return(sum(i=0,c,binomial(r,i))); 1<M. F. Hasler, May 30 2010
-
{T(n, k) = if(k>n, 0, sum(i=0, k, binomial(n, i)))}; /* Michael Somos, Aug 05 2017 */
-
row(n) = my(v=vector(n+1, k, binomial(n,k-1))); vector(#v, k, sum(i=1, k, v[i])); \\ Michel Marcus, Apr 13 2025
-
[[sum(binomial(n,j) for j in range(k+1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 25 2018
More terms from Larry Reeves (larryr(AT)acm.org), Mar 23 2000
A083710
Number of integer partitions of n with a part dividing all the other parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 11, 12, 20, 25, 37, 43, 70, 78, 114, 143, 196, 232, 330, 386, 530, 641, 836, 1003, 1340, 1581, 2037, 2461, 3127, 3719, 4746, 5605, 7038, 8394, 10376, 12327, 15272, 17978, 22024, 26095, 31730, 37339, 45333, 53175, 64100, 75340, 90138
Offset: 0
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (41) (33) (61)
(111) (31) (221) (42) (331)
(211) (311) (51) (421)
(1111) (2111) (222) (511)
(11111) (321) (2221)
(411) (3211)
(2211) (4111)
(3111) (22111)
(21111) (31111)
(111111) (211111)
(1111111)
(End)
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
The version for "divisible by" instead of "dividing" is
A130689.
The case where there is also a part divisible by all the others is
A130714.
The complement of these partitions is counted by
A338470.
The Heinz numbers of these partitions are dense, complement of
A342193.
The case where there is also no part divisible by all the others is
A343345.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-0 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 0 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
-
Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
A228369
Triangle read by rows in which row n lists the compositions (ordered partitions) of n in lexicographic order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 1, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1
Illustration of initial terms:
-----------------------------------
n j Diagram Composition j
-----------------------------------
. _
1 1 |_| 1;
. _ _
2 1 | |_| 1, 1,
2 2 |_ _| 2;
. _ _ _
3 1 | | |_| 1, 1, 1,
3 2 | |_ _| 1, 2,
3 3 | |_| 2, 1,
3 4 |_ _ _| 3;
. _ _ _ _
4 1 | | | |_| 1, 1, 1, 1,
4 2 | | |_ _| 1, 1, 2,
4 3 | | |_| 1, 2, 1,
4 4 | |_ _ _| 1, 3,
4 5 | | |_| 2, 1, 1,
4 6 | |_ _| 2, 2,
4 7 | |_| 3, 1,
4 8 |_ _ _ _| 4;
.
Triangle begins:
[1];
[1,1],[2];
[1,1,1],[1,2],[2,1],[3];
[1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4];
[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,1,3],[1,2,1,1],[1,2,2],[1,3,1],[1,4],[2,1,1,1],[2,1,2],[2,2,1],[2,3],[3,1,1],[3,2],[4,1],[5];
...
-
a228369 n = a228369_list !! (n - 1)
a228369_list = concatMap a228369_row [1..]
a228369_row 0 = []
a228369_row n
| 2^k == 2 * n + 2 = [k - 1]
| otherwise = a228369_row (n `div` 2^k) ++ [k] where
k = a007814 (n + 1) + 1
-- Peter Kagey, Jun 27 2016
-
Table[Sort[Join@@Permutations/@IntegerPartitions[n],OrderedQ[PadRight[{#1,#2}]]&],{n,5}] (* Gus Wiseman, Dec 14 2017 *)
-
gen_comp(n)=
{ /* Generate compositions of n as lists of parts (order is lex): */
my(ct = 0);
my(m, z, pt);
\\ init:
my( a = vector(n, j, 1) );
m = n;
while ( 1,
ct += 1;
pt = vector(m, j, a[j]);
/* for A228369 print composition: */
for (j=1, m, print1(pt[j],", ") );
\\ /* for A228525 print reversed (order is colex): */
\\ forstep (j=m, 1, -1, print1(pt[j],", ") );
if ( m<=1, return(ct) ); \\ current is last
a[m-1] += 1;
z = a[m] - 2;
a[m] = 1;
m += z;
);
return(ct);
}
for(n=1, 12, gen_comp(n) );
\\ Joerg Arndt, Sep 02 2013
-
a = [[[]], [[1]]]
for s in range(2, 9):
a.append([])
for k in range(1, s+1):
for ss in a[s-k]:
a[-1].append([k]+ss)
print(a)
# Andrey Zabolotskiy, Jul 19 2017
A006234
a(n) = n*3^(n-4).
Original entry on oeis.org
1, 4, 15, 54, 189, 648, 2187, 7290, 24057, 78732, 255879, 826686, 2657205, 8503056, 27103491, 86093442, 272629233, 860934420, 2711943423, 8523250758, 26732013741, 83682825624, 261508830075, 815907549834, 2541865828329
Offset: 3
For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): [3]; [2,1]; [1,2]; [2],[1]; [1],[2]; [1,1,1]; [1,1],[1]; [1],[1,1]; [1],[1],[1]. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - _Gregory L. Simay_, May 27 2017
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Book Graph.
- Eric Weisstein's World of Mathematics, Spanning Tree.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
-
[ n*3^(n-4): n in [3..30] ]; // Vincenzo Librandi, Aug 19 2011
-
Table[n 3^(n-4), {n, 3, 30}] (* or *)
CoefficientList[Series[(1-2 x)/(1-3 x)^2, {x,0,30}], x] (* Michael De Vlieger, May 28 2017 *)
LinearRecurrence[{6,-9},{1,4},30] (* Harvey P. Dale, Aug 17 2020 *)
-
a(n)=n*3^(n-4) \\ Charles R Greathouse IV, Sep 24 2015
-
[n*3^(n-4) for n in range(3,31)] # G. C. Greubel, Dec 27 2023
A228525
Triangle read by rows in which row n lists the compositions (ordered partitions) of n in colexicographic order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 4, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 3, 2, 1, 1, 3, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1
Offset: 1
Illustration of initial terms:
---------------------------------
n j Diagram Composition
---------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_| | 1, 1,
2 2 |_ _| 2;
. _ _ _
3 1 |_| | | 1, 1, 1,
3 2 |_ _| | 2, 1,
3 3 |_| | 1, 2,
3 4 |_ _ _| 3;
. _ _ _ _
4 1 |_| | | | 1, 1, 1, 1,
4 2 |_ _| | | 2, 1, 1,
4 3 |_| | | 1, 2, 1,
4 4 |_ _ _| | 3, 1,
4 5 |_| | | 1, 1, 2,
4 6 |_ _| | 2, 2,
4 7 |_| | 1, 3,
4 8 |_ _ _ _| 4;
.
Triangle begins:
[1];
[1,1],[2];
[1,1,1],[2,1],[1,2],[3];
[1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4];
[1,1,1,1,1],[2,1,1,1],[1,2,1,1],[3,1,1],[1,1,2,1],[2,2,1],[1,3,1],[4,1],[1,1,1,2],[2,1,2],[1,2,2],[3,2],[1,1,3],[2,3],[1,4],[5];
-
gen_comp(n)=
{ /* Generate compositions of n as lists of parts (order is lex): */
my(ct = 0);
my(m, z, pt);
\\ init:
my( a = vector(n, j, 1) );
m = n;
while ( 1,
ct += 1;
pt = vector(m, j, a[j]);
\\ /* for A228369 print composition: */
\\ for (j=1, m, print1(pt[j],", ") );
/* for A228525 print reversed (order is colex): */
forstep (j=m, 1, -1, print1(pt[j],", ") );
if ( m<=1, return(ct) ); \\ current is last
a[m-1] += 1;
z = a[m] - 2;
a[m] = 1;
m += z;
);
return(ct);
}
for(n=1, 12, gen_comp(n) );
\\ Joerg Arndt, Sep 02 2013
Original entry on oeis.org
1, 1, 3, 7, 16, 36, 80, 176, 384, 832, 1792, 3840, 8192, 17408, 36864, 77824, 163840, 344064, 720896, 1507328, 3145728, 6553600, 13631488, 28311552, 58720256, 121634816, 251658240, 520093696, 1073741824, 2214592512, 4563402752
Offset: 0
G.f. = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 36*x^5 + 80*x^6 + ... - _Michael Somos_, Mar 26 2022
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Frank Ellermann, Illustration of binomial transforms
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Thomas Selig and Haoyue Zhu, New combinatorial perspectives on MVP parking functions and their outcome map, arXiv:2309.11788 [math.CO], 2023. See p. 29.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
[1,1] cat [(n+4)*2^(n-3): n in [2..40]]; // G. C. Greubel, Sep 27 2022
-
Join[{1,1,a=3,b=7},Table[c=4*b-4*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
Table[ If[n<2, 1, 2^(n-3)*(n+4)], {n, 0, 30}] (* Jean-François Alcover, Sep 12 2012 *)
LinearRecurrence[{4,-4},{1,1,3,7},40] (* Harvey P. Dale, May 03 2019 *)
-
v=[1,1,3,7];for(i=1,99,v=concat(v,4*(v[#v]-v[#v-1])));v \\ Charles R Greathouse IV, Jun 01 2011
-
[1,1]+[(n+4)*2^(n-3) for n in range(2,40)] # G. C. Greubel, Sep 27 2022
A055248
Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 3 1
3: 8 7 4 1
4: 16 15 11 5 1
5: 32 31 26 16 6 1
6: 64 63 57 42 22 7 1
7: 128 127 120 99 64 29 8 1
8: 256 255 247 219 163 93 37 9 1
9: 512 511 502 466 382 256 130 46 10 1
10: 1024 1023 1013 968 848 638 386 176 56 11 1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
1;
-2, 1;
2, -3, 1;
-2, 5, -4, 1;
2, -7, 9, -5, 1;
-2, 9, -16, 14, -6, 1;
2, -11, 25,- 30, 20, -7, 1;
-2, 13, -36, 55, -50, 27, -8, 1;
2, -15, 49, -91, 105, -77, 35, -9, 1;
-2, 17, -64, 140, -196, 182, -112, 44, -10, 1;
2, -19, 81, -204, 336, -378, 294, -156, 54, -11, 1;
...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|4 3 1 ||0 2 1 ||0 0 1 |... = |4 5 1 |
|8 7 4 1 ||0 4 3 1 ||0 0 2 1 | |8 19 9 1 |
|... ||0 8 7 4 1 ||0 0 4 3 1| |... |
|... ||... ||... | | |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1 \ /1 \ /1 1 1 1 ...\ /1 1 1 1 ...\
|1 1 ||1 1 ||0 1 2 3 ... | |2 3 4 5 ... |
|1 2 1 ||1 1 1 ||0 0 1 3 ... | = |4 7 11 16 ... |
|1 3 3 1 ||1 1 1 1 ||0 0 0 1 ... | |8 15 26 42 ... |
|... ||... ||... | |... |
- _Peter Bala_, Jan 13 2016
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- Peter Bala, A055248: Rapidly converging series for log(2) and Pi
- Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Column sequences:
A000079 (powers of 2, m=0),
A000225 (m=1),
A000295 (m=2),
A002662 (m=3),
A002663 (m=4),
A002664 (m=5),
A035038 (m=6),
A035039 (m=7),
A035040 (m=8),
A035041 (m=9),
A035042 (m=10).
-
a055248 n k = a055248_tabl !! n !! k
a055248_row n = a055248_tabl !! n
a055248_tabl = map reverse a008949_tabl
-- Reinhard Zumkeller, Jun 20 2015
-
T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
-
a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* Peter Luschny, Oct 06 2023 *)
A059570
Number of fixed points in all 231-avoiding involutions in S_n.
Original entry on oeis.org
1, 2, 6, 14, 34, 78, 178, 398, 882, 1934, 4210, 9102, 19570, 41870, 89202, 189326, 400498, 844686, 1776754, 3728270, 7806066, 16311182, 34020466, 70837134, 147266674, 305718158, 633805938, 1312351118, 2714180722, 5607318414, 11572550770, 23860929422
Offset: 1
a(3) = 6 because in the 231-avoiding involutions of {1,2,3}, i.e., in 123, 132, 213, 321, we have altogether 6 fixed points (3+1+1+1).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- Brian Hopkins, Andrew V. Sills, Thotsaporn "Aek" Thanatipanonda, and Hua Wang, Parts and subword patterns in compositions, Preprint 2015.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
-
[(3*n+4)*2^n/18-2*(-1)^n/9: n in [1..40]]; // Vincenzo Librandi, May 01 2017
-
LinearRecurrence[{3,0,-4},{1,2,6},30] (* Harvey P. Dale, Dec 29 2013 *)
Table[(3 n + 4) 2^n/18 - 2 (-1)^n/9, {n, 30}] (* Vincenzo Librandi, May 01 2017 *)
More terms from Eugene McDonnell (eemcd(AT)mac.com), Jan 13 2005
Previous
Showing 21-30 of 215 results.
Next
Comments