cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 202 results. Next

A005823 Numbers whose ternary expansion contains no 1's.

Original entry on oeis.org

0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, 162, 164, 168, 170, 180, 182, 186, 188, 216, 218, 222, 224, 234, 236, 240, 242, 486, 488, 492, 494, 504, 506, 510, 512, 540, 542, 546, 548, 558, 560, 564, 566, 648, 650, 654, 656, 666, 668, 672, 674
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no 1's in their ternary expansion is the well-known Cantor set with Hausdorff dimension log 2 / log 3.
Complement of A081606. - Reinhard Zumkeller, Mar 23 2003
Numbers k such that the k-th Apery number is congruent to 1 (mod 3) (cf. A005258). - Benoit Cloitre, Nov 30 2003
Numbers k such that the k-th central Delannoy number is congruent to 1 (mod 3) (cf. A001850). - Benoit Cloitre, Nov 30 2003
Numbers k such that there exists a permutation p_1, ..., p_k of 1, ..., k such that i + p_i is a power of 3 for every i. - Ray Chandler, Aug 03 2004
Subsequence of A125292. - Reinhard Zumkeller, Nov 26 2006
The first 2^n terms of the sequence could be obtained using the Cantor process for the segment [0,3^n-1]. E.g., for n=2 we have [0,{1},2,{3,4,5},6,{7},8]. The numbers outside of braces are the first 4 terms of the sequence. Therefore the terms of the sequence could be called "Cantor's numbers". - Vladimir Shevelev, Jun 13 2008
Mahler proved that positive a(n) is never a square. - Michel Marcus, Nov 12 2012
Define t: Z -> P(R) so that t(k) is the translated Cantor ternary set spanning [k, k+1], and let T be the union of t(a(n)) for all n. T = T * 3 = T / 3 is the closure of the Cantor ternary set under multiplication by 3. - Peter Munn, Oct 30 2019

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 14.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Twice A005836.
Cf. A088917 (characteristic function), A306556.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=1, 0, `if`(irem (n, 2, 'q')=0, 3*a(q)+2, 3*a(q+1)))
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, Apr 19 2012
  • Mathematica
    Select[ Range[ 0, 729 ], (Count[ IntegerDigits[ #, 3 ], 1 ]==0)& ]
    Select[Range[0,700],DigitCount[#,3,1]==0&] (* Harvey P. Dale, Mar 12 2016 *)
  • PARI
    is(n)=while(n,if(n%3==1,return(0),n\=3));1 \\ Charles R Greathouse IV, Apr 20 2012
    
  • PARI
    a(n)=n=binary(n-1);sum(i=1,#n,2*n[i]*3^(#n-i)) \\ Charles R Greathouse IV, Apr 20 2012
    
  • PARI
    a(n)=2*fromdigits(binary(n-1),3) \\ Charles R Greathouse IV, Aug 24 2016
    
  • Python
    def A005823(n):
        return 2*int(format(n-1,'b'),3) # Chai Wah Wu, Jan 04 2015

Formula

a(n) = 2 * A005836(n).
a(2n) = 3*a(n)+2, a(2n+1) = 3*a(n+1), a(1) = 0.
a(n) = Sum_{k = 1..n} 1 + 3^A007814(k). - Philippe Deléham, Jul 09 2005
A125291(a(n)) = 1 for n>0. - Reinhard Zumkeller, Nov 26 2006
From Reinhard Zumkeller, Mar 02 2008: (Start)
A062756(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n)+1, a(n)+1) where f(x, y) = if x < 3 and x <> 1 then y else if x mod 3 = 1 then f(y+1, y+1) else f(floor(x/3), y). (End)
G.f. g(x) satisfies g(x) = 3*g(x^2)*(1+1/x) + 2*x^2/(1-x^2). - Robert Israel, Jan 04 2015
Sum_{n>=2} 1/a(n) = 1.341426555483087715426958452292349687410838545707857407585878304836140592352... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

More terms from Sascha Kurz, Mar 24 2002
Offset corrected by N. J. A. Sloane, Mar 02 2008. This may require some of the formulas to be adjusted.

A003724 Number of partitions of n-set into odd blocks.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 37, 128, 457, 1872, 8169, 37600, 188685, 990784, 5497741, 32333824, 197920145, 1272660224, 8541537105, 59527313920, 432381471509, 3252626013184, 25340238127989, 204354574172160, 1699894200469849, 14594815769038848, 129076687233903673
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 37*x^6 + 128*x^7 + 457*x^8 + ...
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 225, 2nd line of table.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A136630 for the table of partitions of an n-set into k odd blocks.
For partitions into even blocks see A005046 and A156289.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*irem(j, 2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    a[n_] := Sum[((-1)^i*(k - 2*i)^n*Binomial[k, i])/(2^k*k!), {k, 1, n}, {i, 0, k}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Dec 21 2011, after Vladimir Kruchinin *)
    With[{nn=30},CoefficientList[Series[Exp[Sinh[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Apr 06 2012 *)
    Table[Sum[BellY[n, k, Mod[Range[n], 2]], {k, 0, n}], {n, 0, 24}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Maxima
    a(n):=sum(1/2^k*sum((-1)^i*binomial(k,i)*(k-2*i)^n,i,0,k)/k!,k,1,n); /* Vladimir Kruchinin, Aug 22 2010 */

Formula

E.g.f.: exp ( sinh x ).
a(n) = sum(1/2^k*sum((-1)^i*C(k,i)*(k-2*i)^n, i=0..k)/k!, k=1..n). - Vladimir Kruchinin, Aug 22 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A002017 and A009623. - Peter Bala, Dec 06 2011
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * a(n-2*k-1). - Ilya Gutkovskiy, Jul 11 2021
O.g.f A(X) satisfies A(x) = 1 + x*( A(x/(1-x))/(1-x) + A(x/(1+x))/(1+x) )/2. - Paul D. Hanna, Aug 19 2024

A001705 Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).

Original entry on oeis.org

0, 1, 5, 26, 154, 1044, 8028, 69264, 663696, 6999840, 80627040, 1007441280, 13575738240, 196287356160, 3031488633600, 49811492505600, 867718162483200, 15974614352793600, 309920046408806400, 6320046028584960000, 135153868608460800000, 3024476051557847040000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the sum of the positions of the right-to-left minima in all permutations of [n]. Example: a(3)=26 because the positions of the right-to-left minima in the permutations 123,132,213,231,312 and 321 are 123, 13, 23, 3, 23 and 3, respectively and 1 + 2 + 3 + 1 + 3 + 2 + 3 + 3 + 2 + 3 + 3 = 26. - Emeric Deutsch, Sep 22 2008
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=2) ~ exp(-x)/x^2*(1 - 5/x + 26/x^2 - 154/x^3 + 1044/x^4 - 8028/x^5 + 69264/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the total number of cycles (excluding fixed points) in all permutations of [n+1]. - Olivier Gérard, Oct 23 2012; Dec 31 2012
A length n sequence is formed by randomly selecting (one-by-one) n real numbers in (0,1). a(n)/(n+1)! is the expected value of the sum of the new maximums in such a sequence. For example for n=3: If we select (in this order): 0.591996, 0.646474, 0.163659 we would add 0.591996 + 0.646474 which would be a bit above the average of a(3)/4! = 26/24. - Geoffrey Critzer, Oct 17 2013

Examples

			(1-x)^-2 * (-log(1-x)) = x + 5/2*x^2 + 13/3*x^3 + 77/12*x^4 + ...
Examples: a(6) = 6!*(1/6 + 2/5 + 3/4 + 4/3 + 5/2 + 6/1) = 8028; a(20) = 20!*(1/20 + 2/19 + 3/18 + 4/17 + 5/16 + ... + 16/5 + 17/4 + 18/3 + 19/2 + 20/1) = 135153868608460800000. - _Alexander Adamchuk_, Oct 09 2004
From _Olivier Gérard_, Dec 31 2012: (Start)
The cycle decomposition of all permutations of 4 elements gives the following list: {{{1},{2},{3},{4}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4,3}}, {{1},{2,3,4}}, {{1},{2,4},{3}}, {{1,2},{3},{4}}, {{1,2},{3,4}}, {{1,3,2},{4}},{{1,4,3,2}}, {{1,3,4,2}}, {{1,4,2},{3}}, {{1,2,3},{4}}, {{1,2,4,3}},{{1,3},{2},{4}}, {{1,4,3},{2}}, {{1,3},{2,4}}, {{1,4,2,3}}, {{1,2,3,4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{1,4},{2},{3}}, {{1,3,2,4}}, {{1,4},{2,3}}}.
Deleting the fixed points gives the following 26 items: {{3,4}, {2,3}, {2,4,3}, {2,3,4}, {2,4}, {1,2}, {1,2}, {3,4}, {1,3,2}, {1,4,3,2}, {1,3,4,2}, {1,4,2}, {1,2,3}, {1,2,4,3}, {1,3}, {1,4,3}, {1,3}, {2,4}, {1,4,2,3}, {1,2,3,4}, {1,2,4}, {1,3,4}, {1,4}, {1,3,2,4}, {1,4}, {2,3}}. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000254 (total number of cycles in permutations, including fixed points).
Cf. A002104 (number of different cycles in permutations, without fixed points).
Cf. A006231 (number of different cycles in permutations, including fixed points).
Related to n!*the k-th successive summation of the harmonic numbers:
(k=0) A000254, (k=1) A001705, (k=2) A001711, (k=3) A001716,
(k=4) A001721, (k=5) A051524, (k=6) A051545, (k=7) A051560,
(k=8) A051562, (k=9) A051564.

Programs

  • Maple
    a := n-> add((n+1)!/k, k=2..n+1): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008; edited Johannes W. Meijer, Nov 28 2012
    a := n -> ((n+1)!*(h(n+1)-1)): h := n-> harmonic(n): seq(a(n), n=0..21); # Gary Detlefs, Dec 18 2009; corrected by Johannes W. Meijer, Nov 28 2012
  • Mathematica
    Table[n!*Sum[Sum[1/k,{k,1,m}], {m,1,n}], {n,0,20}] (* Alexander Adamchuk, Apr 14 2006 *)
    a[n_] := (n + 1)! (EulerGamma - 1 + PolyGamma[n + 2]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 19 2022 *)
  • Maxima
    a(n):=n!*sum(((-1)^(k+1)*binomial(n+1,k+1))/k,k,1,n); /* Vladimir Kruchinin, Oct 10 2016 */
    
  • PARI
    for(n=0,25, print1(n!*sum(k=0,n-1,(k+1)/(n-k)), ", ")) \\ G. C. Greubel, Jan 20 2017
    
  • Python
    from math import factorial
    def A001705(n):
        f = factorial(n)
        return sum(f*(k+1)//(n-k) for k in range(n)) # Chai Wah Wu, Jun 23 2022

Formula

Partial sum of first n harmonic numbers multiplied by n!.
a(n) = n!*Sum_{m=1..n} Sum_{k=1..m} 1/k = n!*Sum_{m=1..n} H(m), where H(m) = Sum_{k=1..m} 1/k = A001008(m)/A002805(m) is m-th Harmonic number.
E.g.f.: - log (1 - x) / (1 - x)^2.
a(n) = (n+1)! * H(n) - n*n!, H(n) = Sum_{k=1..n} (1/k).
a(n) = A112486(n, 1).
a(n) = a(n-1)*(n+1) + n! = A000254(n+1) - A000142(n+1) = A067176(n+1, 1). - Henry Bottomley, Jan 09 2002
a(n) = Sum_{k=0..n-1} ((-1)^(n-1+k) * (k+1) * 2^k * Stirling1(n, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=1..n} (k*StirlingCycle(n+1,k+1)). - David Callan, Sep 25 2006
a(n) = Sum_{k=n..n*(n+1)/2} k*A143947(n,k). - Emeric Deutsch, Sep 22 2008
For n >= 1, a(n) = Sum_{j=0..n-1} ((-1)^(n-j-1) * 2^j * (j+1) * Stirling1(n,j+1)). - Milan Janjic, Dec 14 2008
a(n) = (2*n+1)*a(n-1) - n^2*a(n-2). - Gary Detlefs, Nov 27 2009
a(n) = (n+1)!*(H(n+1) - 1) where H(n) is the n-th harmonic number. - Gary Detlefs, Dec 18 2009
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n+1,k+1)/k. - Vladimir Kruchinin, Oct 10 2016
a(n) = (n+1)!*Sum_{k = 1..n} (-1)^(k+1)*binomial(n+1,k+1)*k/(k+1). - Peter Bala, Feb 15 2022
a(n) = Gamma(n + 2) * (Digamma(n + 2) + EulerGamma - 1). - Peter Luschny, Feb 19 2022
From Mélika Tebni, Jun 22 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A066667(n, k+1).
a(n) = Sum_{k=0..n} k!*A132159(n, k+1). (End)
a(n) = n*(n + 1)!*hypergeom([1, 1, 1 - n], [2, 3], 1)/2. - Peter Luschny, Jun 22 2022

Extensions

More terms from Sascha Kurz, Mar 22 2002

A006077 (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.

Original entry on oeis.org

1, 3, 9, 21, 9, -297, -2421, -12933, -52407, -145293, -35091, 2954097, 25228971, 142080669, 602217261, 1724917221, 283305033, -38852066421, -337425235479, -1938308236731, -8364863310291, -24286959061533, -3011589296289, 574023003011199, 5028616107443691
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: Let W(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. If n == 1 (mod 3) then W(n) = 0. When n == 0 or 2 (mod 3), W(n)*(-1)^(floor((n+1)/3))/6^n is always a positive odd integer. - Zhi-Wei Sun, Aug 21 2013
Conjecture: Let p == 1 (mod 3) be a prime, and write 4*p = x^2 + 27*y^2 with x, y integers and x == 1 (mod 3). Then W(p-1) == (-1)^{(p+1)/2}*(x-p/x) (mod p^2), where W(n) is defined as the above. - Zhi-Wei Sun, Aug 23 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - (x^2*y + y^2*z - z^2*x + 3*x*y*z)), 1/(1 - (x^3 + y^3 - z^3 + 3*x*y*z)), 1/(1 + x^3 + y^3 + z^3 - 3*x*y*z). - Gheorghe Coserea, Aug 04 2018

Examples

			G.f. = 1 + 3*x + 9*x^2 + 21*x^3 + 9*x^4 - 297*x^5 - 2421*x^6 - 12933*x^7 - ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

Related to diagonal of rational functions: A268545-A268555.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    a := n -> 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Nov 01 2017
  • Mathematica
    Table[Sum[(-1)^k*3^(n - 3*k)*Binomial[n, 3*k]*Binomial[2*k, k]* Binomial[3*k, k], {k, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/3, 2/3}, {1}, x^3 / (x - 1/3)^3 ] / (1 - 3 x), {x, 0, n}]; (* Michael Somos, Nov 01 2017 *)
  • PARI
    subst(eta(q)^3/eta(q^3), q, serreverse(eta(q^9)^3/eta(q)^3*q)) \\ (generating function) Helena Verrill (verrill(AT)math.lsu.edu), Apr 20 2009 [for (-1)^n*a(n)]
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(1/(1 + x^3 + y^3 + z^3 - 3*x*y*z), 25)
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 3; a[2] = 9;
      for (n = 2, N-1, a[n+1] = ((9*n^2+9*n+3)*a[n] - 27*n^2*a[n-1])/(n+1)^2);
      concat(1,a);
    };
    seq(24)
    \\ test: y=subst(Ser(seq(202)), 'x, -'x/27); 0 == x*(x^2+9*x+27)*y'' + (3*x^2+18*x+27)*y' + (x+3)*y
    \\ Gheorghe Coserea, Nov 09 2017
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^n * polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))}; /* Michael Somos, Nov 01 2017 */

Formula

G.f.: hypergeom([1/3, 2/3], [1], x^3/(x-1/3)^3) / (1-3*x). - Mark van Hoeij, Oct 25 2011
a(n) = Sum_{k=0..floor(n/3)}(-1)^k*3^(n-3k)*C(n,3k)*C(2k,k)*C(3k,k). - Zhi-Wei Sun, Aug 21 2013
0 = x*(x^2+9*x+27)*y'' + (3*x^2 + 18*x + 27)*y' + (x + 3)*y, where y(x) = A(x/-27). - Gheorghe Coserea, Aug 26 2016
a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1). - Peter Luschny, Nov 01 2017
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 9*x)*T(x) + (-1 + 9*x)^2*T'(x) + x*(1 - 9*x + 27*x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(-8 + 9*(1 - 9*x)^3)*(1 - 9*x);
g3 = 8 - 36*(1 - 9*x)^3 + 27*(1 - 9*x)^6;
which determine an elliptic surface with four singular fibers. (End)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000

A006139 n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.

Original entry on oeis.org

1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904, 110690816, 515483648, 2406449152, 11258054144, 52767312896, 247736643584, 1164829376512, 5484233814016, 25852072517632, 121997903495168
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Delannoy paths (A001850) from (0,0) to (n,n) in which every Northeast step is immediately preceded by an East step. - David Callan, Mar 14 2004
The Hankel transform (see A001906 for definition) of this sequence is A036442 : 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
In general, 1/sqrt(1-4*r*x-4*r*x^2) has e.g.f. exp(2rx)BesselI(0,2r*sqrt((r+1)/r)x), a(n) = Sum_{k=0..n} C(2k,k)*C(k,n-k)*r^k, gives the central coefficient of (1+(2r)x+r(r+1)x^2) and is the (2r)-th binomial transform of 1/sqrt(1-8*C(n+1,2)x^2). - Paul Barry, Apr 28 2005
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H and U steps can have two colors. - N-E. Fahssi, Feb 05 2008
Self-convolution of a(n)/2^n gives Pell numbers A000129(n+1). - Vladimir Reshetnikov, Oct 10 2016
This sequence gives the integer part of an integral approximation to Pi, and also appears in Frits Beukers's "A Rational Approach to Pi" (cf. Links, Example). Despite quality M ~ 0.9058... reported by Beukers, measurements between n = 10000 and 30000 lead to a contentious quality estimate, M ~ 0.79..., at the 99% confidence level. In "Searching for Apéry-Style Miracles" Doron Zeilberger Quotes that M = 0.79119792... and also gives a closed form. The same rational approximation to Pi also follows from time integration on a quartic Hamiltonian surface, 2*H=(q^2+p^2)*(1-4*q*(q-p)). - Bradley Klee, Jul 19 2018, updated Mar 17 2019
Diagonal of rational function 1/(1 - (x + y + x*y^2)). - Gheorghe Coserea, Aug 06 2018

Examples

			G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 136*x^4 + 592*x^5 + 2624*x^6 + 11776*x^7 + ...
J_3 = Integral_{y=0..Pi/4} 4*(4*(sin(y)-cos(y))*sin(y))^3*dy = 32*Pi - (304/3), |J_3| < 1. - _Bradley Klee_, Jul 19 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A110446. A higher-quality Pi approximation: A123178.

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=1/(n-1)*(2*(2*n-3)*a[n-1]+4*(n-2)*a[n-2]); od; a; # Muniru A Asiru, Aug 06 2018
  • Maple
    seq(add(binomial(2*k, k)*binomial(k, n-k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2):
    seq(simplify(A006139(n)), n=0..29); # Peter Luschny, Sep 18 2014
  • Mathematica
    Table[SeriesCoefficient[1/(1-4x-4x^2)^(1/2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 05 2012 *)
    Table[Abs[LegendreP[n, I]] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    Table[Sum[Binomial[2*k, k]*Binomial[k, n - k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
    a[n_] := If[n == 0, 1, Coefficient[(1 + 2 x + 2 x^2)^n, x^n]] (* Emanuele Munarini, Aug 04 2017 *)
    CoefficientList[Series[1/Sqrt[(-4 x^2 - 4 x + 1)], {x, 0, 24}], x] (* Robert G. Wilson v, Jul 28 2018 *)
  • Maxima
    a(n) := coeff(expand((1+2*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 04 2017 */
    
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+2*x^2)^n,n,x); print1(t","))
    
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(2*k,k)*binomial(k,n-k)), ", ")) \\ G. C. Greubel, Feb 28 2017
    
  • PARI
    {a(n) = (-2*I)^n * pollegendre(n, I)}; /* Michael Somos, Aug 04 2018 */
    

Formula

a(n) = Sum_{k=0..n} C(2*k, k)*C(k, n-k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
G.f.: 1/(1-4x-4x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+2x^2)^n. - Paul D. Hanna, Jun 01 2003
Inverse binomial transform of central Delannoy numbers A001850. - David Callan, Mar 14 2004
E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} C(n,2k) * C(2k,k) * 2^(n-k). - Paul Barry, Sep 19 2006
a(n) ~ 2^(n - 3/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012, simplified Jan 31 2023
G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) = 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2). - Peter Luschny, Sep 18 2014
0 = a(n)*(+16*a(n+1) + 24*a(n+2) - 8*a(n+3)) + a(n+1)*(+8*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Oct 13 2016
It appears that Pi/2 = Sum_{n >= 1} (-1)^(n-1)*4^n/(n*a(n-1)*a(n)). - Peter Bala, Feb 20 2017
G.f.: G(x) = (1/(2*Pi))*Integral_{y=0..2*Pi} 1/(1-x*(4*(sin(y)-cos(y))*sin(y)))*dy, also satisfies: (2+4*x)*G(x)-(1-4*x-4*x^2)*G'(x)=0. - Bradley Klee, Jul 19 2018
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit. - Seiichi Manyama, Aug 29 2025

A005046 Number of partitions of a 2n-set into even blocks.

Original entry on oeis.org

1, 1, 4, 31, 379, 6556, 150349, 4373461, 156297964, 6698486371, 337789490599, 19738202807236, 1319703681935929, 99896787342523081, 8484301665702298804, 802221679220975886631, 83877585692383961052499, 9640193854278691671399436, 1211499609050804749310115589
Offset: 0

Views

Author

Keywords

Comments

Conjecture: Taking the sequence modulo an integer k gives an eventually periodic sequence. For example, the sequence taken modulo 10 is [1, 1, 4, 1, 9, 6, 9, 1, 4, 1, 9, 6, 9, 1, 4, 1, 9, 6, 9, ...], with an apparent period [1, 4, 1, 9, 6, 9] beginning at a(1), of length 6. Cf. A006154. - Peter Bala, Apr 12 2023

References

  • Louis Comtet, Analyse Combinatoire Tome II, pages 61-62.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 225, 3rd line of table.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A156289 for the table of partitions of a 2n-set into k even blocks.
For partitions into odd blocks see A003724 and A136630.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add(binomial(2*n-1, 2*k-1) *a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 12 2011
    # second Maple program:
    a := n -> add(binomial(2*n,k)*(-1)^k*BellB(k,1/2)*BellB(2*n-k,1/2), k=0..2*n):
    seq(a(n), n=0..18); # after Emanuele Munarini,_Peter Luschny_, Sep 10 2017
    B := BellMatrix(n -> modp(n, 2), 31): # defined in A264428.
    seq(add(k, k in B[2*n + 1]),n=0..15); # Peter Luschny, Aug 13 2019
  • Mathematica
    NestList[ Factor[ D[#, {x, 2}]] &, Exp[ Cosh[x] - 1], 16] /. x -> 0
    a[0] = 1; a[n_] := Sum[Sum[(i-k)^(2*n)*Binomial[2*k, i]*(-1)^i, {i, 0, k-1}]/(2^(k-1)*k!), {k, 1, 2*n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 07 2015, after Vladimir Kruchinin *)
    Table[Sum[BellY[2 n, k, 1 - Mod[Range[2 n], 2]], {k, 0, 2 n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    With[{nn=40},Abs[Take[CoefficientList[Series[Exp[Cos[x]-1],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]]] (* Harvey P. Dale, Feb 06 2017 *)
  • Maxima
    a(n):= sum(1/k!*sum(binomial(k,m)/(2^(m-1))*sum(binomial(m,j) *(2*j-m)^(2*n), j,0,m/2)*(-1)^(k-m), m,0,k), k,1,2*n); /* Vladimir Kruchinin, Aug 05 2010 */
    
  • Maxima
    a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)*k!),k,1,2*n); /* Vladimir Kruchinin, Oct 04 2012 */
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def a(n): return 1 if n==0 else sum(binomial(2*n - 1, 2*k - 1)*a(n - k) for k in range(1, n + 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Sep 11 2017, after Maple program by Alois P. Heinz

Formula

E.g.f.: exp(cosh(x) - 1) (or exp(cos(x)-1) ).
a(n) = Sum_{k=1..n} binomial(2*n-1, 2*k-1)*a(n-k). - Vladeta Jovovic, Apr 10 2003
a(n) = sum(1/k!*sum(binomial(k,m)/(2^(m-1))*sum(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010
a(n) = Sum_{k=1..2*n} Sum_{i=0..k-1} ((i-k)^(2*n)*binomial(2*k,i)*(-1)^i)/(2^(k-1)*k!), n>0, a(0)=1. - Vladimir Kruchinin, Oct 04 2012
E.g.f.: E(0)-1, where E(k) = 2 + (cosh(x)-1)/(2*k + 1 - (cosh(x)-1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013
a(n) = Sum_{k=0..2*n} binomial(2*n,k)*(-1)^k*S_k(1/2)*S_{2*n-k}( 1/2), where S_n(x) is the n-th Bell polynomial (or exponential polynomial). - Emanuele Munarini, Sep 10 2017

A002002 a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).

Original entry on oeis.org

0, 1, 5, 25, 129, 681, 3653, 19825, 108545, 598417, 3317445, 18474633, 103274625, 579168825, 3256957317, 18359266785, 103706427393, 586889743905, 3326741166725, 18885056428537, 107347191941249, 610916200215241
Offset: 0

Views

Author

Keywords

Comments

From Benoit Cloitre, Jan 29 2002: (Start)
Array interpretation (first row and column are the natural numbers):
1 2 3 ..j ... if b(i,j) = b(i-1,j) + b(i-1,j-1) + b(i,j-1) then a(n+1) = b(n,n)
2 5 .........
.............
i........... b(i,j)
(End)
Number of ordered trees with 2n edges, having root of even degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
Coefficient of x^n in ((1-x)/(1-2x))^n, n>0. - Michael Somos, Sep 24 2003
Number of peaks in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0). Example: a(2)=5 because HH, HU*D, U*DH, UHD, U*DU*D, UU*DD contain 5 peaks (indicated by *). - Emeric Deutsch, Dec 06 2003
a(n) is the total number of HHs in all Schroeder (n+1)-paths. Example: a(2)=5 because UH*HD, H*H*H, UDH*H, H*HUD contain 5 HHs (indicated by *) and the other 18 Schroeder 3-paths contain no HHs. - David Callan, Jul 03 2006
a(n) is the total number of Hs in all Schroeder n-paths. Example: a(2)=5 as the Schroeder 2-paths are HH, DUH, DHU, HDU, DUDU and DDUU, and there are 5 H's. In general, a(n) is the total number of H..Hs (m+1 H's) in all Schroeder (n+m)-paths. - FUNG Cheok Yin, Jun 19 2021
a(n) is the number of points in Z^(n+1) that are L1 (Manhattan) distance <= n from the origin, or the number of points in Z^n that are L1 distance <= n+1 from the origin. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the (n+1)-dimensional cubic lattice as well as the (n+1)-st term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 25 2022 [Edited by Peter Munn, Jan 05 2023]

Examples

			G.f. = x + 5*x^2 + 25*x^3 + 129*x^4 + 681*x^5 + 3653*x^6 + 19825*x^7 + 108545*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002003, Cf. A047781, A001003.
a(n)=T(n, n+1), array T as in A050143.
a(n)=T(n, n+1), array T as in A064861.
Half the first differences of central Delannoy numbers (A001850).
a(n)=T(n, n+1), array T as in A008288.

Programs

  • Magma
    [&+[Binomial(n,k+1)*Binomial(n+k,k): k in [0..n]]: n in [0..21]];  // Bruno Berselli, May 19 2011
    
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i+1),i=1..40);
  • Mathematica
    CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x,0,30}],x]  (* Harvey P. Dale, Mar 17 2011 *)
    a[ n_] := n Hypergeometric2F1[ n + 1, -n + 1, 2, -1] (* Michael Somos, Aug 09 2011 *)
    a[ n_] := With[{m = Abs@n}, Sign[n] Sum[ Binomial[ m, k] Binomial[ m + k - 1, m], {k, m}]]; (* Michael Somos, Aug 09 2011 *)
  • Maxima
    makelist(sum(binomial(n,k+1)*binomial(n+k,k), k, 0, n), n, 0, 21); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    {a(n) = my(m = abs(n)); sign( n) * sum( k=0, m-1, binomial( m, k+1) * binomial( m+k, k))}; /* Michael Somos, Aug 09 2011 */
    
  • PARI
    /* L.g.f.: Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1-x)^(-n)/n! */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)/(1-x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, May 17 2015
  • Sage
    a = lambda n: hypergeometric([1-n, -n], [1], 2) if n>0 else 0
    [simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014
    

Formula

G.f.: ((1-x)/sqrt(1-6*x+x^2)-1)/2. - Emeric Deutsch, Aug 02 2002
E.g.f.: exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+sqrt(2)*BesselI(1, 2*sqrt(2)*x)). - Vladeta Jovovic, Mar 28 2004
a(n) = Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k+1). - Paul Barry, Sep 20 2004
a(n) = n * hypergeom([n + 1, -n + 1], [2], -1) = ((n+1)*LegendreP(n+1,3) - (5*n+3)*LegendreP(n,3))/(2*n) for n > 0. - Mark van Hoeij, Jul 12 2010
G.f.: x*d/dx log(1/(1-x*A006318(x))). - Vladimir Kruchinin, Apr 19 2011
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 09 2011
G.f.: -1 + 1 / ( 1 - x / (1 - 4*x / (1 - x^2 / (1 - 4*x / (1 - x^2 / (1 - 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = Sum_{k=0..n} A201701(n,k)^2 = Sum_{k=0..n} A124182(n,k)^2 for n > 0. - Philippe Deléham, Dec 05 2011
D-finite with recurrence: 2*(6*n^2-12*n+5)*a(n-1)-(n-2)*(2*n-1)*a(n-2)-n*(2*n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n/(2^(5/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 04 2012
D-finite (an alternative): n*a(n) = (6-n)*a(n-6) + (14*n-72)*a(n-5) + (264-63*n)*a(n-4) + 100*(n-3)*a(n-3) + (114-63*n)*a(n-2) + 2*(7*n-6)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k) and n^3*a(n) = Sum_{k=0..n-1} (4*k^3+4*k^2+4*k+1)*binomial(n-1,k)*binomial(n+k,k). For each of the two equalities, both sides satisfy the same recurrence -- this follows from the Zeilberger algorithm. - Zhi-Wei Sun, Aug 30 2014
a(n) = hypergeom([1-n, -n], [1], 2) for n >= 1. - Peter Luschny, Nov 19 2014
Logarithmic derivative of A001003 (little Schroeder numbers). - Paul D. Hanna, May 17 2015
L.g.f.: L(x) = Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1-x)^(-n) / n! = Sum_{n>=1} a(n)*x^n/n where exp(L(x)) = g.f. of A001003. - Paul D. Hanna, May 17 2015
a(n+1) = (1/2^(n+1)) * Sum_{k >= 0} (1/2^k) * binomial(n + k, n)*binomial(n + k, n + 1). - Peter Bala, Mar 02 2017
2*a(n) = A110170(n), n > 0. - R. J. Mathar, Feb 10 2022
a(n) = (LegendreP(n,3) - LegendreP(n-1,3))/2. - Mark van Hoeij, Jul 14 2022
D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
From Peter Bala, Nov 08 2022: (Start)
a(n) = (-1)^(n+1)*hypergeom( [n+1, -n+1], [1], 2) for n >= 1.
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p and all positive integers n and r. (End)
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 1} binomial(2*n-1, n)*x^n/(1 - x)^(2*n) = x + 5*x^2 + 25*x^3 + 129*x^4 + ....
Row sums of A253283. (End)

Extensions

More terms from Clark Kimberling

A262809 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 1, 1, 1, 75, 409, 63, 1, 1, 1, 541, 23917, 16081, 321, 1, 1, 1, 4683, 2244361, 10681263, 699121, 1683, 1, 1, 1, 47293, 308682013, 14638956721, 5552351121, 32193253, 8989, 1, 1, 1, 545835, 58514835289, 35941784497263, 117029959485121, 3147728203035, 1538743249, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2015

Keywords

Comments

Also, A(n,k) is the number of alignments for k sequences of length n each (Slowinski 1998).
Row r > 0 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)), or equivalently to sqrt(r) * (r^(r-1)/(r-1)!)^n * (n!)^r / (2^r * (Pi*n)^((r-1)/2) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
From Vaclav Kotesovec, Mar 23 2016: (Start)
Column k > 0 is asymptotic to sqrt(c(k)) * d(k)^n / (Pi*n)^((k-1)/2), where c(k) and d(k) are roots of polynomial equations of degree k, independent on n.
---------------------------------------------------
k d(k)
---------------------------------------------------
2 5.8284271247461900976033774484193...
3 56.9476283720414911685286267804411...
4 780.2794068067951456595241495989622...
5 13755.2719024115081712083954421541320...
6 296476.9162644200814909862281498491264...
7 7553550.6198338218721069097516499501996...
8 222082591.6017202421029000117685530884167...
9 7400694480.0494436216324852038000444393262...
10 275651917450.6709238286995776605620357737005...
---------------------------------------------------
d(k) is a root of polynomial:
---------------------------------------------------
k=2, 1 - 6*d + d^2
k=3, -1 + 3*d - 57*d^2 + d^3
k=4, 1 - 12*d - 218*d^2 - 780*d^3 + d^4
k=5, -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5
k=6, 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6
k=7, -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7
k=8, 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8
(End)
d(k) = (2^(1/k) - 1)^(-k). - David Bevan, Apr 07 2022
d(k) is asymptotic to (k/log(2))^k/sqrt(2). - David Bevan, Apr 07 2022
A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column. - Andrew Howroyd, Jan 23 2020

Examples

			A(2,2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
Square array A(n,k) begins:
  1, 1,    1,        1,             1,                   1, ...
  1, 1,    3,       13,            75,                 541, ...
  1, 1,   13,      409,         23917,             2244361, ...
  1, 1,   63,    16081,      10681263,         14638956721, ...
  1, 1,  321,   699121,    5552351121,     117029959485121, ...
  1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, ...
		

Crossrefs

Columns: A000012 (k=0 and k=1), A001850 (k=2), A126086 (k=3), A263064 (k=4), A263065 (k=5), A263066 (k=6), A263067 (k=7), A263068 (k=8), A263069 (k=9), A263070 (k=10).
Rows: A000012 (n=0), A000670 (n=1), A055203 (n=2), A062208 (n=3), A062205 (n=4), A263061 (n=5), A263062 (n=6), A062204 (n=7), A263063 (n=8), A263071 (n=9), A263072 (n=10).
Main diagonal: A262810.

Programs

  • Maple
    A:= (n, k)-> add(add((-1)^i*binomial(j, i)*
         binomial(j-i, n)^k, i=0..j), j=0..k*n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[, 0] =  1; A[n, k_] := Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 22 2016, after Alois P. Heinz *)
  • PARI
    T(n,k) = {my(m=n*k); sum(j=0, m, binomial(j,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020

Formula

A(n,k) = Sum_{j=0..k*n} Sum_{i=0..j} (-1)^i*C(j,i)*C(j-i,n)^k.
A(n,k) = Sum_{i >= 0} binomial(i,n)^k/2^(i+1). - Peter Bala, Jan 30 2018
A(n,k) = Sum_{j=0..n*k} binomial(j,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020

A002897 a(n) = binomial(2n,n)^3.

Original entry on oeis.org

1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000
Offset: 0

Views

Author

Keywords

Comments

Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016
Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022

References

  • S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Magma
    [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];
    Table[Binomial[2n,n]^3,{n,0,20}] (* Harvey P. Dale, Dec 06 2017 *)
  • PARI
    {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */
    
  • Sage
    [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009
    

Formula

Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007
G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007
G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - Mark van Hoeij, Nov 17 2011
D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016
0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016
It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - Peter Bala, Sep 21 2021
From Peter Bala, Sep 24 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).
a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)
a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - Peter Bala, Jul 09 2024
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(2*n, k). Cf. A183204. - Peter Bala, Oct 12 2024
From Peter Bala, Oct 16 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k, k)*A108625(n, k) = 8 * Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n-1, k)*binomial(2*n+k-1, k)*A108625(n, k) = (8/5) * Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k-1, k)*A108625(n, k) for n >= 1. Cf. A176285. (End)

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002
Previous Showing 31-40 of 202 results. Next